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1 Introduction

Throughout this article, let H be a real Hilbert space with inner product
(-, -y and norm ||-||. Let C' be a nonempty closed convex subset of H. Let T : C — C
be a nonlinear mapping. A point z € C is called a fized point of T if and only if
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Tx = x. The set of fixed points of T' is denoted by F(T) :={x € C: Tz =z}. A
mapping T of C' into itself is called nonexpansive if

[Tz =Tyl < |l =y, Yo,y € C.

The mapping T : C — C is called a k-strictly pseudononspreading mapping if
there exists x € [0,1) such that

T2 = Ty|* < llo = y|*+ 5 I(I = T)ax — (I — T)y|* +2(x— T,y —Ty),Va,y € C.
(1.1)

This mapping was introduced by Osilike and Isiogugu [I] in 2011. It is shown in
[11] that (1.1) is equivalent to
1-x
2

for all z,y € C.
The mapping A : C — H is called a-inverse strongly monotone if there exists
a positive real number « such that

<A33 - Ay,l’ - y> 2 « HA:I: - Ay||2 )

I(I-T)z—(I-T)y|* < (I-T)a—(I-T)y,z—y)+{(I-T)z,(I-T)y), (1.2)

for all z,y € C.
Let G : H — H be a mapping and M : H — 29 be a multi-valued mapping.
The variational inclusion problem is to find z € H such that

0cGz+ Mz, (1.3)

where 6 is a zero vector in H. The set of the solutions of is denoted by
VI(H,G,M). Variational inclusion problem has a great impact and influence in
the classes of mathematical problems and it is widely studied in many fields of
pure and applied sciences. This problem is a useful and important generalization
of the classical variational principles that includes variational, quasi-variational,
variational-like inequalities as special cases. Many research papers have increas-
ingly investigated such problems, see for instance [2] B, 4] and references therein.

Let M : H — 27 be a multi-valued maximal monotone mapping, then the
single valued mapping Jy,x : H — H defined by

Jur(z) = (I +IM)"1(2),Vz € H,

is called the resolvent operator associated with M, where A is any positive number
and [ is an identity mapping, see [10].

In 2008, Zhang et al.[10] introduced iterative scheme for finding a common
element of the set of solutions of the variational inclusion problem with multi-
valued maximal monotone mapping and inverse strongly monotone mappings and
the set of fixed points of nonexpansive mappings in Hilbert space. They introduced
the iterative scheme as follows:

Yn = JM)\(xn — )\A:cn),
Tn+1 = QpT + (1 - O‘n)Synavn > 07
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and proved strong convergence theorem of the sequence {x, } under suitable con-
ditions of parameter {a;,} and A.

In 2014, Khuangsatung and Kangtunyakarn [I1] have modified as follows:
Fori=1,2,...,N,let A; : H — H be a single valued mapping and let M : H — 2H
be a multi-valued mapping. From the concept of , they introduced a new
problem for finding z € H such that

N
0 c ZaiAiz+Mz, (1.4)

i=1

for all a; € (0,1) with Zf\il a; = 1 and 6 is a zero vector. This problem is
called the modified variational inclusion. The set of solutions (1.4]) is denoted by
VI (H, Efil aiAi,M). If A, = A for all ¢ = 1,2,..., N, then 1’ reduces to
(1.3). They also introduced an iterative method for finding a common element of
the set of fixed points of a k-strictly pseudononspreading mapping and the set of

solutions of a finite family of variational inclusion problems and the set of solutions
of a finite family of equilibrium problems as follows:

N
1

E a; F; (unvy)+7<y_unaun_xn> > 07V:U€ C,
Tn

=1

N
Tn+l1 = QpU + ﬁnxn + ’YnJM,)\(I - A Z biAi)xn
=1

where F; : C x C' — R is a bifunction satisfying (A1)-(A44) for all i = 1,2,...N,
A; : H — H is a;-inverse strongly monotone mapping with n = min;=1 2, n{ai},
and T : H — H is a k-strictly pseudononspreading mapping. Under suitable
conditions of all parameters, they proved that {x,,} converges strongly to z = Pru,
where F := F(T) NN, EP(F) NN, VI(H, A;, M) # 0.

Let F: C'xC — R be a bifunction and let A : C — H be a nonlinear mapping.
Now, we consider the following generalized equilibrium problem:

Find z € C such that F(z,y) + (Az,y — z) > 0, (1.5)

for all y € C. The set of solutions of this generalized equilibrium problem is
denoted by

EP(F,A)={x € C: F(z,y) + (Az,y —x) > 0,Yy € C}.

If A = 0, then problem reduces to the equilibrium problem. The set of
solution of the equilibrium point is denoted by EP(F'). Several iterative methods
have been proposed to solve the solution sets of these problems; see [5l [6] and the
references therein.

In 2008, Takahashi and Takahashi [7] introduced an iterative method for finding a
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common element of the set of fixed points of a nonexpansive mapping and the set
of solutions of a generalized equilibrium problem in a real Hilbert space as follows:

F(Umy) + <A$n,y - un> + % <y — Un, Un — mn> >0,y € Ca
Tny1 = BnTn + (1 - /Bn)T(anu + (1 - an)un)avn >1,

where A is an a-inverse strongly monotone mapping of C' into H. Then, they
proved that {x,} converges strongly to z = Pr(1r)ngp(r,4)u under some suitable
conditions.

In 2012, Kangtunyakarn [15] have modified as follows: Let A,B: C — H
be two mappings. By modification of , we have

EP(F,aA+(1—-b)B)= {ze€C:F(x,y)+{(aA+ (1 —-b)B)z,y —xz) >0,

Yy € C, and a € (0,1)}.
(1.6)

He also introduced an iterative method for finding a common element of the set

of fixed points of strictly pseudo-contractive mapping and the set of solution of a
modification of generalized equilibrium problem as follows:

F (tn, y) + (@A + (1= 0)B)2p, y — tn) + 75 (y = Un, tn — ) > 0,Vy € C,
Tnt1 = Qptt + By + W Po(l = X — T))uy, Vn > 1,
where A, B are an a and S-inverse strongly monotone mapping, respectively and
T is a k-strictly pseudo contractive mapping. Under suitable conditions of the
parameters {a,}, {Bn}, {7n}, A, he proved that {z,} converges strongly to z =
Pr(7)nEP(F,aA+(1-b)B)u under some suitable conditions.
Questions

1. Is it possible to prove a strong convergence theorem for finding a common
element of the set of fixed point of a finite family of k-strictly pseudonon-
spreading mappings without using W-mapping, K-mapping, or S-mapping
defined by [16], [I8], [17], respectively ?

2. How can we give an iterative method for finding a common element in

N N N
Fi= () F(T)n (| VI(H,Ai, M) EP(F,» b;B;) # 07

=1 =1 i=1

In this paper, motivated by the work of Khuangsatung and Kangtunyakarn
[11], [15], and the related research papers, we prove a strong convergence theorem
for finding a common element of the fixed point sets of a finite family of k-strictly
pseudononspreading mappings and the solution sets of a finite family of variational
inclusion problems and the solution sets of generalized equilibrium problem in
Hilbert space. Moreover, we also give a numerical example to support our main
results in the last section.
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2 Preliminaries

In this paper, we denote weak and strong convergence by the notations
Y~ and ' —", respectively. For every point z € H, there exists a unique nearest
point of C, denoted by Pcx, such that||x — Pox|| < ||z —y| for all y € C. Such a
Pc is called the metric projection from H onto C'. It is well known Pg is a firmly
nonexpansive mapping from H onto C, i.e.,

|Pcx — Peyl||® < (Pex — Poy,z — ),

for all x,y € H.
For a proof of the main theorem in the next section, we will use the following
lemmas.

Lemma 2.1 ([8]). Given z € H and y € C, then Pcx =y if and only if we have
the inequality

(x —y,y—2z) >0,¥z € C.
Lemma 2.2 ([9]). Let {s,} be a sequence of nonnegative real numbers satisfying
Snt1 < (1 — ap)sp + 0,, V0 > 0,
where ay, s a sequence in (0,1) and {6, } is a sequence such that

(1) Zan = 00,

n=1

5 o0
2) limsup — <0 or On| < 0.
( ) n—>oop o7 ;‘ n|

Then, lim s, =0.
n—oo

For solving the equilibrium problem for a bifunction F' : C' x C — R, let us
assume that F' satisfy the following conditions:
(A1) F(z,z) =0 for all z € C;
(A2) F is monotone, i.e., F(x,y) + F(y,z) <0 for all z,y € C;
(A3) For each z,y,z € C,

lim F (tz + (1 - )z,y) < F2,);

(A4) For each x € C,y — F(x,y) is convex and lower semicontinuous.

Lemma 2.3 ([12]). Let C be a nonempty closed convex subset of H and let F be
a bifunction of C x C into R satisfying (A1)-(A4). Let r >0 and x € H. Then,
there exists z € C' such that

1
F(z,y)+-(y—z,z—x) >0,Vy € C.
r
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Lemma 2.4 ([T4]). Assume that F : C x C — R satisfies (A1) — (A4). Forr >0,
define a mapping T, : H — C as follows:

1
T (x) = {zEC:F(my)—i—;(y—z,z—m) >0,Vy € C}

for allx € H. Then, the following hold:

(i) T, is single-valued;

(i) T, is firmly nonexpansive, i.e., for any x,y € H,

1T (2) — Tr(y)HQ < (Tr(z) = To(y) z — y);

(iii) F(T,) = EP(F);

(iv) EP(F) is closed and convez.
Lemma 2.5. Let H be a real Hilbert space. Then

lz +ylI* < ll2[* + 2(y, = +y),

forallx,y € H.

Remark 2.6 ([I1]). Let T : H — H be a k-strictly pseudononspreading mapping
with F(T) # 0. Define S : H— H by Sz := ((1—-AN)I+\XT)x, where A € (0,1—k).
Then the following hold:

(1) F(T) = F(S) = F(I-XI -T));
(ii) for every x € H and y € F(T),
1Sz —yll < llz -yl
Lemma 2.7 ([I0]). v € H is a solution of variational inclusion if and only
if u= Jpa(u—ABu),YA >0, ie.,
VI(H, B, M) = F(JyA(I — AB)),¥A > 0.
Further, if X € (0,2q], then VI(H,B, M) is a closed convex subset in H.

Lemma 2.8 ([I0]). The resolvent operator Jp n associated with M is single val-
ued, nonexpansive for all A > 0 and 1-inverse strongly monotone.

Lemma 2.9 ([I1]). Let H be a real Hilbert space and let M : H — 29 be
a multi-valued maximal monotone mapping. For every i = 1,2,...,N, let A; :
H — H be a;-inverse strongly monotone mapping with n = min;=1 2. n{o;} and
N, VI(H, Ai, M) # 0. Then

N N

VI(H,Y  aiAi, M) = (| VI(H, A;, M),

i=1 1=1
where vazl a; =1, and 0 < a; < 1 for every i = 1,2,..., N. Moreover, we have
I — )\Zf\il a;A;) is a nonexpansive mapping, for all 0 < A < 27).
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3 Main Results

In this section, we introduce the following iterative algorithm and prove a
strong convergence theorem for finding a common element of the fixed point sets of
a finite family of k-strictly pseudononspreading mappings and the solution sets of a
finite family of variational inclusion problems and the solution sets of combination
of generalized equilibrium problems in Hilbert space.

Let C be a nonempty closed convex subset of a real Hilbert space H. Let F
be bifunctions from C x C to R satisfing A1)-44). Let M : H — 2% be a multi-
valued maximal monotone mapping. For every i =1,2,..., N, let A;: H — H be
n;-inverse strongly monotone mapping with n = min;=12.. n{n:}, B; : H — H be
be a finite family of k;-strictly pseudononspreading mappings of H into itself with
R = maXi:Lg,.wN{/{i}.

Algorithm 3.1. The sequence {x,} is generated by x1 € H and

N
1
F(urmy) + < E blexnay - un> + 7<y — Up,Un — xn> Z O’Vy c Ca
i=1

N
Yn = 6711‘71 + (1 - 5n)JM,A(I - AzazAz)uny
=1

Tn+1 = Oénf(xn) + ﬁnxn + Tn ch(l - pn(l - Ti))ynvvn eN,

i=1

(3.1
where {an}, {Bn}, {1}, {60} € (0,1) and X > 0 with oy + B + 70 = 1, 0
ai,bi,ci <1, for everyi =1,2,..,N, 0 < p < BpnyYn,0n < g <1, 1 € [c,d]
(0,2u), and p, € (0,1 — k) for alln > 1.

~—

N IA

If A, =A B;=DB,and T; =T, for all i = 1,2,..., N, then Algorithm
reduces to Algorithm [3:2]

Algorithm 3.2. The sequence {x,} is generated by x1 € H and

1
Yn = Oy + (1 - (Sn)J]w)\(I — )‘A)Un; (32)
Tpi1 = anf(20) + Bnxn + V(I — pn(I = T))yn,¥n € N,
where {ant, {Bn}, {7}, {6n} C (0,1) and XA > 0 with oy, + By + v = 1, for every

i=1,2,...,N,0<p< BnYn,0n <q<1, 7, €c,d] C(0,2u), and p, € (0,1 — k)
foralln > 1.

Under the condition of parameters above, we give a strong convergence theo-
rem for the Algorithm [3.1}
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N
Theorem 3.3. Suppose that F := ﬂf\;l F(E)ﬂﬂfil VI(H,A;, M)NEP(F, Z b;B;) #
i=1
(. Assume the following conditions hold:

(i) nl;rrgo an =0 and Z Q= 00,

n=1

(ii) 0 <A< 2n,

(iif) 3252 pn <00,
N N N

(V) Yai=Y bi=> ci=1,
=1 =1 =1

o0 o0 o0
(V) Z |O‘n+1 - an| < o0, Z ‘/Bn+1 - ﬂn| < o0, Z |7n+1 - 'Yn| < o0,

n=1 n=1 n=1

0o 0o o]
Z|pn+1_pn| < 00, Z|5n+1_6n| < 00, Z|rn+1_rn| < 00.
n=1 n=1 n=1

Then the sequence {x,} defined by Algorithm converges strongly to xg =
Pr f(zo).

Proof. First, we will show that Zi\; b;B; is a p-inverse strongly monotone map-
ping. For x,y € H, we have

N N N
<Z b;B;x — ZbiBiy>$ —y) = Z bi(Bix — By, —y)
i—1 i=1 i—1

v

N
> bipi|| Bix — Biy|)?
i=1

N
Z Z bipl| Bix — Biy||®
=1
N N
> | Y biBiw = > biBuyl. (3.3)
=1 =1

Then Zf\; b;B; is a p-inverse strongly monotone mapping.
Next, show that I —r, Zfil b; B; is a nonexpansive mapping. For every n € N,
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from (3.3), we have

N N N N
(T =70y biBi)w = (I =7 > 0Byl = [l =y —ra(d_ b:Biz — Y b:Buy)||”
i=1 i=1 i=1 i=1
N N
— e =yl — 2rale —y, S 0iBir = 3 biBuy)
i=1 =1
N N
i=1 i=1

N N
< fla — ylI? = 2ruall S biBiw — > biBuylP
i=1 =1

N N
+ ’I"iH Z blBll‘ — Z biBin2
i=1 i=1

N N
=l =yl + rulr — 20 Y biBix — 3 b, By
=1 =1

< Jlz -yl (3.4)

Then I —r, vazl b; B; is a nonexpansive mapping.
Now, we divide the proof into five steps:
Step 1. We show that the sequence {z,} is bounded. From (3.1) and Lemma

we have u, = T,. (I —r, Zf\il b;B;)x,, for all n € N. Let z* € F. Then
N

F(z*,y) + (y — 2%, ZbiBim*> >0 for all y € C. So,

i=1

N
1
F *a - *a -t n szz - >O7
(z y)+r<y x5z erTE x*) >

n i=1

foralln € Nand y € C. From Lemma we have a* =T, (I —r, Zi\; b; B;)x*,
for all n € N. Since z* € ﬂfil VI(H,A;, M), from Lemma E and Lemma

we have

N
¥ =Jdyr(I — )\ZaiAi)x*.

i=1
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From the nonexpansiveness of Jys (1 — A Zfil a;A;), we have
N
ITaeA(T =AD" aiAi)uy — 2% < [Jun — ||
i=1

N
=T, (I =0 Y biBi)an — ||
1=1
< zn — 2*|. (3.5)

From the definition of y, and (3.5)), we have

N
lyn — 2| = n2n + (1 = 8a)Tara(I = A aiAi)un — z*||
=1

N
< Opllen — || + (1 = )| Jarn({ — )\ZaiAi)un —z"

i=1
< Opllzn — 2| + (1 = 6p)[len — 27|
= [Jon — 27 (3.6)
Since z* € ﬂf\; F(T;), by Remark and 1D we have

N N

IS el = pull = Ty — 27| < 3 il = pull = Ty — 27|

i=1 i=1
< lyn — =™
< |zn — 2. (3.7)

From the definition of z, and (3.7]), we have

N
Hxn+1 - LL‘*H - Hanf(xn) + ann + In ZCZ(I - pn(I - Tl))yn - x*”

i=1

] =

= llan(f(zn) = %) + Balan — 2*) + 7 () cill = puI = T))yn — 27|

7

Il
N

N
anllf@n) = 2" + Ballzn — 2| +7all 3 i = pulI = T))ya — 2|

=1

IN

<

N
< anlf(@n) = f@) | + anll f(2™) = 2| + Bullen — 2| +7all D il = pu(I = T2))yn — 27|

<

i=1
< (1= an(1 — a)llen — 2"l + nllf ) — 7|
< max{ s -7, LT

—
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By mathematical induction, we can prove that {z,} is bounded and so is {u,}.

Step 2. We will show that lim, o |[|[Znt1 — x| = 0. Put G = Ef\il a;A;. By
the definition of y,,, and Lemma 2.9 we obtain
9 — il = 1600 + (1= 60)Tara (T = AG)un
— Ope1@n—1— (1 = 1) I n(d = AG)up—1||
< Onllzn — xn—IH + |5n - 5n—1‘||$n—1”
+ (1=l = AG)un, — T (I — AG)tp—1]||
+ |01 = O]l Taen(T — AG)tp—1]|
< Onllzn — Tn-1ll + [0n — Sn—1lllzn—1ll + (1 = 6n)llun — un—1]|
+ [0n-1 = Onlll AL = AG)tp—1]- (3.8)

Putting V = sz\; b;B;, then v, = x,, —r,Va, and uy, =T, (I =7, V)xy = T} vy
By continuing in the same direction as in Step 2 of Theorem 3.1 in [I5], we have

1
lun —tn—1|| < ||2n — 2n_1||+|rn — ra_1] [[Vaa |+

d
Substituting (3.9)) into (3.8]), we obtain
lyn — yn—1ll < Snllzn — Tn-1ll + [0n — dp—1|l|n-1] + (1 — 5n)( |20 — Zn-1l|

[T — Tret1| Jun — vn]| - (3.9)

1
+ | = a1 [V, | + d [7r = 1| | tn — Un”)

+ ‘6n—1 — 6n|HJM7/\(I — )\G)un_1||
< lwn = zn—1ll + 100 = dn—1ll|Tn—1ll + |rn — rn_1| [V,

1
+ = rn = a1l lun — vnll + [00—1 — 5n|||JM,>\(I — AG)up_1]|.

d
(3.10)
Putting L,, = ZZ\; ¢i(I = pn(I —T;))yn, we have
N N
[Ln = Ln-1ll = || Zci(l = pu(I = T3))yn — Zci(I = Pn—1(I = T3))yn—1|
=1 =1
N
< el = palI = T)yn — (I = puoa(I = T0))yn1|
1=1
N
= > cill(n = ya1) = ol = T)yn + pna(I = Ti)yn ||
i=1
N
=Y cill(n = yn-1) = pold = T)yn + pu(I = T)yn—1 = pu(I = T:)yn—1
=1

+ pn—l(I - E)yn—lu
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(2

+ lpn = pnalll = T)yn—1l)

N
=1

N
= |yn — Yn—all + Zcian(I = T)yn — (I = T3)yn—1|
i=1
N

+ Y cilpn = pu-all(T = T)yn-all. (3.11)

i=1
Substituting (3.10]) into (3.11]), we obtain
Ly = L1l < [|#n = zn—1l| 4+ |60 — Sn-1lllzn-1ll + [rn — ra—a| [Van|

1
+ =l = ol lun — vl + [0n-1 — 5n|||JM,>\(I — AG)up—1]|

d
N N

+ ZCanH(I - T‘z)yn - (I - Tz)ynfln + Zci‘pn - pnfl‘H(l - le)ynle
i=1 i=1

(3.12)
From the definition of z, and (3.12)), we have

Hanrl - an = ||anf($n) + BnTn + nln — anflf(xnfl) — Br—1Tp—1 — %71Lnfl||
= ”O‘nf(x") - anf(mnfl) + Oénf(xnfl) + Bnn — BnTn_1 + BnTn_1
+ YnLln = Ynln-1+Ynln-1 — an_1f(Tn-1) = Ba—1Tn—1 — Yn-1Ln—1]|
< an|| f(zn) = f@n-)l + o — anal[[f(@n-1)]| + Bullzn — zn-1]|
+ 1Bn = Bu—tlllzn—1ll + ll L = Ln—1ll + |vn — Va1l Ln-1l
< anafzn — znoal| + lan — an—al[[ f(@n—1) || + Bullzn — zn-1l|

+ [Bn = Bu-tlllzn-1| + 'Yn(Hmn —Tp_1| + |6, — 5n71|||xn71” + |7"n —Tn1] ”Vxn”

1
+ d 1 = rn—1] [[un = vpll + [6n—1 = nl[[ T A (I — AG)upn—1||

N N
+ 3 eopull (I = Ty — (I = Tyas| + S cilpn — putlllZ = T)yacs)

i=1 i=1
+ [V — Y1l Ln-1l
< (1 -an(l=a))llzn —zn-1| + |lon — an-a|l|f(@n-1)|l
+ |Bn = Br—tlllzn—1ll + [6n = dn—1lllzn-1ll + |70 — rp—1] [[Vzs||

1
+ S = raea| Jun — vl + [0n—1 = SnlllJara (I — AG)up—1]|

d
N N

+ Zczan(I - Tl)yn - (I - /—Tz)ynle + Zcz|pn - pn71|||(1 - Ti)ynfln
1=1 i=1

+ [ = -1l L. (3.13)
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Applying Lemma[2.2] (3.13)), and the conditions (i), (iii), (v), we have

nh_}ngo |€nt1 — zn] = 0. (3.14)

Step 3. We show that lim,, oo ||ttn — 2n|| = limp oo [[(T — pn(I — T3))yn — ynll =
limy, o0 [T n (I — AG)up —up|| =0foralli =1,2,...,N.

To show this, let z* € F. Since u, =T, (I — r,V)z,, where V = Zivzl b; B;,
and T, is firmly nonexpansive mapping, then we obtain

l|wn — x*HQ =T, (I —=rnV)xn =T, (I — rnV)x*HQ
< AT =rpV)xn — (I —ry V)™, u, — ™)

1
= (I = raV)on = (I = 2aV)a" | + flun = 7|

— T =7 V)zn — (I =1, V)a* —up + 2*||)
1 * * *

5( Iz — 2|1 + [Jun — 2|1 = |l2n — wnl® = 72 [V, — Va*|?
+ 2rp{xy — Up, Ve, — Vx*>),

IN

which follows that

i — 2% < | — 22|20 — a2 ||[Va, — Va* P +2rm (@0 —tn, Vi, —Va*).
(3.15)
From the nonexpansiveness of T, and (3.3), we have
l[un — $*||2 =T, (I = rV)an = Tp, (I - Tnv)x*HQ
< (I = rpV)xp — (I —r, V)22
= ||zp — 2*|]? = 2rp (2 — 2%, Vi, — Va*) +r2||Va, — Va*|?
< lzn = 2*)1? = 2rppul|Va, = Va* | + 17 |V, — Va*|?
= ||z — 2*|]? = ra(2p — )|V, — Va*|%. (3.16)

From Remark Lemma [2.9 and (3.16), we have
N

[nt1 — x*”Q < an| f(zn) — x*”Q + Bnllzn — x*Hz + Ynll Zci(l —pn(L = T0))yn — m*”Q
i=1

anl|f(zn) = 2| + Ballzn — 2| + yallyn — 2|
an | f(zn) — x*||2 + Bnllzn — x*HZ + ¥ (Onlzn — x*HZ
+ (1= 0) [T = AG)uy, — 2*||%)
< an| f(zn) — $*||2 + Bullzn — 37*H2 + Y (On|lzn — x*HQ
+ (1= 0n) Jun —2*%)
< anllf(zn) — m*HQ + Bnllzn — x*HQ + Y (OnllTn — x*Hz
+ (=) (len — 2 |* = ra(2u— 1) [V, — Va™||?))
< an| f(zn) — x*”Z + llzn — m*HQ = Y20 = 1n)(1 = 6n)[|[VEn — V$*|‘27

IN A
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which implies that

(20— 1) (1= 8) [V, = Va*|* < ap | f(@n) — @[ + (2 — 2" + @1 = 2°[]) @041 — zal.
From the condition (i) and (3.14), we have

li_)m \Vz, —Va*| = 0. (3.17)

From the definition of z,,, and (3.15]), we have

N
|Zn41 = 2> < anllf(z0) = 2*|* + Ballwn = 2*|° + 7all D eill = pull = T3))yn — 2°|?

i=1

anl| f(@n) = 2" + Bullzn — «*[* +nllyn — 2™
anllf (@) = 2*1* + Bullzn — 2*[1* + v (Gnllan — 2|12
+ (1= 8) [ Jara(I = AG)up — 2*|%)
anllf(zn) = 2* 1> + Ballen — 2* 1> + v (Gnllwn — 2|12
+ (1= 8n)[lup — ")
< apl|f(zn) — x*HQ + Bz, — $*||2 + In (5n||xn - x*||2

+ (1= 8n) (lzn — 2™ = llzn — unl® = 3| Van — Va|?

+ 2rp(xy — up, Va, — Va:*>))
< an”f(xn) - x*”Q + ﬁnnxn - 33*”2 +'Yn(||37n - $*||2

— (I =du)l|zn — un”z +2rp (1 = 0p)||7n — un||Va, — Vx*”)
< anllf(zn) — x*HQ + Bullzn — x*llz + YnllTn — x*HQ

= Yn(1 = 6n)llzn — un||2 + 210 (1 = 0n) [ — un|[[|Van — Va©||
< agl|f(za) — 2| + zn — 2"

— (1= 8n)llzn — un||2 +2ra (1 = 6p) |0 — un|||Van — V.

IN A

IN

It implies that

* 112 *112 %112
(L =) |n = unl® < an [[f(2n) = 2*|° + llzn — 2" = [[€ps1 — 2|
+ 2rp (1 = 0p) |20 — unH||V$n — V|

%12 * *
<ap [f(@n) = 2" + ([|on — 2| + [|2n41 — 27|) |01 — 24|
+ 2rp (1 = 6p)||xn — up|||| Ve, — Va|.

From the condition (i), (3.14]), and (3.17)), we have

lim |z, —uy| =0. (3.18)

n—oo
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From the definition of x,,, we have

N

|1 — 2" < anllf(2n) = 2|7 + Bullzn — 21> +3all D il = pull = T))yn — 2™
i=1

anl|f(@n) = 2| + Ballzn — 2| + yallyn — 2|
an||f(37n) - x*”Q + Bn”xn - 37*H2 + 'Vn(llfsn(mn - 37*)
+ (1= 00) (Jura (I = AG)up — 27)|?)
< anllf(zn) = *[1* + Ballzn — 212+ (nllzn — 27|
+ (L= )T a (T = AG)un — 2" = 0n (1 = Gn) | Tnan (I = AG)un = za|?)
< O‘n”f(zn) - x*”Q + 5n||13n - 17*H2 + In (5n||$n - .1:*H2
+ (1 - 5n)Hun - $*||2 —0,(1 - 6n)||JM,>\(I - )\G)Un - xn||2)
< apl|f(zn) — 37*”2 + Bnllzn — 17*H2 + In (5n||xn - x*Hz
+ (1= dp)l|7n — x*HQ —0n(1— 5n)||JM,>\(I — AG)u, — mn||2)
= ag||f(2n) = 2" + Ballzn — &*|* +nllzn — 2™
— Yn0n (1 = )| T (I — AG)uy, — x|
< an| f(zn) — x*”Q + |z — x*HQ = Vn6n (1 = 6n) [T a (1 — AG)uy — anQ

IN

It implies that

Yn0n (1= 0) | Ta (I = AG)un — 24 ]|* < an || f(wn) — m*||2 + ([ = 2™ + llzngr — 27|)) [|2n+1 — @nll-

From the condition (i) and (3.14), we have
lim [|Jaza(I — AG)tt — 2| = 0. (3.19)
n—oo

Observe that

[T = AG)tun = unl| < [[Tma (L = AG)un — un | + [Jtn — 24| -
From ({3.18) and (3.19)), we have

lim [[Jy (I — AG)up, — uy]| = 0. (3.20)
n—oo
From the definition of y,,, we have
Yn — T, = (1 = 8) (T n (I = AG)uy, — 4.

From ([3.20)), we have
lim ||y, — x| = 0. (3.21)

n— oo
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From the definition of z,,, we have

N

st — 217 < @l F@a) — 22 + Bullen — 2|2 4 3all 3 el = pull = Ty — |2
=1

N
=1

< anllF(2n) = 22 + Bulln — 22 + Yallzn — 2" |
N
— Bl 3 eilI = pull = Ty — ™
=1

It implies that

N
*12 * *
Byl Y eill = pu(I = T)))yn = nl* < an || f(@n) = |7 + (lon = || + @01 = 2°[) |21 — all.

i=1

From the condition (i) and (3.14)), we have

N
lim || 2_; ci(I = pu(I = T0))yn — za = 0, (3.22)

foralli=1,2,...,N.
For every i = 1,2, ..., N, observe that

N N
1D eill = puld = Ti)yn = yall < 1) el = pulI = T0))yn — @l + |20 — yall-

i=1 i=1

From (3.21) and (3.22)), we have
N
n11—>r1<;lo ” z; Ci(I - pn(I - Tz))yn - ynll =0, (323)
1=

foralli=1,2,...,N.

Step 4. We show that li_>m sup (f(zo) — %o, Zn — o) < 0 where xg = Prf(x0).
To show this, choose a subsequence {z,, } of {z,} such that

limsup (f(xo) — xo, Tn —x0) = lim (f(x0) — 0, ZTn, — To) - (3.24)
n—o00 k—o0

Without loss of generality, we can assume that x,, — w as k — oo, where w € C.
From and (3:21), we obtain y,, — w and u,, — w as k — oo

First, we will show that w € ﬂi\; F(T;). Assume w ¢ ﬂfil F(T;), then
we have w ¢ F(T;,), for some ig = 1,2,..., N. From Remark [2.6] we have w #
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SN e, (- pn, (I —T;,))w. From the Opial’s condition, the condition (i), and

ig=1

(3.23]), we have

N
hkni)lo%f”ynk _w” < hkrggf Hynk - ECio(I - pnk(‘[ - TZO))WH
0=
N
< hkn_l)gf (Hynk - Z Cio(I - pmc([ - TZO))ynkH
io=1
N N
3 el = (=T, = 37 el = pr 1 = o))
i0=1 0o=1
N

< hmmf (I, — Z Cio (I = pny, (I = Tiy)) Y |

+ Z CZO”(I - pnk(‘[_ Tlo))ynk - (I _pnk(‘[ - Tlo))w”)

i0=1
N
< hkrggf (Hynk - Z Cio(I - p’ﬂk(‘[ - Tzo))ymcH
io=1

+ yne = wll + pni (I = Tig)yny, — (I = T )]
< liminf ||y, — w].
k—o0

This is a contradiction. Then

we [ F(T). (3.25)

Second , we will show that w € ﬂl L VI(H,A;, M). Assume that w ¢ ﬂi\il VI(H, A;, M).

By Lemma [2.7 and .9 NV 3 VI(H, Ai, M) = F(ua((T = AG))). Then w #
JMVA(If)\G)w, where G = 21:1 a;A;. By the nonexpansiveness of Jy x((I—AG)),
(3.20)), and Opial’s condition, we obtain

lim sup ||up, —w|| < likminf”unk — JuA((I = AG))w]|
— o0

k— o0
< likminf(Hunk — JuA((I = AG))uy, |
—00
[T (I = AG))tn, — T (I — AG))wl|)

< liminf ||up, —w]| .
k—o00

This is a contradiction. Then we have

N
we [\ VI(H, A, M). (3.26)
i=1
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N
Next, we will show that w € EP(F,V) where V. = > b;B;, ¥b; € (0,1) and
i=1
Zivzl b; = 1. By continuing the same method of proof as Step 4 of Theorem 3.1
in [15], we obtain

N
w€ EP(F,Y bB). (3.27)

i=1

Hence, we can conclude that w € F. Since z,, — w as k — oo and w € F, (3.24))
and Lemma we have

lim sup (f(zo) — zo,xn — zo) = lim (f(zo) — xo, Tn, — Zo)
n—oo k—oo

= (f(z0) — w0, w — T0)
<0. (3.28)

Step 5. Finally, we show that lim x,, = xo, where xyg = Prf(xg). From the

n—oo
definition of x,,, we have

N
241 = 2ol|* = llan(f (@) — 20) + Bn(@n — T0) + ZCZ (I = pu(I = T;))yn — w0)|?
=1
N
S ||ﬁn(mn - 370 + 'yn ZC’L I pn I E))yn - $0)||2 + 2an<f(xn> — X0, Tp+1 — l'0>
=1

N
< (ﬁn”mn - 1‘0” + Vn” Zcz I pn I T)) - 330”)2 + 20‘n<f(xn) — 20, Tn4+1 — $O>

< (Bullzn — ol + 7n||yn — 20[)* + 20 (f (€0) — 0, Tpy1 — T0)
<(1- O‘n)QHxn - onz + 2an (f(zn) — f(20), Tnt1 — T0)
+ 20, (f(z0) — 20, Tng1 — To)
< (1= anlfn — 20l + 200/ (@n) — ) llEnss — 2ol
+ 200 (f(z0) — 0, Tn+1 — To)
<(1- an)2||$n - 330”2 + 2analzn — zoll[|[Tns1 — wol|
+ 2a,(f(z0) — 20, Tnt+1 — Xo)
< (1= an)?[lzn = zol® + ana(llan — 2ol + l|lznts — 2o0]|?)
+ 20, (f(20) — 20, Tng1 — To)
= (1= an)?||lzn — z0* + anallzn — 2o + anallzasr — o

+ 20‘n<f(x0) — X0, Tn+1 — $0>-
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It implies that

2au,

(1—a,)? + aya
1—apo

1— oy

A

[#ns1 — zol” < @, — @o||* + (f(z0) — @0, Tpt1 — o)

11—«

1 2af+fa+ 2 = ol + T F(20) = 0,041 — 0)
= 1_120_4”#Hxn — ol + gl - o2
+ 1 EO;ZLOé (f(x0) — 20, Tny1 — o)
(1 S T )> o = 2ol + 7 —aii(oj)z_(f)— oy llen = ol
+ f“;f)[f_) S {F(e0) 0741 — )
(1 2= Y — ol + 23 (0, — ol
+ (f(xo) — w0, Try1 — o>).

From the condition (i), (3.28) and Lemma 2.1} we can conclude that the sequence
{z,} converges strongly to xo = Pxf(xo). This completes the proof. O

Theorem 3.4. Suppose that F := F(T)NVI(H,A,M)NEP(F,B) # (. Assume
the following conditions hold:

(i) nl;n;o on =0 and Zan = 00,

n=1

(i) 0 <A< 2n,

(iii) 2?21 Pn < 00,

o0 o0 oo
(iv) Z |1 — @] < oo, Z |Bny1 — Bn| < o0, Z [Ynt1 — Ynl < 00,

n=1 n=1 n=1

Z |pn+1 - pn| < 00, Z |6n+1 - 6n| < 00, Z ‘Tn-i-l - Tn| < 0.
n=1 n=1 n=1

Then the sequence {x,} defined by Algorithm converges strongly to xg =
Pr f(zo).

Proof. Put A; = A, B; =B, and T; = T, for all i = 1,2,..., N in Theorem [3.3]
So, from Theorem we obtain the desired result. O

Corollary 3.5. Let C be a nonempty closed convex subset of a real Hilbert space
H. Let F be bifunctions from C x C to R satisfy A1)-A4). Let M : H — 2H be a
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multi-valued mazimal monotone mapping. For everyi=1,2,...,N, let A: H —
H be n-inverse strongly monotone mapping, B; : H — H be u;-inverse strongly
monotone mapping with u = min,—1 2 n{pi}, and let {T}N| be a finite family
of k;-strictly pseudononspreading mappings of H itself with k = max;=1 2. n{Ki}.

N

Assume F := ﬂf\;1 F(T,)NnVI(H, A, M)NEP(F, Z b;B;) # 0. Let the sequences
i=1

{zn} be generated by x1 € H and

N
1
F(urwy) + <Z biBix'rmy - un> + 7<y — Up, Un — $n> Z O,Vy S 07
i=1 n

Yn = OpTn —|—E1 = 0n) I (I — AA)uy,
N

Tnt1 = A f(Z0) + BnZn + Yn ZQ‘(I — pn(I = T5))yn,Vn € N,
i=1
(3.2
where {an}a{ﬁn}7{7n}7{6n} - (0,1) and X > 0 with o, + B, + Y =1, 0
ai,bi,ci < 1, for every i = 1,2,..,N, 0 < p < By, 0n < g <1, 1, € [c,d]
(0,2u), and pp € (0,1 — k) for all n > 1. Suppose the following conditions hold:

NninE

(i) nh_>rr;o o, =0 and Z Qp = 00,

n=1

(i) 0 < A< 2nm,

(iii) S0, pn < 00,
N N

(iU) sz = Zci = 1,
i=1 i=1

o o o
(v) Z |1 — | < 00, Z Brt1 — Bal < o0, Z V41 — Ynl < 00,

n=1 n=1 n=1

oo o0 o0
Z ‘anrl - pn| < 00, Z ‘6n+1 - 5n| < 00, Z |Tn+1 - Tn' < 0.
n=1 n=1 n=1

Then the sequence {x,} converges strongly to xg = Prf(xo).

Proof. Put A; = A for all i = 1,2,..., N in Theorem So, from Theorem
we obtain the desired result. O

Corollary 3.6. Let C be a nonempty closed convex subset of a real Hilbert space
H. Let F be bifunctions from C x C to R satisfy Al)-A4). Let M : H — 21
be a multi-valued maximal monotone mapping. For every i = 1,2,..., N, let
A; : H — H be n;-inverse strongly monotone mapping with n = min;=1,2,... n{ni},
B; : H — H be p;-inverse strongly monotone mapping with g = min;=12,._ n{ti}-
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N
Assume F := ﬂfil VI(H,A;,M)N EP(F, ZbiBi) # 0. Let the sequences {x,}
i=1
be generated by x1 € H and

n
N

Yn = OnTn + (1 — 5p) I n({ — )\ZaiAi)un,
=1
Tni1 = an f(2n) + Bun + YnYn, ¥n € N,

N
1
F(unvy) + < § biBixy,y — un> + 7<y — Up, Up — xn> >0,Vy € C,
=1

(3.3
where {an}, {Bn}s {1}, {0n} C (0,1) and X > 0 with oy, + B+ = 1, 0
ai,biyc; <1, for every i =1,2,..., N, 0 < p < Bn,Vn,0n < ¢ < 1, and r, € [c,d]
(0,2u) for all n > 1. Suppose the following conditions hold:

NINE

o0

(i) lim a, =0 and E Oy, = 00,
n— oo 1
n—=

() 0 < A< 2n,
N N
(iii) Y ai =Y bi=1,
=1 =1
o] o0 o]
(i) D lans1 — an| <00, > Buis = Bul <00, D [Yns1 — Yn| < 00,
n=1 n=1 n=1

oo oo
Z [On41 — 0n| < 00, Z [Frt1 — rn| < 00.
n=1 n=1

Then the sequence {x,} converges strongly to xg = Prf(zo).

Proof. Put T; = I for alli = 1,2,..., N in Theorem [3.:3] So, from Theorem [3.3] we
obtain the desired result. O

4 Applications

In this section, we utilize our main theorem to prove a strong convergence
theorem for finding a common element of the set of fixed points of a finite family
of k-strictly pseudononspreading mappings and a common element of the set of
fixed points of a finite family of k-strictly pseudo-contractive mappings and the
set of solution of generalized equilibrium problem in Hilbert space.

Recall that let S : C — C be a mapping. Then S is said to be &-strictly
pseudo-contractive if there exists a constant £ € [0, 1) such that

1Sz = Syl|* < |z = ylI* + £ (1 = S)z — (I = S)y|* ,Var,y € C.
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Now, we consider a property of finite family of strictly pseudo-contractive map-
pings in Hilbert space as follows:

Proposition 4.1. [T9] Let C be a nonempty closed convex subset of a real Hilbert
space H.

(i) Given an integer N > 1, assume, for each 1 < ¢ < N, S; : C — H s
a &;-strict pseudo-contraction for some 0 < & < 1. Assume {ai}ZN 15 a
positive sequence such that Zfil a; =1 .Then Zil a;S; 1s a £-strict pseudo-
contraction, with £ = max;=12, . N{&}.

(ii) Let {S;}N and {a;} be given as in (i) above. Suppose that {S;}V has a
common fixed point. Then

N

N
mZ%@:ﬂF@)

=1

Theorem 4.2. Let C be a nonempty closed convex subset of a real Hilbert space
H. Let F be bifunctions from C x C to R satisfing A1)-A4). Let M : H —
2 be a multi-valued mazimal monotone mapping. For every i = 1,2,...,N,
S; + H — H be &;-strictly pseudo-contractive mappings with € = max;=1 2, n{&},
B; : H — H be p;-inverse strongly monotone mapping with u = min;—1 2, n{ti},
and let {T}N., be a finite family of k;-strictly pseudononspreading mappings of
H itself with k = max;=12, nN{Kki}. Assume F := ﬂf\il F(T;)n ﬂlj\il F(S;) N
EP(F, Zf\il b;B;) # 0. Let the sequences {x,} be generated by 1 € H and

N
1
F(unay) + <Z biBll'n»y - un> + 7<y — Up, Up — xn) Z O,Vy € C,
i=1 "
Yn = Ontn + (1= 6,) (1 = Nun + AN, a:Siun),
N
Tp41 = anf(xn) + BnTn + T ZCZ(I - pn(I - Tz))yruvn €N,
i=1
(4.
where {an}, {Bn}s {1}, {0n}t C (0,1) and X > 0 with oy, + B + v = 1, 0
ai,bi,c; <1, for everyi =1,2,..,N, 0 < p < BnyYn,0n < ¢ < 1, 1,y € [, d]
(0,2u), and p, € (0,1 — k) for all n > 1. Suppose the following conditions hold:

NINEZE

(i) lim o, =0 and Zan = 00,
n—oo

n=1

(i) 0<A<1-¢,

(iif) Y07 pn < o0,

N N N
(lV) Zai = Zbl = ZCi = 1,
i=1 i=1 i=1
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oo oo oo

(V) Z |an+1 - Olnl < 00, Z |5n+1 - ﬁn| < o0, Z |’7n+1 —%\ < 00,
n=1 n=1 n=1

o0 o0 o0
Z |Pn+1 - pn| < 09, Z ‘5n+1 - 5n| < 00, Z ‘Tn+l 77~n| < 00.

n=1 n=1 n=1

Then the sequence {x,} converges strongly to xo = Pr f(xzq).

Proof. Let A; = I — S; and M = 0 in Theorem [3.3] then we have that A; is
ni-inverse strongly monotone with 3 5 Now, we show that ﬂz JVIH, A, M) =

ﬂi:l F(S;). Since A; =1—-5;, M = 0, Lemma and Propos1t10n then

N N N
ze(\VIH A, M) <z e VI(H,Y aA,M)<0€> aAz+ Mz
=1 i=1 =1

N

<0 = Z aiAix
i=1
N

i=1

N
T = Z a;S;x
i=1
N
ST € F(Z aiSi)
=1

S € ﬂ F(S
1=1
It implies that
N N N N N N
(F(@)N(VI(H, Ay, M)NEP(F,Y b;B;) = (| F(T,)N( | F(S)NEP(F, > b;B;)
=1 =1 =1 =1 =1 =1

From the definition of Jas x, we have

Tl — )\Zal Yy = (I +AM)~1 (I — )\Zal ;

Up — A E a;A;un,
i=1
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N
=up =AY a;(I = Si)u
=1
N

=(1-=MNu, + )\ZaiSiun.
i=1

Since A € (0,1 —¢&) C (0,1), then (1 — Nu, + )\Zi]\il a;S;u, € H. So, from
Theorem we obtain the desired result. O

5 Numerical results

The following example supports Theorem [3:3] Using these examples, we see that
the Algorithm [3:1] converges faster than the Algorithm [3.2]

Example 5.1. Let R be the set of real numbers. For every i = 1,2,..., N, let
F:RxR—=R, 4;,B; : R — R be defined by

F(x,y) = —62% + 2y + 5y°, Ajx = ﬁ,Bix = %,f(x) = %, for all x,y € R.

9
For all x,y € R and for every i =1,2,...,N, let T; : R — R be defined by
Tyw — St fwel000), (5.1)
x if x € (—00,0).

For every i = 1,2,..., N, suppose that Jy = I, A = ﬁ, a; = 211

L N ’

b, = 65 + %M’ and c¢; = é + NLSN' Let {x,} and {u,} be generated by ,
1 _ 3(6n—1) _ 2(6n-—1) . n _ 3n _ 1

where Qp = 6n’ Bn - 30n b} fYn - 30n ’ 6n — 6n+5’ Tn = 5n+6’ and pn — 2n2

for every n € N. Then the sequences {x,} and {un} converge strongly to 0.
Solution. From , it is easy to see that T; is a 2 2 —strzctly pseudononspreading

mapping, for all i= 1,2, .y N and F(T) = 0. Since b; = & 3+ ﬁ, we obtain

5 1 T T
where S1 = (61 + NGN) i. It is easy to check that 0 € EP(F, Ziv=1 b;B;).
Since A;x = % and a; = 21 + N;A” then

1 1 ]
Z%MZ( +N2N) i

From the definition of T;, A;, for alli=1,2,....N, and 0 € EP(F, Zf\; b;B;), we

have
N N N

() F(T:) 0 (\VI(H, A;, M) EP(F,»_b;B;) = {0}. (5.3)

i=1 i=1 i=1
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By the definition of F, we have

1
O<F'U/n; ZbBl’n, - n>+7<y_unaun_$n>
T

Ty 1
— —6ui + uny + 5y% + (Slg)(y —Up) + — (Y — up) (up — p)

=
0< 4:07‘ny2 + 8upy + 8rpuny — 8xpy + T S1TRY — 8u%

— 48rnu% + 8Up Ty — T S1UnTn,

= 40r,y% + (Sup + 87ty — 8y + 1812, y — 8u2 — 487 U2 + 8upTy — T S1ULTy,.
Let G(y) = 40r, 9% + (8u,, + 8rpty — 8Ty + 10 S120) y — 8u2 — 48r,u2 + Su,x, —
TnS1UnTyn. G(y) is a quadratic function of y with coefficient a = 40r,,, b = 8u,, +
87ty — 8Ty + 10 S120, and ¢ = —8u? — 48r,u2 + 8u, Ty, — 77 S1UnTy. Determine
the discriminant A of G as follows:
A =b? — 4ac

= (8uy, + 8rpuy, — 8xy + rnSlmn)2 —4(40r,) (78u,2I — 48rnui + 8upxy, — rnslunxn)

=64u3I + 1408rnu,21 + 77447“,211& — 128uy,x,, — 14087, u,x, + 167,S1Uun2,

+ 176r72151unxn + 64xi - 16rn51x721 + riSf:vQ
= ((8 4 887 )tn + (=8 + 7 S1)zn)> .

We know that G(y) > 0,Vy € R. If it has at most one solution in R, then A <0,

so we obtain
(8 = rpS1) s,

Uy = , 5.4
" 8+8851m, (54)

N .

where S1 =3 .1, (% + ﬁ) 7.
1 _ 3(6n—1) _ 2(6n—1) o o
For every n € N Qn = g7 Bn = 35— Tn = —55n > On = 6,::_5, Tn =
5216, and p, = 2 for every n € N. It is easy to check that the sequences

{an} , {Bn},{m}, {5 +, {rn}, and {pn} satisfy all the conditions of Theorem [3.3
For every n € N, from ( we rewrite the Algorithm l as follows:

U — (S_Tnsl)wn
n 888511 °
_ 1 N 1 1 iUy,
Yn = (6n+5 T + (1 6n+5> (“n — an5 2ict (37 + zN) T) )
Zn 6n—1 2(6n—1 N
Tn+1 (GTL) +( ( )>xn+< (30n ))Zizl (%"" éN) I_ﬁ(I_TZ))y"'

(5.5)
Now, we consider the algorithm . That is, put N =1, we have Sy =1 . From
, we have
(8 —7n)xn

8+ 88, (5:6)

Up =
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For every n € N, from @, we rewrite the Algorithm as follows:

Un,
Yn

Tn+1

n

6n+5

= (&) % + (M5

an—l—(l—

_n__

Bni5 (“n - %%) )
)

(5.7)

Table[d] shows that the convergence of Algorithm is faster than Algorithm[3.3

Algorithm Algorithm

n Un Yn Tn Un Yn Tn

1 10.424901  14.801542  50.000000 12.073864 15.691639  50.000000
2 4.590835 8.061049 28.943542 5.408636 8.533063 29.082503
3 2.660742 5.224570  18.929858  3.172962 5.548394  19.157504
4 1.676671 3.523448  12.775959  2.019204 3.759490 13.021807
5 1.098328 2.415289 8.748418 1.334222 2.590910 8.978801
45 0.000001 0.000002 0.000008 0.000001 0.000003 0.000010
46 0.000001 0.000002 0.000006 0.000001 0.000002 0.000007
47 0.000000 0.000001 0.000004 0.000001 0.000002 0.000005
48  0.000000 0.000001 0.000003 0.000000 0.000001 0.000004
49  0.000000 0.000001 0.000002 0.000000 0.000001 0.000003
50  0.000000 0.000000 0.000001 0.000000 0.000001 0.000002

Table 1: The values of u,, y,, and x,, with an initial value x; = 50.

(a) Algorithm

(b) Algorithm

Figure 1: The values of u,, y,, and x, with an initial value x; = 50 for

Algorithm and Algorithm

Conclusion

1. Table[1] shows that the sequence {x,} and {u,} converge to 0, where {0} =
N

Nisy F(Ty) NN, VI(H, Ai, M) N EP(F,  biB;)

i=1
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2. Theorem|[3.3 guarantees the convergence of {x,} and {u,} to 0 in Example
21

3. For case N =1, Theorem|3.4| guarantees the convergence of {x,} and {uy}

to 0 in Ezample[5.1]
4. The convergence of the Algorithm [3.1] is faster than the Algorithm[3.2
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