

New General Split Feasibility Problems in Hilbert Spaces

Kanokwan Sitthithakerngkiet ${ }^{\dagger}{ }^{11}$ and Waraporn Donsungpri ${ }^{\ddagger}$
${ }^{\dagger}$ Nonlinear Dynamic Analysis Research Center, Department of Mathematics, Faculty of Applied Science, King Mongkut's University of Technology North Bangkok, 1518, Pracharat 1 Road, Wongsawang, Bangsue, Bangkok, 10800, Thailand e-mail : kanokwan.s@sci.kmutnb.ac.th
${ }^{\ddagger}$ Department of Mathematics, Faculty of Applied Science, King Mongkut's University of Technology North Bangkok, 1518, Pracharat 1 Road, Wongsawang, Bangsue, Bangkok, 10800, Thailand e-mail : d.waraporn1991@gmail.com

Abstract

In this paper, we establish the iterative algorithm for finding the solution of a general split feasibility problem (GSFPg) and show that the proposed algorithm converges strongly to solution of (GSFPg). Moreover, some numerical examples are presented to confirm our results.

Keywords : split feasibility problem; iteration method; Hilbert space 2000 Mathematics Subject Classification : 47H09; 47H10 (2000 MSC)

1 Introduction

Let H_{1} and H_{2} be infinite-dimensional real Hilbert spaces and let $A: H_{1} \rightarrow H_{2}$ be a bounded linear operator. Censor and Elfving was first introduced the split

[^0]feasibility problem (SFP) in [1]. It can be formulated as the problem of finding a point x satisfying the property :
\[

$$
\begin{equation*}
x \in C \text { such that } A x \in Q \text {, } \tag{1.1}
\end{equation*}
$$

\]

where C and Q are nonempty, closed and convex subset in \mathbb{R}^{n} and \mathbb{R}^{m}, respectively. The split feasibility problem (SFP) in the setting of finite-dimentional Hilbert spaces was introduce for modelling inverse problem which arise from phase retrievals and in medical image reconstruction [2]. Since then, a lot of work has been done on finding a solution of split feasibility problem (SFP). It has been found that the (SFP) can also be used to study the intensity-modulated radiation therapy. There are many algorithms invented to solve the (SFP), see e.g., [3, 4, 5] and references therein.

A special case of the SFP is the convexly constrained linear inverse problem (CLIP) in a finite dimensional real Hilbert space, that is to find $x^{*} \in C$ such that

$$
\begin{equation*}
A x^{*}=b \tag{1.2}
\end{equation*}
$$

where C is a nonempty closed convex subset of a real Hilbert space H_{1} and b is a given element of a real Hilbert space H_{2}, which has extensively been investigated to solve solution by using the well-known Landweber iterative method:

$$
\begin{equation*}
x_{n+1}=x_{n}+\gamma A^{T}\left(b-A x_{n}\right), \quad \forall n \in \mathbb{N} . \tag{1.3}
\end{equation*}
$$

Otherwise, Mohammad and Abdul [6] considered a general split feasibility in infinite-dimensional real Hilbert spaces, that is to find x^{*} such that

$$
\begin{equation*}
x^{*} \in \bigcap_{i=1}^{\infty} C_{i}, \quad A x^{*} \in \bigcap_{i=1}^{\infty} Q_{i}, \tag{1.4}
\end{equation*}
$$

where $A: H_{1} \rightarrow H_{2}$ and two sequences $\left\{C_{i}\right\}_{i=1}^{\infty}$ and $\left\{Q_{i}\right\}_{i=1}^{\infty}$ are the families of nonempty closed convex subsets of H_{1} and H_{2}, respectively.

In this paper, we consider a general split feasibility problem (for short GSFPg) which is different from [6], that is to find $x^{*} \in H_{1}$

$$
\begin{equation*}
g\left(x^{*}\right) \in \bigcap_{i=1}^{\infty} C_{i} \quad \text { such that } \quad A g\left(x^{*}\right) \in \bigcap_{i=1}^{\infty} Q_{i} \tag{1.5}
\end{equation*}
$$

where $g: H_{1} \rightarrow H_{2}$ is a continuous mapping. We denote the solution set of 1.5 by Ω. The GSFPg can be reduced to the following problem;
find a point $x^{*} \in H_{1}$ such that

$$
\begin{equation*}
g\left(x^{*}\right) \in C \quad \text { and } \quad \operatorname{Ag}\left(x^{*}\right) \in Q . \tag{1.6}
\end{equation*}
$$

In 2013, Mohammad and Abdul [6 purposed the cyclic algorithm to solve GSFP 1.4 as follows;

$$
\begin{equation*}
x_{n+1}=\alpha_{n} x_{n}+\beta_{n} f\left(x_{n}\right)+\sum_{i=1}^{\infty} \gamma_{n, i} P_{C_{i}}\left(I-\lambda_{n, i} A^{*}\left(I-P_{Q_{i}}\right) A\right) x_{n}, \quad n \geq 0 \tag{1.7}
\end{equation*}
$$

where $\alpha_{n}+\beta_{n}+\sum_{i=1}^{\infty} \gamma_{n, i}=1$. They proved that the sequences $\left\{x_{n}\right\}$ converges strongly to solution of GSFP.

In this paper, we establish the iterative algorithm for finding the solution of a general split feasibility problem (GSFPg) and show that the proposed algorithm converges strongly to solution of (GSFPg). Moreover, some numerical examples are presented to confirm our results.

2 Preliminaries

Throughout the paper, we denote H by a real Hilbert space with inner product < $\cdot, \cdot>$ and norm $\|\cdot\|$. Let $\left\{x_{n}\right\}$ be a sequence in H and $x \in H$. Weak convergence and strong convergence of $\left\{x_{n}\right\}$ to x is denoted by $x_{n} \rightharpoonup x$ and $x_{n} \rightarrow x$, respectively. Let C be a closed and convex subset of H. For every point $x \in H$, there exists a unique nearest point in C, denoted by $P_{C} x$. This point satisfies

$$
\begin{equation*}
\left\|x-P_{C} x\right\| \leq\|x-y\|, \quad \forall y \in C . \tag{2.1}
\end{equation*}
$$

The operator P_{C} is called the metric projection or the nearest point mapping of H onto C. The metric projection P_{C} is characterized by the fact that $P_{C}(x) \in C$ and

$$
\begin{equation*}
\left\langle y-P_{C}(x), x-P_{C}(x)\right\rangle \leq 0, \quad \forall x \in H, y \in C . \tag{2.2}
\end{equation*}
$$

Recall that a mapping $T: C \rightarrow C$ is called nonexpansive if

$$
\begin{equation*}
\|T x-T y\| \leq\|x-y\|, \quad \forall x, y \in C . \tag{2.3}
\end{equation*}
$$

It is well known that P_{C} is a nonexpansive mapping. It is also known that H satisfies Opial's condition, that is, for any sequence $\left\{x_{n}\right\}$ with $x_{n} \rightharpoonup x$, the inequality

$$
\begin{equation*}
\liminf _{n \rightarrow \infty}\left\|x_{n}-x\right\|<\liminf _{n \rightarrow \infty}\left\|x_{n}-y\right\| \tag{2.4}
\end{equation*}
$$

holds for every $y \in H$ with $y \neq x$.
Lemma 2.1. [6] Let H be a Hilbert space. Then, for all $x, y \in H$,

$$
\begin{equation*}
\|x+y\|^{2} \leq\|x\|^{2}+2\langle y, x+y\rangle . \tag{2.5}
\end{equation*}
$$

Lemma 2.2. ([77]) Let H be a Hilbert space, and let $\left\{x_{n}\right\}$ be a sequence in H. Then, for any given sequence $\left\{\lambda_{n}\right\}_{n=1}^{\infty} \subset(0,1)$ with $\sum_{n=1}^{\infty} \lambda_{n}=1$ and for any positive integer i, j with $i<j$,

$$
\begin{equation*}
\left\|\sum_{n=1}^{\infty} \lambda_{n} x_{n}\right\|^{2} \leq \sum_{n=1}^{\infty} \lambda_{n}\left\|x_{n}\right\|^{2}-\lambda_{i} \lambda_{j}\left\|x_{i}-x_{j}\right\|^{2} . \tag{2.6}
\end{equation*}
$$

Lemma 2.3. ([8]) Assume that $\left\{a_{n}\right\}$ is a sequence of nonnegative real numbers such that

$$
\begin{equation*}
a_{n+1} \leq\left(1-\gamma_{n}\right) a_{n}+\gamma_{n} \delta_{n}+\beta_{n}, \quad n \geq 0 \tag{2.7}
\end{equation*}
$$

where $\left\{\gamma_{n}\right\},\left\{\beta_{n}\right\}$, and $\left\{\delta_{n}\right\}$ satisfy the following conditions:
(i) $\gamma_{n} \subset[0,1], \sum_{n=1}^{\infty} \gamma_{n}=\infty$;
(ii) $\lim \sup _{n \rightarrow \infty} \delta_{n} \leq 0$ or $\sum_{n=1}^{\infty}\left|\gamma_{n} \delta_{n}\right|<\infty$;
(iii) $\beta_{n} \geq 0$ for all $n \geq 0$ with $\sum_{n=0}^{\infty} \beta_{n}<\infty$.

Then $\lim _{n \rightarrow \infty} a_{n}=0$.
Lemma 2.4. [9] Let C be a nonempty closed and convex subset of a real Hilbert space H. Let $T: C \rightarrow C$ be a nonexpansive mapping such that $\operatorname{Fix}(T) \neq \emptyset$. Then, T is demiclosed on C, that is, if $y_{n} \rightharpoonup z \in C$, and $\left(y_{n}-T y_{n}\right) \rightarrow y$, then $(I-T) z=y$.

Lemma 2.5. [10] Let $\left\{t_{n}\right\}$ be a sequence of real numbers such that there exists a subsequence $\left\{n_{i}\right\}$ of $\{n\}$ such that $t_{n_{i}}<t_{n_{i+1}}$ for all $i \in \mathbb{N}$. Then, there exists a nondecreasing sequence $\{\mu(n)\} \subset \mathbb{N}$ such that $\mu(n) \rightarrow \infty$, and the following properties are satisfied by all (sufficiently large) number $n \in \mathbb{N}$:

$$
\begin{equation*}
t_{\mu(n)} \leq t_{\mu(n)+1}, \quad t_{n} \leq t_{\mu(n)+1} \tag{2.8}
\end{equation*}
$$

In fact

$$
\begin{equation*}
\mu(n)=\max \left\{k \leq n: t_{k}<t_{k+1}\right\} \tag{2.9}
\end{equation*}
$$

Proposition 2.1. [8] For given $x \in H_{1}$ and $z \in C, z=P_{C} x$ if and only if

$$
\begin{equation*}
\langle x-z, z-y\rangle \geq 0, \quad \text { for all } \quad y \in C \tag{2.10}
\end{equation*}
$$

Proposition 2.2. Given $x^{*} \in H_{1}$. Then $g\left(x^{*}\right)$ solves the GSFPg 1.5) if only if $g\left(x^{*}\right)$ solves the fixed point equation

$$
\begin{equation*}
P_{C_{i}}\left(I-\lambda_{n, i} A^{*}\left(I-P_{Q_{i}}\right) A\right) g\left(x^{*}\right)=g\left(x^{*}\right) \tag{2.11}
\end{equation*}
$$

for all $i \in \mathbb{N}$
Proof. Let $\lambda_{n, i}>0$, assume that $x^{*} \in \Omega$. Thus $\operatorname{Ag}\left(x^{*}\right) \in \bigcap_{i=1}^{\infty} Q_{i}$ which implies that $\left(I-P_{Q_{i}}\right) A g\left(x^{*}\right)=0$ and implies the equation $\lambda_{n, i} A^{*}\left(I-P_{Q_{i}}\right) A g\left(x^{*}\right)=0$. Then
$\left(I-\lambda_{n, i} A^{*}\left(I-P_{Q_{i}}\right) A\right) g\left(x^{*}\right)=g\left(x^{*}\right)$. Requiring that $g\left(x^{*}\right) \in \bigcap_{i=1}^{\infty} C_{i}$, we obtain the fixed point equation:

$$
P_{C_{i}}\left(I-\lambda_{n, i} A^{*}\left(I-P_{Q_{i}}\right) A\right) g\left(x^{*}\right)=g\left(x^{*}\right) .
$$

Conversely, assume that $g\left(x^{*}\right)$ solves the fixed point equation 2.11). Then, for all $y \in \bigcap_{i=1}^{\infty} C_{i}$ by proposition 2.1 we obtain that

$$
\begin{equation*}
\left\langle\left(I-\lambda_{n, i} A^{*}\left(I-P_{Q_{i}}\right) A\right) g\left(x^{*}\right)-g\left(x^{*}\right), y-g\left(x^{*}\right)\right\rangle \leq 0 . \tag{2.12}
\end{equation*}
$$

That is

$$
\begin{array}{ll}
\left\langle A^{*}\left(I-P_{Q_{i}}\right) A g\left(x^{*}\right), y-g\left(x^{*}\right)\right\rangle & \geq 0 \\
\left\langle\operatorname{Ag}\left(x^{*}\right)-P_{Q_{i}} \operatorname{Ag}\left(x^{*}\right), A y-A g\left(x^{*}\right)\right\rangle & \geq 0 \tag{2.13}\\
\left\langle\operatorname{Ag}\left(x^{*}\right)-P_{Q_{i}} A g\left(x^{*}\right), A g\left(x^{*}\right)-A y\right\rangle & \leq 0 .
\end{array}
$$

Since $g\left(x^{*}\right)=P_{C_{i}}\left(I-\lambda_{n, i} A^{*}\left(I-P_{Q_{i}}\right) A\right) g\left(x^{*}\right)$, then we have

$$
P_{Q_{i}}\left[A g\left(x^{*}\right)\right]=P_{Q_{i}}\left[P_{C_{i}}\left(I-\lambda_{n, i} A^{*}\left(I-P_{Q_{i}}\right) A\right) g\left(x^{*}\right)\right] .
$$

By proposition 2.1 for all $v \in \bigcap_{i=1}^{\infty} Q_{i}$,

$$
\begin{equation*}
\left\langle A g\left(x^{*}\right)-P_{Q_{i}} A g\left(x^{*}\right), v-P_{Q_{i}} A g\left(x^{*}\right)\right\rangle \leq 0 . \tag{2.14}
\end{equation*}
$$

Adding two equations (2.13) and (2.14), then we have

$$
\left\langle A g\left(x^{*}\right)-P_{Q_{i}} A g\left(x^{*}\right), A g\left(x^{*}\right)-P_{Q_{i}} A g\left(x^{*}\right)+v-A y\right\rangle \leq 0
$$

for all $v \in \bigcap_{i=1}^{\infty} Q_{i}$ and $y \in \bigcap_{i=1}^{\infty} C_{i}$.
So, we see that

$$
\left\langle A g\left(x^{*}\right)-P_{Q_{i}} A g\left(x^{*}\right), v-A y\right\rangle \leq 0 .
$$

Since $g\left(x^{*}\right) \in \bigcap_{i=1}^{\infty} C_{i}$, then we can put $z=A g\left(x^{*}\right) \in \bigcap_{i=1}^{\infty} C_{i}$. For all $v \in \bigcap_{i=1}^{\infty} Q_{i}$ we obtain that

$$
\left\langle A g\left(x^{*}\right)-P_{Q_{i}} A g\left(x^{*}\right), v-A g\left(x^{*}\right)\right\rangle \leq 0
$$

and so $A g\left(x^{*}\right)=P_{Q_{i}} A g\left(x^{*}\right) \in \bigcap_{i=1}^{\infty} Q_{i}$.

3 Main Results

In the following result, we propose an algorithm and prove that the sequence generated by the proposed algorithm converges strongly to a solution of GSFPg.

Theorem 3.1. Let H_{1} and H_{2} be two real Hilbert spaces, and let $A: H_{1} \rightarrow H_{2}$ be a bounded linear operator. Let $\left\{C_{i}\right\}_{i=1}^{\infty}$ and $\left\{Q_{i}\right\}_{i=1}^{\infty}$ be two families of nonempty closed convex subsets of H_{1} and H_{2}, respectively and assume that $C=\bigcap_{i=1}^{\infty} C_{i}$ and $Q=\bigcap_{i=1}^{\infty} Q_{i}$. Let $M \subset H_{1}$ and suppose that $g: M \rightarrow C$ is a bijection continuous function and $g^{-1}: C \rightarrow M$ is a continuous function. Assume that GSFPg has a nonempty solution set Ω and f is a self k-contraction mapping of H_{1}. Let $\left\{x_{n}\right\}$ be a sequence generated by $x_{0} \in M$ as

$$
\begin{equation*}
g\left(x_{n+1}\right)=\alpha_{n} g\left(x_{n}\right)+\beta_{n} f g\left(x_{n}\right)+\sum_{i=1}^{\infty} \gamma_{n, i} P_{C_{i}}\left(I-\lambda_{n, i} A^{*}\left(I-P_{Q_{i}}\right) A\right) g\left(x_{n}\right) \tag{3.1}
\end{equation*}
$$

where $\alpha_{n}+\beta_{n}+\sum_{i=1}^{\infty} \gamma_{n, i}=1$. If the sequences $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\},\left\{\gamma_{n, i}\right\}$ and $\left\{\lambda_{n, i}\right\} \in(0,1)$ satisfy the following conditions:
(i) $\lim _{n \rightarrow \infty} \beta_{n}=0$ and $\sum_{n=0}^{\infty} \beta_{n}=\infty$,
(ii) for each $i \in \mathbb{N}, \liminf _{n \rightarrow \infty} \alpha_{n} \gamma_{n, i}>0$,
(iii) for each $i \in \mathbb{N},\left\{\lambda_{n, i}\right\} \subset\left(0, \frac{2}{\|A\|^{2}}\right)$ and $0<\liminf _{n \rightarrow \infty} \lambda_{n, i} \leq \limsup _{n \rightarrow \infty} \lambda_{n, i}<$ $\frac{2}{\|A\|^{2}}$.

Then, the sequence $\left\{x_{n}\right\}$ converges strongly to $x^{*} \in \Omega$, where $g\left(x^{*}\right)$ solves the following variational inequality;

$$
\begin{equation*}
\left\langle(f-I) g\left(x^{*}\right), g(x)-g\left(x^{*}\right)\right\rangle \leq 0, \quad \forall g(x) \in C \cap A^{-1}(Q) \tag{3.2}
\end{equation*}
$$

Proof. First, we will show that $g\left(x_{n}\right)$ is bounded and let $p \in \Omega$. For $i=1,2,3, \ldots, n$, we see that $P_{C_{i}}\left(I-\lambda_{n, i} A^{*}\left(I-P_{Q_{i}}\right) A\right)$ are nonexpansive mappings and so we have

$$
\begin{aligned}
& \left\|g\left(x_{n+1}\right)-g(p)\right\| \\
= & \left\|\left[\alpha_{n} g\left(x_{n}\right)+\beta f g\left(x_{n}\right)+\sum_{i=1}^{\infty} \gamma_{n, i} P_{C_{i}}\left(I-\lambda_{n, i} A^{*}\left(I-P_{Q_{i}}\right) A\right) g\left(x_{n}\right)\right]-g(p)\right\| \\
\leq & \alpha_{n}\left\|g\left(x_{n}\right)-g(p)\right\|+\beta_{n}\left\|f g\left(x_{n}\right)-g(p)\right\| \\
& +\left\|\sum_{i=1}^{\infty} \gamma_{n, i} P_{C_{i}}\left(I-\lambda_{n, i} A^{*}\left(I-P_{Q_{i}}\right) A\right) g\left(x_{n}\right)+\alpha_{n} g(p)+\beta_{n} g(p)-g(p)\right\| \\
\leq & \alpha_{n}\left\|g\left(x_{n}\right)-g(p)\right\|+\beta_{n}\left\|f g\left(x_{n}\right)-g(p)\right\| \\
& +\left\|\sum_{i=1}^{\infty} \gamma_{n, i} P_{C_{i}}\left(I-\lambda_{n, i} A^{*}\left(I-P_{Q_{i}}\right) A\right) g\left(x_{n}\right)+\left(\alpha_{n}+\beta_{n}-1\right) g(p)\right\| \\
\leq & \alpha_{n}\left\|g\left(x_{n}\right)-g(p)\right\|+\beta_{n}\left\|f g\left(x_{n}\right)-g(p)\right\| \\
& +\sum_{i=1}^{n} \gamma_{n, i}\left\|P_{C_{i}}\left(I-\lambda_{n, i} A^{*}\left(I-P_{Q_{i}}\right) A\right) g\left(x_{n}\right)-g(p)\right\| .
\end{aligned}
$$

Since $P_{C_{i}}\left(I-\lambda_{n, i} A^{*}\left(I-P_{Q_{i}}\right) A\right.$ is nonexpensive for all $i=1,2,3, \ldots, n$, then we get that

$$
\begin{aligned}
\left\|g\left(x_{n+1}\right)-g(p)\right\| \leq & \alpha_{n}\left\|g\left(x_{n}\right)-g(p)\right\|+\beta_{n}\left\|f g\left(x_{n}\right)-g(p)\right\| \\
& +\sum_{i=1}^{n} \gamma_{n, i}\left\|g\left(x_{n}\right)-g(p)\right\| \\
\leq & \left(1-\beta_{n}\right)\left\|g\left(x_{n}\right)-g(p)\right\|+\beta_{n}\left\|f g\left(x_{n}\right)-g(p)\right\| \\
\leq & \left(1-\beta_{n}\right)\left\|g\left(x_{n}\right)-g(p)\right\|+\beta_{n}\left\|f g\left(x_{n}\right)-f g(p)\right\| \\
\leq & +\beta_{n}\|g(p)-g(p)\| \\
\leq & \left(\beta_{n}\right) \| g\left(\beta_{n}\|f g(p)-g(p)\|\right. \\
\leq & \left(1-\beta_{n}+\beta_{n} k\right)\left\|g\left(x_{n}\right)-g(p)\right\|+\beta_{n} k\left\|g\left(x_{n}\right)-g(p)\right\| f g(p)-g(p) \| \\
\leq & \left(1-(1-k) \beta_{n}\right)\left\|g\left(x_{n}\right)-g(p)\right\|+\beta_{n}\|f g(p)-g(p)\| \\
\leq & \left(1-(1-k) \beta_{n}\right)\left\|g\left(x_{n}\right)-g(p)\right\| \\
& +(1-k) \beta_{n} \cdot \frac{1}{1-k}\|f g(p)-g(p)\| \\
\leq & \max \left\{\left\|g\left(x_{n}\right)-g(p)\right\|, \frac{1}{1-k}\|f g(p)-g(p)\|\right\} \\
\cdot & \\
\cdot & \\
\leq & \max \left\{\left\|g\left(x_{0}\right)-g(p)\right\|, \frac{1}{1-k}\|f g(p)-g(p)\|\right\} .
\end{aligned}
$$

Therefore $\left\{g\left(x_{n}\right)\right\}$ is bounded, and also $\left\{f g\left(x_{n}\right)\right\}$.
Next, we will show that for each $i \in \mathbb{N}$,

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|g\left(x_{n}\right)-P_{C_{i}}\left(I-\lambda_{n, i} A^{*}\left(I-P_{Q_{i}}\right) A\right) g\left(x_{n}\right)\right\|=0 . \tag{3.3}
\end{equation*}
$$

Since every $p \in \Omega$, by using Lemma 2.2, we obtain that

$$
\begin{aligned}
& \left\|g\left(x_{n+1}\right)-g(p)\right\|^{2} \\
= & \left\|\alpha_{n} g\left(x_{n}\right)+\beta_{n} f g\left(x_{n}\right)+\sum_{j=1}^{\infty} \gamma_{n, j} P_{C_{j}}\left(I-\lambda_{n, j} A^{*}\left(I-P_{Q_{j}}\right) A\right) g\left(x_{n}\right)-g(p)\right\|^{2} \\
= & \| \alpha_{n}\left[g\left(x_{n}\right)-g(p)\right]+\beta_{n}\left[f g\left(x_{n}\right)-g(p)\right] \\
& +\sum_{j=1}^{\infty} \gamma_{n, j} P_{C_{j}}\left(I-\lambda_{n, j} A^{*}\left(I-P_{Q_{j}}\right) A\right) g\left(x_{n}\right)-g(p)+\alpha_{n} g(p)+\beta_{n} g(p) \|^{2} \\
= & \| \alpha_{n}\left[g\left(x_{n}\right)-g(p)\right]+\beta_{n}\left[f g\left(x_{n}\right)-g(p)\right] \\
& +\sum_{j=1}^{\infty} \gamma_{n, j} P_{C_{j}}\left(I-\lambda_{n, j} A^{*}\left(I-P_{Q_{j}}\right) A\right) g\left(x_{n}\right)-\left(1-\alpha_{n}-\beta_{n}\right) g(p) \|^{2} \\
= & \alpha_{n}\left[g\left(x_{n}\right)-g(p)\right]+\beta_{n}\left[f g\left(x_{n}\right)-g(p)\right] \\
& +\sum_{j=1}^{\infty} \gamma_{n, j} P_{C_{j}}\left(I-\lambda_{n, j} A^{*}\left(I-P_{Q_{j}}\right) A\right) g\left(x_{n}\right)-g(p) \|^{2} \\
\leq & \alpha_{n}\left\|g\left(x_{n}\right)-g(p)\right\|^{2}+\beta_{n}\left\|f g\left(x_{n}\right)-g(p)\right\|^{2} \\
& +\sum_{j=1}^{\infty} \gamma_{n, j}\left\|P_{C_{j}}\left(I-\lambda_{n, j} A^{*}\left(I-P_{Q_{j}}\right) A\right) g\left(x_{n}\right)-g(p)\right\|^{2} \\
& -\alpha_{n} \gamma_{n, i}\left\|P_{C_{i}}\left(I-\lambda_{n, i} A^{*}\left(I-P_{Q_{i}}\right) A\right) g\left(x_{n}\right)-g(p)-\left[g\left(x_{n}\right)-g(p)\right]\right\|^{2} \\
\leq & \alpha_{n}\left\|g\left(x_{n}\right)-g(p)\right\|^{2}+\beta_{n}\left\|f g\left(x_{n}\right)-g(p)\right\|^{2}+\sum_{j=1}^{\infty} \gamma_{n, j}\left\|g\left(x_{n}\right)-g(p)\right\|^{2} \\
& -\alpha_{n} \gamma_{n, i}\left\|P_{C_{i}}\left(I-\lambda_{n, i} A^{*}\left(I-P_{Q_{i}}\right) A\right) g\left(x_{n}\right)-g(p)-\left[g\left(x_{n}\right)-g(p)\right]\right\|^{2} .
\end{aligned}
$$

Hence, for each $i \in \mathbb{N}$, we have

$$
\begin{align*}
& \alpha_{n} \gamma_{n, i}\left\|P_{C_{i}}\left(I-\lambda_{n, i} A^{*}\left(I-P_{Q_{i}}\right) A\right) g\left(x_{n}\right)-g(p)-\left[g\left(x_{n}\right)-g\left(x_{n}\right)\right]\right\|^{2} \tag{3.4}\\
& \leq\left\|g\left(x_{n}\right)-g(p)\right\|^{2}-\left\|g\left(x_{n+1}\right)-g(p)\right\|^{2}+\beta_{n}\left\|f g\left(x_{n}\right)-g(p)\right\|^{2} .
\end{align*}
$$

In order to prove that $x_{n} \rightarrow x^{*}$ as $n \rightarrow \infty$, we consider two possible cases.
Case I: Assume that $\left\{\left\|g\left(x_{n}\right)-g\left(x^{*}\right)\right\|\right\}$ is monotone sequence. We have $\left\|g\left(x_{n}\right)-g\left(x^{*}\right)\right\|$ is convergent. Since $\lim _{n \rightarrow \infty} \beta_{n}=0$ and $\left\{f g\left(x_{n}\right)\right\}$ is bounded, we get that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \alpha_{n} \gamma_{n, i}\left\|P_{C_{i}}\left(I-\lambda_{n, i} A^{*}\left(I-P_{Q_{i}}\right) A\right) g\left(x_{n}\right)-g\left(x_{n}\right)\right\|^{2}=0 . \tag{3.5}
\end{equation*}
$$

By assuming that $\lim _{n \rightarrow \infty} \inf \alpha_{n} \gamma_{n, i}>0$, we obtain that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|P_{C_{i}}\left(I-\lambda_{n, i} A^{*}\left(I-P_{Q_{i}}\right) A\right) g\left(x_{n}\right)-g\left(x_{n}\right)\right\|=0, \quad \forall i \in \mathbb{N} . \tag{3.6}
\end{equation*}
$$

Now, we will show that

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left\langle f g\left(x^{*}\right)-g\left(x^{*}\right), g\left(x_{n}\right)-g\left(x^{*}\right)\right\rangle \leq 0 . \tag{3.7}
\end{equation*}
$$

To show this inequality, we choose a subsequence $\left\{g\left(x_{n_{k}}\right)\right\}$ of $\left\{g\left(x_{n}\right)\right\}$ such that

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left\langle f g\left(x^{*}\right)-g\left(x^{*}\right), g\left(x_{n_{k}}\right)-g\left(x^{*}\right)\right\rangle=\limsup _{n \rightarrow \infty}\left\langle f g\left(x^{*}\right)-g\left(x^{*}\right), g\left(x_{n}\right)-g\left(x^{*}\right)\right\rangle . \tag{3.8}
\end{equation*}
$$

Since $\left\{g\left(x_{n_{k}}\right)\right\}$ is bounded, there exists a subsequence $\left\{g\left(x_{n_{k_{j}}}\right)\right\}$ of $\left\{g\left(x_{n_{k}}\right)\right\}$ which converges weakly to $g(\omega)$ where $\omega \in H_{1}$. Without loss of generality, we can assume that $g\left(x_{n_{k}}\right) \rightharpoonup g(\omega)$

Notice that for each $i \in \mathbb{N}, P_{C_{i}}\left(I-\lambda_{n, i} A^{*}\left(I-P_{Q_{i}}\right) A\right)$ is nonexpansive. Thus, from Lemma 2.4 we have $P_{C_{i}}\left(I-\lambda_{n, i} A^{*}\left(I-P_{Q_{i}}\right) A\right) g(\omega)=g(\omega)$ and by proposition 2.2. we also have $\omega \in \Omega$. Therefore, it follows that

$$
\begin{aligned}
\limsup _{n \rightarrow \infty}\left\langle f g\left(x^{*}\right)-g\left(x^{*}\right), g\left(x_{n}\right)-g\left(x^{*}\right)\right\rangle & =\lim _{k \rightarrow \infty}\left\langle f g\left(x^{*}\right)-g\left(x^{*}\right), g\left(x_{n_{k}}\right)-g\left(x^{*}\right)\right\rangle \\
& =\left\langle f g\left(x^{*}\right)-g\left(x^{*}\right), g(\omega)-g\left(x^{*}\right)\right\rangle \\
& \leq 0 .
\end{aligned}
$$

Finally, we show that $x_{n} \rightarrow x^{*}$. Apply Lemma 2.1, we have that

$$
\begin{aligned}
&\left\|g\left(x_{n+1}\right)-g\left(x^{*}\right)\right\|^{2} \\
&=\left\|\alpha_{n} g\left(x_{n}\right)+\beta_{n} f g\left(x_{n}\right)+\sum_{i=1}^{\infty} \gamma_{n, i} P_{C_{i}}\left(I-\lambda_{n, i} A^{*}\left(I-P_{Q_{i}}\right) A\right) g\left(x_{n}\right)-g\left(x^{*}\right)\right\|^{2} \\
&= \|\left(\alpha_{n} g\left(x_{n}\right)-g\left(x^{*}\right)\right)+\sum_{i=1}^{\infty} \gamma_{n, i}\left(P_{C_{i}}\left(I-\lambda_{n, i} A^{*}\left(I-P_{Q_{i}}\right) A\right) g\left(x_{n}\right)-g\left(x^{*}\right)\right) \\
&+\alpha_{n} g\left(x^{*}\right)+\sum_{i=1}^{\infty} \gamma_{n, i} g\left(x^{*}\right)+\beta_{n} f g\left(x_{n}\right)-g\left(x^{*}\right) \|^{2} \\
& \leq\left\|\alpha_{n}\left(g\left(x_{n}\right)-g\left(x^{*}\right)\right)+\sum_{i=1}^{\infty} \gamma_{n, i}\left(P_{C_{i}}\left(I-\lambda_{n, i} A^{*}\left(I-P_{Q_{i}}\right) A\right) g\left(x_{n}\right)-g\left(x^{*}\right)\right)\right\|^{2} \\
&+2 \beta_{n}\left\langle f g\left(x_{n}\right)-g\left(x^{*}\right), g\left(x_{n+1}\right)-g\left(x^{*}\right)\right\rangle \\
& \leq\left(1-\beta_{n}\right)^{2}\left\|g\left(x_{n}\right)-g\left(x^{*}\right)\right\|^{2}+2 \beta_{n}\left\langle f g\left(x_{n}\right)-f g\left(x^{*}\right), g\left(x_{n+1}\right)-g\left(x^{*}\right)\right\rangle \\
& \quad+2 \beta_{n}\left\langle f g\left(x^{*}\right)-g\left(x^{*}\right), g\left(x_{n+1}\right)-g\left(x^{*}\right)\right\rangle \\
& \leq\left(1-\beta_{n}\right)^{2}\left\|g\left(x_{n}\right)-g\left(x^{*}\right)\right\|^{2}+2 \beta_{n} k\left\|g\left(x_{n}\right)-g\left(x^{*}\right)\right\|\left\|g\left(x_{n+1}\right)-g\left(x^{*}\right)\right\| \\
& \leq+2 \beta_{n}\left\langle f g\left(x^{*}\right)-g\left(x^{*}\right), g\left(x_{n+1}\right)-g\left(x^{*}\right)\right\rangle \\
& \leq\left(1-\beta_{n}\right)^{2}\left\|g\left(x_{n}\right)-g\left(x^{*}\right)\right\|^{2}+\beta_{n} k\left\{\left\|g\left(x_{n}\right)-g\left(x^{*}\right)\right\|^{2}+\left\|g\left(x_{n+1}\right)-g\left(x^{*}\right)\right\|^{2}\right\} \\
&\left.+2 f g\left(x^{*}\right)-g\left(x^{*}\right), g\left(x_{n+1}\right)-g\left(x^{*}\right)\right\rangle .
\end{aligned}
$$

This implies that

$$
\begin{aligned}
& \left\|g\left(x_{n+1}\right)-g\left(x^{*}\right)\right\|^{2} \\
\leq & \left(\left(1-\beta_{n}\right)^{2}+\beta_{n} k\right)\left\|g\left(x_{n}\right)-g\left(x^{*}\right)\right\|^{2}+\beta_{n} k\left\|g\left(x_{n+1}\right)-g\left(x^{*}\right)\right\|^{2} \\
& +2 \beta_{n}\left\langle f g\left(x^{*}\right)-g\left(x^{*}\right), g\left(x_{n+1}\right)-g\left(x^{*}\right)\right\rangle \\
\leq & \left(\frac{\left(1-\beta_{n}\right)^{2}}{1-\beta_{n} k}\right)\left\|g\left(x_{n}\right)-g\left(x^{*}\right)\right\|^{2} \\
& +\frac{2 \beta_{n}}{1-\beta_{n} k}\left\langle f g\left(x^{*}\right)-g\left(x^{*}\right), g\left(x_{n+1}\right)-g\left(x^{*}\right)\right\rangle \\
= & \frac{1-2 \beta_{n}+\beta_{n} k}{1-\beta_{n} k}\left\|g\left(x_{n}\right)-g\left(x^{*}\right)\right\|^{2}+\frac{\beta_{n}^{2}}{1-\beta_{n} k}\left\|g\left(x_{n}\right)-g\left(x^{*}\right)\right\|^{2} \\
& +\frac{2 \beta_{n}}{1-\beta_{n} k}\left\langle f g\left(x^{*}\right)-g\left(x^{*}\right), g\left(x_{n+1}\right)-g\left(x^{*}\right)\right\rangle \\
= & \left(1-\frac{2(1-k) \beta_{n}}{1-\beta_{n} k}\right)\left\|g\left(x_{n}\right)-g\left(x^{*}\right)\right\|^{2}+\frac{2(1-k) \beta_{n}}{1-\beta_{n} k}\left\{\frac{\beta_{n} M}{2(1-k)}\right. \\
& \left.+\frac{1}{1-k}\left\langle f g\left(x^{*}\right)-g\left(x^{*}\right), g\left(x_{n+1}\right)-g\left(x^{*}\right)\right\rangle\right\} \\
\leq & \left(1-\eta_{n}\right)\left\|g\left(x_{n}\right)-g\left(x^{*}\right)\right\|^{2}+\eta_{n} \delta_{n},
\end{aligned}
$$

where

$$
\begin{equation*}
\delta_{n}=\frac{\beta_{n} M}{2(1-k)}+\frac{1}{1-k}\left\langle f g\left(x^{*}\right)-g\left(x^{*}\right), g\left(x_{n+1}\right)-g\left(x^{*}\right)\right\rangle \tag{3.9}
\end{equation*}
$$

$M=\sup \left\{\left\|g\left(x_{n}\right)-g\left(x^{*}\right)\right\|^{2}: n \geq 0\right\}$ and $\eta_{n}=\frac{2(1-k) \beta_{n}}{1-\beta_{n} k}$. It is easy to see that $\eta_{n} \rightarrow 0, \sum_{n=1}^{\infty} \eta_{n}=\infty$ and $\lim _{n \rightarrow \infty} \sup \delta_{n} \leq 0$. Hence, by Lemma 2.3 the sequence $\left\{g\left(x_{n}\right)\right\}$ converges strongly to $g\left(x^{*}\right)$. Since g^{-1} is continuous, we have $x_{n} \rightarrow x^{*}$.

Case II: Assume that $\left\{\left\|g\left(x_{n}\right)-g\left(x^{*}\right)\right\|\right\}$ is not a monotone sequence. Then, we can define an integer sequence $\{\mu(n)\}$ for all $n \geq n_{0}$ by

$$
\begin{equation*}
\mu(n)=\max \left\{k \in \mathbb{N} ; k \leq n:\left\|g\left(x_{k}\right)-g\left(x^{*}\right)\right\|<\left\|g\left(x_{k+1}\right)-g\left(x^{*}\right)\right\|\right\} \tag{3.10}
\end{equation*}
$$

Clearly, $\mu(n)$ is a nondecreasing sequence such that $\mu(n) \rightarrow \infty$ as $n \rightarrow \infty$ and $\forall n \geq n_{0}$,

$$
\begin{equation*}
\left.\left\|g\left(x_{\mu(n)}\right)-g\left(x^{*}\right)\right\|<\left\|g\left(x_{\mu(n)+1}\right)-g\left(x^{*}\right)\right\|\right\} \tag{3.11}
\end{equation*}
$$

From (3.4), we obtain that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|P_{C_{i}}\left(I-\lambda_{\mu(n), i} A^{*}\left(I-P_{Q_{i}}\right) A\right) g\left(x_{\mu(n)}\right)-g\left(x_{\mu(n)}\right)\right\|=0 \tag{3.12}
\end{equation*}
$$

Following an argument similar to I, we have

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left\langle f g\left(x^{*}\right)-g\left(x^{*}\right), g\left(x_{\mu(n)+1}\right)-g\left(x^{*}\right)\right\rangle \leq 0 \tag{3.13}
\end{equation*}
$$

And by similar argument, we have

$$
\begin{equation*}
\left\|g\left(x_{\mu(n)+1}\right)-g\left(x^{*}\right)\right\|^{2} \leq\left(1-\eta_{\mu(n)}\right)\left\|g\left(x_{\mu(n)}\right)-g\left(x^{*}\right)\right\|^{2}+\eta_{\mu(n)} \delta_{\mu(n)}, \tag{3.14}
\end{equation*}
$$

where $\eta_{\mu(n)} \rightarrow \infty, \sum_{n=1}^{\infty} \eta_{\mu(n)}=\infty$ and $\lim _{n \rightarrow \infty} \sup \delta_{\mu(n)} \leq 0$.
Hence, by Lamma 2.3 we obtain $\lim _{n \rightarrow \infty}\left\|g\left(x_{\mu(n)}\right)-g\left(x^{*}\right)\right\|=0$ and $\lim _{n \rightarrow \infty}\left\|g\left(x_{\mu(n)+1}\right)-g\left(x^{*}\right)\right\|=0$. Now, from Lemma 2.5, we have

$$
\begin{align*}
0 & \leq\left\|g\left(x_{n}\right)-g\left(x^{*}\right)\right\| \\
& \leq \max \left\{\left\|g\left(x_{\mu(n)}\right)-g\left(x^{*}\right)\right\|,\left\|g\left(x_{n}\right)-g\left(x^{*}\right)\right\|\right\} \tag{3.15}\\
& \leq\left\|g\left(x_{\mu(n)+1}\right)-g\left(x^{*}\right)\right\| .
\end{align*}
$$

Therefore, $\left\{g\left(x_{n}\right)\right\}$ converges to $g\left(x^{*}\right)$. Since g^{-1} is continuous, we have $\left\{x_{n}\right\}$ converges strongly to x^{*}.

For all $i \in \mathbb{N}$, We put $C=C_{i}, Q=Q_{i}$ and $\lambda_{n, i}=\lambda_{n}$ for each $n \in \mathbb{N}$ and $\sum_{n=1}^{\infty} \gamma_{n, i}=1-\alpha_{n}-\beta_{n}$. Then we have the following corollary.

Corollary 3.2. Let H and K be a real Hilbert spaces, and let $A: H \rightarrow K$ be a bounded linear operator. Let C and Q be a closed convex subsets of H and K, respectively. Let $M \subset H$ suppose that $g: M \rightarrow C$ is a bijection continuous function and $g^{-1}: C \rightarrow M$ is continuous function. Suppose that f is a self k-contraction mapping of H, and let $\left\{x_{n}\right\}$ be a sequence generated by $x_{0} \in M$ as
$g\left(x_{n+1}\right)=\alpha_{n} g\left(x_{n}\right)+\beta_{n} f g\left(x_{n}\right)+\left(1-\alpha_{n}-\beta_{n}\right) P_{C}\left(I-\lambda_{n} A^{*}\left(I-P_{Q}\right) A\right) g\left(x_{n}\right), \quad n \geq 0$
If the nonnegative sequences $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\}$ and $\left\{\lambda_{n}\right\} \in(0,1)$ satisfy the following conditions :
(i) $\lim _{n \rightarrow \infty} \beta_{n}=0$ and $\sum_{n=0}^{\infty} \beta_{n}=\infty$,
(ii) $\liminf _{n \rightarrow \infty} \alpha_{n} \gamma_{n}>0$,
(iii) $\left\{\lambda_{n}\right\} \subset\left(0, \frac{2}{\|A\|^{2}}\right)$ and $0<\liminf _{n \rightarrow \infty} \lambda_{n} \leq \limsup _{n \rightarrow \infty} \lambda_{n}<\frac{2}{\|A\|^{2}}$.

Then, the sequences $\left\{x_{n}\right\}$ converges strongly to x^{*}, where $g\left(x^{*}\right)$ solves the following variational inequality;

$$
\begin{equation*}
\left\langle(f-I) g\left(x^{*}\right), g(x)-g\left(x^{*}\right)\right\rangle \leq 0, \quad \forall g(x) \in C \cap A^{-1}(Q) . \tag{3.17}
\end{equation*}
$$

Setting a continuous operator $g \equiv I$. Then we have the following corollary

Corollary 3.3. (Theorem 6 [6]) Let H and K be a real Hilbert spaces, and let $A: H \rightarrow K$ be a bounded linear operator. Let $\left\{C_{i}\right\}_{i=1}^{\infty}$ and $\left\{Q_{i}\right\}_{i=1}^{\infty}$ be the families of nonempty closed convex subsets of H and K, respectively. Suppose that f is a self k-contraction mapping of H, and let $\left\{x_{n}\right\}$ be a sequence generated by $x_{0} \in H$ as

$$
\begin{equation*}
x_{n+1}=\alpha_{n} x_{n}+\beta_{n} f\left(x_{n}\right)+\sum_{i=1}^{\infty} \gamma_{n, i} P_{C_{i}}\left(I-\lambda_{n, i} A^{*}\left(I-P_{Q_{i}}\right) A\right) x_{n}, \quad n \geq 0 \tag{3.18}
\end{equation*}
$$

where $\alpha_{n}+\beta_{n}+\sum_{i=1}^{\infty} \gamma_{n, i}=1$. If the sequences $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\},\left\{\gamma_{n, i}\right\}$ and $\left\{\lambda_{n, i}\right\}$ satisfy the following conditions :
(i) $\lim _{n \rightarrow \infty} \beta_{n}=0$ and $\sum_{n=0}^{\infty} \beta_{n}=\infty$,
(ii) for each $i \in \mathbb{N}$, $\liminf _{n \rightarrow \infty} \alpha_{n} \gamma_{n}>0$,
(iii) for each $i \in \mathbb{N},\left\{\lambda_{n, i}\right\} \subset\left(0, \frac{2}{\|A\|^{2}}\right)$ and $0<\liminf _{n \rightarrow \infty} \lambda_{n, i} \leq \limsup _{n \rightarrow \infty} \lambda_{n, i}<$

$$
\frac{2}{\|A\|^{2}}
$$

Then the sequence $\left\{x_{n}\right\}$ converges strongly to $x^{*} \in \Omega$, where x^{*} solves the following variational inequality;

$$
\begin{equation*}
\left\langle(f-I) x^{*}, x-x^{*}\right\rangle \leq 0, \quad \forall x \in C \cap A^{-1}(Q) \tag{3.19}
\end{equation*}
$$

4 The Nunerical Result

In this section, let us present the following numerical example to confirm the convergence of our theoretical results.

Example 4.1. Let $H_{1}=H_{2}=\mathbb{R}, C=[0,1]$ and $Q_{i}=\left[-1-\frac{1}{i}, 1+\frac{1}{i}\right]$. Let $A: H_{1} \rightarrow H_{2}$ be a operators defined by $A x=2 x$, and let f be a contraction defined by $f(x)=\frac{1}{2} x$. Let $M=[-1,-0.5]$ and define a function $g:[-1,-0.5] \rightarrow[0,1]$ by $g(x)=2 x+2$ then g is a bijective continuous function and g^{-1} is a continuous function. Assume the parameters that $\left\{\beta_{n}\right\}=\frac{1}{n+1},\left\{\alpha_{n}\right\}=\frac{1}{2}\left(\frac{n}{n+1}\right),\left\{\gamma_{n, i}\right\}=$ $\left(1-\frac{1}{n+1}\right) \frac{1}{3^{i}}$ and $\left\{\lambda_{n, i}\right\}=\left(1-\frac{1}{n+2}\right) \frac{1}{3^{i+1}}$. From 3.1), we obtain the following algorithm;

Algorithm (The general split feasibility Problems in Hilbert Spaces)

Step 1. Choose the initial point $x_{0} \in M$ and compute $g\left(x_{0}\right)$. Let $n=1$.
Step 2. Given $x_{n} \in H_{1}$ and compute $x_{n+1} \in H_{1}$ as follows;

$$
\left\{\begin{array}{l}
y_{n}=\sum_{i=1}^{\infty} \gamma_{n, i} P_{C}\left(I-\lambda_{n, i} A^{*}\left(I-P_{Q_{i}}\right) A\right) g\left(x_{n}\right) \tag{4.1}\\
g\left(x_{n+1}\right)=\alpha_{n} g\left(x_{n}\right)+\beta_{n} f g\left(x_{n}\right)+y_{n}
\end{array}\right.
$$

Step 3. Put $n:=n+1$ and go to step 2.

Figure 1: The convergent behaviors of $g\left(x_{n}\right)$ and x_{n}

It is easy to see that all of conditions in Theorem 3.1 are satisfied. First we take $x_{0}=-1$, Figure 1 shows that the sequence x_{n} converge to 0 which is the solution of this example and the sequence $g\left(x_{n}\right)$ converge to 0 , i.e., $g(-1)=0 \in C \cap A^{-1}(Q)$ as a solution of this example where $Q=\bigcap_{i=1}^{\infty} Q_{i}$.

Next, we take three initial point randomly generated by Matlab. In this way, Figure 2 and Figure 3 indicate that x_{n} and $g\left(x_{n}\right)$ converge to the same points, respectively.

Figure 2: The convergent behaviors of x_{n}

Figure 3: The convergent behaviors of $g\left(x_{n}\right)$

Acknowledgement(s) : In this research, the first author was supported by King Mongkut's University of Technology North Bangkok (Contract no. KMUTNB-GEN-59-16). The second author would like to thanks the King Mongkut's University of Technology North Bangkok, Thailand.

References

[1] Y. Censor and T. Elfving, A multiprojection algorithm using Bregman projections in a product space, Numerical Algorithms, vol. 8, no. 2-4, pp. 221-239, 1994.
[2] C. Byrne, Iterative oblique projection onto convex sets and the split feasibility problem, Inverse Problems, 18(2002), 441-453.
[3] B. Qu and N. Xiu, A note on the CQ algorithm for the split feasibility problem, Inverse Problems, 21(2005), 1655-1665.
[4] S. He and Z. Zhao, Strong convergence of a relaxed CQ algorithm for the split feasibility problem, Journal Inequalities and Applications, 197(2013), 11 pages.
[5] H.K. Xu, Iterative algorithms for nonlinear operators, Journal of the London Mathematical Society, vol. 66, no. 1, pp. 240-256, 2002.
[6] Mohammad, E, Abdul, L: General split feasibility problems in Hilbert spaces. Abstr. Appl. Anal. 2013, Artical ID 805104, 2013
[7] S.S. Chang, J. K. Kim, and X. R. Wang, Modified block iterative algorithm for solving convex feasibility problems in Banach spaces, Journal of Inequalities and Applications, vol. 2010, Article ID 869684, 14 pages, 2010.
[8] H.K. Xu, Iterative methods for the split feasibility problem in infinitedimensional Hilbert spaces, Inverse Problem, vol. 26, no. 10, Article ID 105018, 17 pages, 2010.
[9] K. Goebel and W. A. Kirk, Topics in Metric Fixed Point Theory, vol. 28, Cambridge University Press, Cambridge, UK, 1990.
[10] P.E. Maingé, Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization, Set-Valued Analysis, vol. 16, no. 7-8, pp. 899-912,2008.

[^0]: ${ }^{0}$ This research was supported by the King Mongkut's University of Technology North Bangkok
 ${ }^{1}$ Corresponding author email: kanokwan.s@sci.kmutnb.ac.th
 Copyright © 2016 by the Mathematical Association of Thailand. All rights reserved.

