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1 Introduction

Let H1 and H2 be infinite-dimensional real Hilbert spaces and let A : H1 → H2

be a bounded linear operator. Censor and Elfving was first introduced the split
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feasibility problem (SFP) in [1]. It can be formulated as the problem of finding a
point x satisfying the property :

x ∈ C such that Ax ∈ Q, (1.1)

where C and Q are nonempty, closed and convex subset in Rn and Rm, respec-
tively. The split feasibility problem (SFP) in the setting of finite-dimentional
Hilbert spaces was introduce for modelling inverse problem which arise from phase
retrievals and in medical image reconstruction [2]. Since then, a lot of work has
been done on finding a solution of split feasibility problem (SFP). It has been
found that the (SFP) can also be used to study the intensity-modulated radiation
therapy. There are many algorithms invented to solve the (SFP), see e.g., [3, 4, 5]
and references therein.

A special case of the SFP is the convexly constrained linear inverse problem
(CLIP) in a finite dimensional real Hilbert space, that is to find x∗ ∈ C such that

Ax∗ = b, (1.2)

where C is a nonempty closed convex subset of a real Hilbert space H1 and b is a
given element of a real Hilbert space H2, which has extensively been investigated
to solve solution by using the well-known Landweber iterative method:

xn+1 = xn + γAT (b−Axn), ∀n ∈ N. (1.3)

Otherwise, Mohammad and Abdul [6] considered a general split feasibility in
infinite-dimensional real Hilbert spaces, that is to find x∗ such that

x∗ ∈
∞⋂
i=1

Ci, Ax∗ ∈
∞⋂
i=1

Qi, (1.4)

where A : H1 → H2 and two sequences {Ci}∞i=1 and {Qi}∞i=1 are the families of
nonempty closed convex subsets of H1 and H2, respectively.

In this paper, we consider a general split feasibility problem (for short GSFPg)
which is different from [6], that is to find x∗ ∈ H1

g(x∗) ∈
∞⋂
i=1

Ci such that Ag(x∗) ∈
∞⋂
i=1

Qi, (1.5)

where g : H1 → H2 is a continuous mapping. We denote the solution set of (1.5)
by Ω. The GSFPg can be reduced to the following problem;

find a point x∗ ∈ H1 such that

g(x∗) ∈ C and Ag(x∗) ∈ Q. (1.6)

In 2013, Mohammad and Abdul [6] purposed the cyclic algorithm to solve
GSFP 1.4 as follows;
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xn+1 = αnxn + βnf(xn) +

∞∑
i=1

γn,iPCi(I − λn,iA∗(I −PQi)A)xn, n ≥ 0 (1.7)

where αn + βn +

∞∑
i=1

γn,i = 1. They proved that the sequences {xn} converges

strongly to solution of GSFP.
In this paper, we establish the iterative algorithm for finding the solution of a

general split feasibility problem (GSFPg) and show that the proposed algorithm
converges strongly to solution of (GSFPg). Moreover, some numerical examples
are presented to confirm our results.

2 Preliminaries

Throughout the paper, we denote H by a real Hilbert space with inner product <
·, · > and norm ‖·‖. Let {xn} be a sequence in H and x ∈ H. Weak convergence and
strong convergence of {xn} to x is denoted by xn ⇀ x and xn → x, respectively.
Let C be a closed and convex subset of H. For every point x ∈ H, there exists a
unique nearest point in C, denoted by PCx. This point satisfies

‖x− PCx‖ ≤ ‖x− y‖, ∀y ∈ C. (2.1)

The operator PC is called the metric projection or the nearest point mapping
of H onto C. The metric projection PC is characterized by the fact that PC(x) ∈ C
and

〈y − PC(x), x− PC(x)〉 ≤ 0, ∀x ∈ H, y ∈ C. (2.2)

Recall that a mapping T : C→ C is called nonexpansive if

‖Tx− Ty‖ ≤ ‖x− y‖, ∀x, y ∈ C. (2.3)

It is well known that PC is a nonexpansive mapping. It is also known that H sat-
isfies Opial’s condition, that is, for any sequence {xn} with xn ⇀ x, the inequality

lim inf
n→∞

‖xn − x‖ < lim inf
n→∞

‖xn − y‖ (2.4)

holds for every y ∈ H with y 6= x.

Lemma 2.1. [6] Let H be a Hilbert space. Then, for all x, y ∈ H,

‖x+ y‖2 ≤ ‖x‖2 + 2〈y, x+ y〉. (2.5)

Lemma 2.2. ([7]) Let H be a Hilbert space, and let {xn} be a sequence in H.

Then, for any given sequence {λn}∞n=1 ⊂ (0, 1) with

∞∑
n=1

λn = 1 and for any positive

integer i, j with i < j,

‖
∞∑
n=1

λnxn‖2 ≤
∞∑
n=1

λn‖xn‖2 − λiλj‖xi − xj‖2. (2.6)
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Lemma 2.3. ([8]) Assume that {an} is a sequence of nonnegative real numbers
such that

an+1 ≤ (1− γn)an + γnδn + βn, n ≥ 0 (2.7)

where {γn}, {βn}, and {δn} satisfy the following conditions:

(i) γn ⊂ [0, 1],

∞∑
n=1

γn =∞;

(ii) lim sup
n→∞

δn ≤ 0 or

∞∑
n=1

|γnδn| <∞;

(iii) βn ≥ 0 for all n ≥ 0 with

∞∑
n=0

βn <∞.

Then lim
n→∞

an = 0.

Lemma 2.4. [9] Let C be a nonempty closed and convex subset of a real Hilbert
space H. Let T : C → C be a nonexpansive mapping such that Fix(T ) 6= ∅.
Then, T is demiclosed on C, that is, if yn ⇀ z ∈ C, and (yn − Tyn) → y, then
(I − T )z = y.

Lemma 2.5. [10] Let {tn} be a sequence of real numbers such that there exists
a subsequence {ni} of {n} such that tni

< tni+1
for all i ∈ N. Then, there exists

a nondecreasing sequence {µ(n)} ⊂ N such that µ(n) → ∞, and the following
properties are satisfied by all (sufficiently large) number n ∈ N:

tµ(n) ≤ tµ(n)+1, tn ≤ tµ(n)+1. (2.8)

In fact

µ(n) = max{k ≤ n : tk < tk+1}. (2.9)

Proposition 2.1. [8] For given x ∈ H1 and z ∈ C, z = PCx if and only if

〈x− z, z − y〉 ≥ 0, for all y ∈ C. (2.10)

Proposition 2.2. Given x∗ ∈ H1. Then g(x∗) solves the GSFPg (1.5) if only if
g(x∗) solves the fixed point equation

PCi
(I − λn,iA∗(I − PQi

)A)g(x∗) = g(x∗), (2.11)

for all i ∈ N

Proof. Let λn,i > 0, assume that x∗ ∈ Ω. Thus Ag(x∗) ∈
∞⋂
i=1

Qi which implies that

(I − PQi
)Ag(x∗) = 0 and implies the equation λn,iA

∗(I − PQi
)Ag(x∗) = 0. Then
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(I − λn,iA∗(I − PQi
)A)g(x∗) = g(x∗). Requiring that g(x∗) ∈

∞⋂
i=1

Ci, we obtain

the fixed point equation:

PCi(I − λn,iA∗(I − PQi)A)g(x∗) = g(x∗).

Conversely, assume that g(x∗) solves the fixed point equation (2.11). Then,

for all y ∈
∞⋂
i=1

Ci by proposition 2.1 we obtain that

〈(I − λn,iA∗(I − PQi
)A)g(x∗)− g(x∗), y − g(x∗)〉 ≤ 0. (2.12)

That is
〈A∗(I − PQi

)Ag(x∗), y − g(x∗)〉 ≥ 0
〈Ag(x∗)− PQi

Ag(x∗), Ay −Ag(x∗)〉 ≥ 0
〈Ag(x∗)− PQi

Ag(x∗), Ag(x∗)−Ay〉 ≤ 0.
(2.13)

Since g(x∗) = PCi(I − λn,iA∗(I − PQi)A)g(x∗), then we have

PQi
[Ag(x∗)] = PQi

[PCi
(I − λn,iA∗(I − PQi

)A)g(x∗)].

By proposition 2.1 for all v ∈
∞⋂
i=1

Qi,

〈Ag(x∗)− PQi
Ag(x∗), v − PQi

Ag(x∗)〉 ≤ 0. (2.14)

Adding two equations (2.13) and (2.14), then we have

〈Ag(x∗)− PQi
Ag(x∗), Ag(x∗)− PQi

Ag(x∗) + v −Ay〉 ≤ 0,

for all v ∈
∞⋂
i=1

Qi and y ∈
∞⋂
i=1

Ci.

So, we see that

〈Ag(x∗)− PQi
Ag(x∗), v −Ay〉 ≤ 0.

Since g(x∗) ∈
∞⋂
i=1

Ci, then we can put z = Ag(x∗) ∈
∞⋂
i=1

Ci. For all v ∈
∞⋂
i=1

Qi we

obtain that

〈Ag(x∗)− PQiAg(x∗), v −Ag(x∗)〉 ≤ 0,

and so Ag(x∗) = PQi
Ag(x∗) ∈

∞⋂
i=1

Qi.
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3 Main Results

In the following result, we propose an algorithm and prove that the sequence
generated by the proposed algorithm converges strongly to a solution of GSFPg.

Theorem 3.1. Let H1 and H2 be two real Hilbert spaces, and let A : H1 → H2 be
a bounded linear operator. Let {Ci}∞i=1 and {Qi}∞i=1 be two families of nonempty

closed convex subsets of H1 and H2, respectively and assume that C =

∞⋂
i=1

Ci and

Q =

∞⋂
i=1

Qi. Let M ⊂ H1 and suppose that g : M → C is a bijection continuous

function and g−1 : C → M is a continuous function. Assume that GSFPg has a
nonempty solution set Ω and f is a self k-contraction mapping of H1. Let {xn} be
a sequence generated by x0 ∈M as

g(xn+1) = αng(xn) + βnfg(xn) +

∞∑
i=1

γn,iPCi
(I − λn,iA∗(I − PQi

)A)g(xn) (3.1)

where αn+βn+

∞∑
i=1

γn,i = 1. If the sequences {αn}, {βn}, {γn,i} and {λn,i} ∈ (0, 1)

satisfy the following conditions:

(i) lim
n→∞

βn = 0 and

∞∑
n=0

βn =∞,

(ii) for each i ∈ N, lim inf
n→∞

αnγn,i > 0,

(iii) for each i ∈ N, {λn,i} ⊂ (0,
2

‖A‖2
) and 0 < lim inf

n→∞
λn,i ≤ lim sup

n→∞
λn,i <

2

‖A‖2
.

Then, the sequence {xn} converges strongly to x∗ ∈ Ω, where g(x∗) solves the
following variational inequality;

〈(f − I)g(x∗), g(x)− g(x∗)〉 ≤ 0, ∀g(x) ∈ C ∩A−1(Q). (3.2)

Proof. First, we will show that g(xn) is bounded and let p ∈ Ω. For i = 1, 2, 3, ..., n,
we see that PCi

(I−λn,iA∗(I−PQi
)A) are nonexpansive mappings and so we have
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‖g(xn+1)− g(p)‖

= ‖[αng(xn) + βfg(xn) +

∞∑
i=1

γn,iPCi
(I − λn,iA∗(I − PQi

)A)g(xn)]− g(p)‖

≤ αn‖g(xn)− g(p)‖+ βn‖fg(xn)− g(p)‖

+‖
∞∑
i=1

γn,iPCi
(I − λn,iA∗(I − PQi

)A)g(xn) + αng(p) + βng(p)− g(p)‖

≤ αn‖g(xn)− g(p)‖+ βn‖fg(xn)− g(p)‖

+‖
∞∑
i=1

γn,iPCi(I − λn,iA∗(I − PQi)A)g(xn) + (αn + βn − 1)g(p)‖

≤ αn‖g(xn)− g(p)‖+ βn‖fg(xn)− g(p)‖

+

n∑
i=1

γn,i‖PCi(I − λn,iA∗(I − PQi)A)g(xn)− g(p)‖.

Since PCi
(I − λn,iA∗(I − PQi

)A is nonexpensive for all i = 1, 2, 3, ..., n, then we
get that

‖g(xn+1)− g(p)‖ ≤ αn‖g(xn)− g(p)‖+ βn‖fg(xn)− g(p)‖

+

n∑
i=1

γn,i‖g(xn)− g(p)‖

≤ (1− βn)‖g(xn)− g(p)‖+ βn‖fg(xn)− g(p)‖
≤ (1− βn)‖g(xn)− g(p)‖+ βn‖fg(xn)− fg(p)‖

+βn‖fg(p)− g(p)‖
≤ (1− βn)‖g(xn)− g(p)‖+ βnk‖g(xn)− g(p)‖

+βn‖fg(p)− g(p)‖
≤ (1− βn + βnk)‖g(xn)− g(p)‖+ βn‖fg(p)− g(p)‖
≤ (1− (1− k)βn)‖g(xn)− g(p)‖+ βn‖fg(p)− g(p)‖
≤ (1− (1− k)βn)‖g(xn)− g(p)‖

+(1− k)βn.
1

1− k
‖fg(p)− g(p)‖

≤ max{‖g(xn)− g(p)‖, 1

1− k
‖fg(p)− g(p)‖}

.

.

.

≤ max{‖g(x0)− g(p)‖, 1

1− k
‖fg(p)− g(p)‖}.

Therefore {g(xn)} is bounded, and also {fg(xn)}.

Next, we will show that for each i ∈ N,

lim
n→∞

‖g(xn)− PCi
(I − λn,iA∗(I − PQi

)A)g(xn)‖ = 0. (3.3)

Since every p ∈ Ω, by using Lemma 2.2, we obtain that
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‖g(xn+1)− g(p)‖2

= ‖αng(xn) + βnfg(xn) +

∞∑
j=1

γn,jPCj
(I − λn,jA∗(I − PQj

)A)g(xn)− g(p)‖2

= ‖αn[g(xn)− g(p)] + βn[fg(xn)− g(p)]

+

∞∑
j=1

γn,jPCj
(I − λn,jA∗(I − PQj

)A)g(xn)− g(p) + αng(p) + βng(p)‖2

= ‖αn[g(xn)− g(p)] + βn[fg(xn)− g(p)]

+

∞∑
j=1

γn,jPCj (I − λn,jA∗(I − PQj )A)g(xn)− (1− αn − βn)g(p)‖2

= αn[g(xn)− g(p)] + βn[fg(xn)− g(p)]

+

∞∑
j=1

γn,jPCj (I − λn,jA∗(I − PQj )A)g(xn)− g(p)‖2

≤ αn‖g(xn)− g(p)‖2 + βn‖fg(xn)− g(p)‖2

+

∞∑
j=1

γn,j‖PCj
(I − λn,jA∗(I − PQj

)A)g(xn)− g(p)‖2

−αnγn,i‖PCi
(I − λn,iA∗(I − PQi

)A)g(xn)− g(p)− [g(xn)− g(p)]‖2

≤ αn‖g(xn)− g(p)‖2 + βn‖fg(xn)− g(p)‖2 +

∞∑
j=1

γn,j‖g(xn)− g(p)‖2

−αnγn,i‖PCi(I − λn,iA∗(I − PQi)A)g(xn)− g(p)− [g(xn)− g(p)]‖2.

Hence, for each i ∈ N, we have

αnγn,i‖PCi
(I − λn,iA∗(I − PQi

)A)g(xn)− g(p)− [g(xn)− g(xn)]‖2
≤ ‖g(xn)− g(p)‖2 − ‖g(xn+1)− g(p)‖2 + βn‖fg(xn)− g(p)‖2. (3.4)

In order to prove that xn → x∗ as n→∞, we consider two possible cases.

Case I: Assume that {‖g(xn) − g(x∗)‖} is monotone sequence. We have
‖g(xn) − g(x∗)‖ is convergent. Since lim

n→∞
βn = 0 and {fg(xn)} is bounded, we

get that

lim
n→∞

αnγn,i‖PCi
(I − λn,iA∗(I − PQi

)A)g(xn)− g(xn)‖2 = 0. (3.5)

By assuming that lim
n→∞

inf αnγn,i > 0, we obtain that

lim
n→∞

‖PCi
(I − λn,iA∗(I − PQi

)A)g(xn)− g(xn)‖ = 0, ∀i ∈ N. (3.6)

Now, we will show that

lim sup
n→∞

〈fg(x∗)− g(x∗), g(xn)− g(x∗)〉 ≤ 0. (3.7)
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To show this inequality, we choose a subsequence {g(xnk
)} of {g(xn)} such that

lim
k→∞

〈fg(x∗)− g(x∗), g(xnk
)− g(x∗)〉 = lim sup

n→∞
〈fg(x∗)− g(x∗), g(xn)− g(x∗)〉.

(3.8)
Since {g(xnk

)} is bounded, there exists a subsequence {g(xnkj
)} of {g(xnk

)} which

converges weakly to g(ω) where ω ∈ H1. Without loss of generality, we can assume
that g(xnk

) ⇀ g(ω)

Notice that for each i ∈ N, PCi
(I − λn,iA∗(I − PQi

)A) is nonexpansive. Thus,
from Lemma 2.4, we have PCi(I−λn,iA∗(I−PQi)A)g(ω) = g(ω) and by proposition
2.2, we also have ω ∈ Ω. Therefore, it follows that

lim sup
n→∞

〈fg(x∗)− g(x∗), g(xn)− g(x∗)〉 = lim
k→∞

〈fg(x∗)− g(x∗), g(xnk
)− g(x∗)〉

= 〈fg(x∗)− g(x∗), g(ω)− g(x∗)〉
≤ 0.

Finally, we show that xn → x∗. Apply Lemma 2.1, we have that

‖g(xn+1)− g(x∗)‖2

= ‖αng(xn) + βnfg(xn) +

∞∑
i=1

γn,iPCi(I − λn,iA∗(I − PQi)A)g(xn)− g(x∗)‖2

= ‖(αng(xn)− g(x∗)) +

∞∑
i=1

γn,i(PCi(I − λn,iA∗(I − PQi)A)g(xn)− g(x∗))

+αng(x∗) +

∞∑
i=1

γn,ig(x∗) + βnfg(xn)− g(x∗)‖2

≤ ‖αn(g(xn)− g(x∗)) +

∞∑
i=1

γn,i(PCi(I − λn,iA∗(I − PQi)A)g(xn)− g(x∗))‖2

+2βn〈fg(xn)− g(x∗), g(xn+1)− g(x∗)〉
≤ (1− βn)2‖g(xn)− g(x∗)‖2 + 2βn〈fg(xn)− fg(x∗), g(xn+1)− g(x∗)〉

+2βn〈fg(x∗)− g(x∗), g(xn+1)− g(x∗)〉
≤ (1− βn)2‖g(xn)− g(x∗)‖2 + 2βnk‖g(xn)− g(x∗)‖‖g(xn+1)− g(x∗)‖

+2βn〈fg(x∗)− g(x∗), g(xn+1)− g(x∗)〉
≤ (1− βn)2‖g(xn)− g(x∗)‖2 + βnk{‖g(xn)− g(x∗)‖2 + ‖g(xn+1)− g(x∗)‖2}

+2βn〈fg(x∗)− g(x∗), g(xn+1)− g(x∗)〉.

This implies that
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‖g(xn+1)− g(x∗)‖2
≤ ((1− βn)2 + βnk)‖g(xn)− g(x∗)‖2 + βnk‖g(xn+1)− g(x∗)‖2

+2βn〈fg(x∗)− g(x∗), g(xn+1)− g(x∗)〉

≤ (
(1− βn)2

1− βnk
)‖g(xn)− g(x∗)‖2

+
2βn

1− βnk
〈fg(x∗)− g(x∗), g(xn+1)− g(x∗)〉

=
1− 2βn + βnk

1− βnk
‖g(xn)− g(x∗)‖2 +

β2
n

1− βnk
‖g(xn)− g(x∗)‖2

+
2βn

1− βnk
〈fg(x∗)− g(x∗), g(xn+1)− g(x∗)〉

= (1− 2(1− k)βn
1− βnk

)‖g(xn)− g(x∗)‖2 +
2(1− k)βn

1− βnk
{ βnM

2(1− k)

+
1

1− k
〈fg(x∗)− g(x∗), g(xn+1)− g(x∗)〉}

≤ (1− ηn)‖g(xn)− g(x∗)‖2 + ηnδn,

where

δn =
βnM

2(1− k)
+

1

1− k
〈fg(x∗)− g(x∗), g(xn+1)− g(x∗)〉, (3.9)

M = sup{‖g(xn) − g(x∗)‖2 : n ≥ 0} and ηn =
2(1− k)βn

1− βnk
. It is easy to see that

ηn → 0,
∑∞
n=1 ηn = ∞ and lim

n→∞
sup δn ≤ 0. Hence, by Lemma 2.3, the sequence

{g(xn)} converges strongly to g(x∗). Since g−1 is continuous, we have xn → x∗.

Case II: Assume that {‖g(xn)− g(x∗)‖} is not a monotone sequence. Then,
we can define an integer sequence {µ(n)} for all n ≥ n0 by

µ(n) = max{k ∈ N; k ≤ n : ‖g(xk)− g(x∗)‖ < ‖g(xk+1)− g(x∗)‖}. (3.10)

Clearly, µ(n) is a nondecreasing sequence such that µ(n)→∞ as n→∞ and
∀n ≥ n0,

‖g(xµ(n))− g(x∗)‖ < ‖g(xµ(n)+1)− g(x∗)‖}. (3.11)

From (3.4), we obtain that

lim
n→∞

‖PCi
(I − λµ(n),iA∗(I − PQi

)A)g(xµ(n))− g(xµ(n))‖ = 0. (3.12)

Following an argument similar to I, we have

lim sup
n→∞

〈fg(x∗)− g(x∗), g(xµ(n)+1)− g(x∗)〉 ≤ 0. (3.13)

And by similar argument, we have
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‖g(xµ(n)+1)− g(x∗)‖2 ≤ (1− ηµ(n))‖g(xµ(n))− g(x∗)‖2 + ηµ(n)δµ(n), (3.14)

where ηµ(n) →∞,
∞∑
n=1

ηµ(n) =∞ and lim
n→∞

sup δµ(n) ≤ 0.

Hence, by Lamma 2.3, we obtain lim
n→∞

‖g(xµ(n))− g(x∗)‖ = 0 and

lim
n→∞

‖g(xµ(n)+1)− g(x∗)‖ = 0. Now, from Lemma 2.5, we have

0 ≤ ‖g(xn)− g(x∗)‖
≤ max{‖g(xµ(n))− g(x∗)‖, ‖g(xn)− g(x∗)‖}
≤ ‖g(xµ(n)+1)− g(x∗)‖.

(3.15)

Therefore, {g(xn)} converges to g(x∗). Since g−1 is continuous, we have {xn}
converges strongly to x∗.

For all i ∈ N, We put C = Ci, Q = Qi and λn,i = λn for each n ∈ N and
∞∑
n=1

γn,i = 1− αn − βn. Then we have the following corollary.

Corollary 3.2. Let H and K be a real Hilbert spaces, and let A : H → K be
a bounded linear operator. Let C and Q be a closed convex subsets of H and K,
respectively. Let M ⊂ H suppose that g : M → C is a bijection continuous function
and g−1 : C → M is continuous function. Suppose that f is a self k-contraction
mapping of H, and let {xn} be a sequence generated by x0 ∈M as

g(xn+1) = αng(xn)+βnfg(xn)+(1−αn−βn)PC(I−λnA∗(I−PQ)A)g(xn), n ≥ 0
(3.16)

If the nonnegative sequences {αn}, {βn} and {λn} ∈ (0, 1) satisfy the following
conditions :

(i) lim
n→∞

βn = 0 and

∞∑
n=0

βn =∞,

(ii) lim inf
n→∞

αnγn > 0,

(iii) {λn} ⊂ (0,
2

‖A‖2
) and 0 < lim inf

n→∞
λn ≤ lim sup

n→∞
λn <

2

‖A‖2
.

Then, the sequences {xn} converges strongly to x∗, where g(x∗) solves the following
variational inequality;

〈(f − I)g(x∗), g(x)− g(x∗)〉 ≤ 0, ∀g(x) ∈ C ∩A−1(Q). (3.17)

Setting a continuous operator g ≡ I. Then we have the following corollary
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Corollary 3.3. (Theorem 6 [6]) Let H and K be a real Hilbert spaces, and let
A : H → K be a bounded linear operator. Let {Ci}∞i=1 and {Qi}∞i=1 be the families
of nonempty closed convex subsets of H and K, respectively. Suppose that f is a
self k-contraction mapping of H, and let {xn} be a sequence generated by x0 ∈ H
as

xn+1 = αnxn+βnf(xn)+

∞∑
i=1

γn,iPCi(I−λn,iA∗(I−PQi)A)xn, n ≥ 0 (3.18)

where αn+βn+

∞∑
i=1

γn,i = 1. If the sequences {αn}, {βn}, {γn,i} and {λn,i} satisfy

the following conditions :

(i) lim
n→∞

βn = 0 and

∞∑
n=0

βn =∞,

(ii) for each i ∈ N, lim inf
n→∞

αnγn > 0,

(iii) for each i ∈ N, {λn,i} ⊂ (0,
2

‖A‖2
) and 0 < lim inf

n→∞
λn,i ≤ lim sup

n→∞
λn,i <

2

‖A‖2
.

Then the sequence {xn} converges strongly to x∗ ∈ Ω, where x∗ solves the following
variational inequality;

〈(f − I)x∗, x− x∗〉 ≤ 0, ∀x ∈ C ∩A−1(Q). (3.19)

4 The Nunerical Result

In this section, let us present the following numerical example to confirm the
convergence of our theoretical results.

Example 4.1. Let H1 = H2 = R, C = [0, 1] and Qi = [−1 − 1

i
, 1 +

1

i
]. Let

A : H1 → H2 be a operators defined by Ax = 2x, and let f be a contraction defined

by f(x) =
1

2
x. Let M = [−1,−0.5] and define a function g : [−1,−0.5]→ [0, 1] by

g(x) = 2x + 2 then g is a bijective continuous function and g−1 is a continuous

function. Assume the parameters that {βn} =
1

n+ 1
, {αn} =

1

2
(

n

n+ 1
), {γn,i} =

(1− 1

n+ 1
)

1

3i
and {λn,i} = (1− 1

n+ 2
)

1

3i+1
. From (3.1), we obtain the following

algorithm;

Algorithm (The general split feasibility Problems in Hilbert Spaces)
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Step 1. Choose the initial point x0 ∈M and compute g(x0). Let n = 1.

Step 2. Given xn ∈ H1 and compute xn+1 ∈ H1 as follows;
yn =

∞∑
i=1

γn,iPC(I − λn,iA∗(I − PQi
)A)g(xn);

g(xn+1) = αng(xn) + βnfg(xn) + yn

(4.1)

Step 3. Put n := n+ 1 and go to step 2.
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Figure 1: The convergent behaviors of g(xn) and xn

It is easy to see that all of conditions in Theorem 3.1 are satisfied. First we take
x0 = −1, Figure 1 shows that the sequence xn converge to 0 which is the solution
of this example and the sequence g(xn) converge to 0, i.e., g(−1) = 0 ∈ C∩A−1(Q)
as a solution of this example where Q =

⋂∞
i=1Qi.

Next, we take three initial point randomly generated by Matlab. In this way,
Figure 2 and Figure 3 indicate that xn and g(xn) converge to the same points,
respectively.
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Figure 2: The convergent behaviors of xn
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Figure 3: The convergent behaviors of g(xn)
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