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1 Introduction

Let H; and H» be infinite-dimensional real Hilbert spaces and let A : H; — H
be a bounded linear operator. Censor and Elfving was first introduced the split
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feasibility problem (SFP) in [I]. It can be formulated as the problem of finding a
point x satisfying the property :

z € C such that Az € Q, (1.1)

where C' and @) are nonempty, closed and convex subset in R™ and R™, respec-
tively. The split feasibility problem (SFP) in the setting of finite-dimentional
Hilbert spaces was introduce for modelling inverse problem which arise from phase
retrievals and in medical image reconstruction [2]. Since then, a lot of work has
been done on finding a solution of split feasibility problem (SFP). It has been
found that the (SFP) can also be used to study the intensity-modulated radiation
therapy. There are many algorithms invented to solve the (SFP), see e.g., [3| 4, 5]
and references therein.

A special case of the SFP is the convexly constrained linear inverse problem
(CLIP) in a finite dimensional real Hilbert space, that is to find * € C such that

Az* =b, (1.2)

where C' is a nonempty closed convex subset of a real Hilbert space H; and b is a
given element of a real Hilbert space Ho, which has extensively been investigated
to solve solution by using the well-known Landweber iterative method:

Tpi1 = zn + YA (b — Azy,), Vn € N. (1.3)

Otherwise, Mohammad and Abdul [6] considered a general split feasibility in
infinite-dimensional real Hilbert spaces, that is to find z* such that

vt e ()G, A" e ()@ (1.4)
i=1 i=1
where A : Hy — Hy and two sequences {C;}2; and {Q;}$2, are the families of
nonempty closed convex subsets of H; and Hs, respectively.
In this paper, we consider a general split feasibility problem (for short GSFPg)
which is different from [6], that is to find z* € H;

oo

g(z*) € ﬁ C; such that Ag(z*) € n Qi (1.5)

i=1 i=1

where g : Hy — Hs is a continuous mapping. We denote the solution set of (|1.5))
by 2. The GSFPg can be reduced to the following problem;
find a point * € H; such that

gz*) e C and Ag(z*) € Q. (1.6)

In 2013, Mohammad and Abdul [6] purposed the cyclic algorithm to solve
GSFP [14) as follows;
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Tnp1 = 0nZn + Buf(@n) + > niPo,(I = AiA"(I = Po)A)z,,  n>0 (L7)
i=1

o0
where o, + B, + Z%L,i = 1. They proved that the sequences {z,} converges

strongly to SOhltiOIll éf GSFP.

In this paper, we establish the iterative algorithm for finding the solution of a
general split feasibility problem (GSFPg) and show that the proposed algorithm
converges strongly to solution of (GSFPg). Moreover, some numerical examples
are presented to confirm our results.

2 Preliminaries

Throughout the paper, we denote H by a real Hilbert space with inner product <
-, > and norm ||-||. Let {x,} be a sequence in Hand x € H. Weak convergence and
strong convergence of {z,} to z is denoted by x,, — x and z,, — x, respectively.
Let C be a closed and convex subset of H. For every point x € H, there exists a
unique nearest point in C, denoted by Pcx. This point satisfies

[ — Pox|| <[l —yll, VyeC. (2.1)

The operator P¢ is called the metric projection or the nearest point mapping
of Honto C. The metric projection P is characterized by the fact that Po(z) € C
and

(y — Po(z),z — Po(x)) <0, Vexe HyeC (2.2)
Recall that a mapping T: C'— C'is called nonexpansive if
| Tr — Tyl| < [lz —yll, Vz,yeC. (2.3)

It is well known that Po is a nonexpansive mapping. It is also known that H sat-
isfies Opial’s condition, that is, for any sequence {z,} with x,, — z, the inequality

liminf 2, — o] < lim inf 1z, (2.4
holds for every y € H with y # z.
Lemma 2.1. [6] Let H be a Hilbert space. Then, for all z,y € H,
lz +yll* < llz[* + 2(y, @ + y). (2.5)
Lemma 2.2. ([7]) Let H be a Hilbert space, and let {z,} be a sequence in H.

Then, for any given sequence {\,}52, C (0,1) with Z An = 1 and for any positive
n=1

integer i,j with i < j,

1D Anznll? <D Mallzal® = Xidjlla: — a5, (2.6)
n=1 n=1
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Lemma 2.3. ([§]) Assume that {a,} is a sequence of nonnegative real numbers
such that
apt1 < (1 - 'Yn)an + 'Vn(sn + Bn, n>0 (2'7)

where {v, },{Bn}, and {6,} satisfy the following conditions:

(Z) In C [07 1]3 Z Tn = 005
n=1

7) lim sup 6, <0 or nOn| < 00;
(i) tim sup > b

n=1

(iii) B >0 for all n > 0 with Zﬂn < 0.

n=0

Then lim a, = 0.
n—oo

Lemma 2.4. [9] Let C be a nonempty closed and convexr subset of a real Hilbert
space H. Let T : C — C be a nonexpansive mapping such that Fixz(T) # (.
Then, T is demiclosed on C, that is, if y, — z € C, and (yn, — Tyn) — y, then
(I-T)z=y.

Lemma 2.5. [10] Let {t,} be a sequence of real numbers such that there exists
a subsequence {n;} of {n} such that t,, <t for alli € N. Then, there exists
a nondecreasing sequence {u(n)} C N such that u(n) — oo, and the following
properties are satisfied by all (sufficiently large) number n € N:

tutn) S tuy+1, -t Sty (2.8)
In fact
w(n) =max{k <n:tp <tpr1}. (2.9)
Proposition 2.1. [8] For given x € Hy and z € C,z = Pox if and only if
(x —z,2—y) >0, forall yeC. (2.10)

Proposition 2.2. Given a* € Hy. Then g(z*) solves the GSFPg if only if
g(z*) solves the fized point equation

Po,(I = A i A1 = Po,)A)g(x") = g(z7), (2.11)

forallie N

Proof. Let Ay ; > 0, assume that z* € Q. Thus Ag(z*) € ﬂ Q@; which implies that

i=1
(I — Pg,)Ag(z*) = 0 and implies the equation A, ;A*(I — Pg,)Ag(z*) = 0. Then
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(I = M A*(I — Pg,)A)g(x*) = g(z*). Requiring that g(x ﬂ C;, we obtain
i=1
the fixed point equation:

Po,(I = A iA*(I = Po,)A)g(z") = g(z7).

Conversely, assume that g(z*) solves the fixed point equation (2.11). Then,
oo
for all y € m C; by proposition we obtain that

=1
(I = A A*(I = Pg,)A)g(x") — g(z™),y — g(z™)) < 0. (2.12)
That is
(A*(I — Pg,)Ag(x™),y — g(x*)) >0
(Ag(z*) — Pg,Ag(z*), Ay — Ag(z*)) >0 (2.13)
(Ag(z*) — P, Ag(a*), Ag(z*) — Ay)  <0.

w2
=
=
Q
@
s
—
8
*
~—
Il

Pe,(I — A\, ;A*(I — Pg,)A)g(z*), then we have

)

PQi [Ag(m*)] = PQi [Pci (I - )‘WJA*(I - PQl)A)g(‘T*)]

By proposition for all v € ﬂ Qi,
i=1

(Ag(a*) — Po,Ag(a"),v — Po,Ag(a")) < 0. (2.14)
Adding two equations (2.13)) and (2.14)), then we have
(Ag(z) — Po,Ag(x7), Ag(x™) — Po, Ag(™) +v — Ay) <0

forallveﬁQi and y € ﬁCi.

i=1 i=1

So, we see that

(Ag(x™) — Pg,Ag(z™),v — Ay) <0

Since g(x ﬂ C;, then we can put z = Ag(x ﬂ C;. For all v € m Q; we

=1 =1 =1

(Ag(z™) — Pq,Ag(x"),v — Ag(z™)) <0,

obtain that

and so Ag(z*) = Py, Ag(x m Q;.
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3 Main Results

In the following result, we propose an algorithm and prove that the sequence
generated by the proposed algorithm converges strongly to a solution of GSFPg.

Theorem 3.1. Let Hy and Hs be two real Hilbert spaces, and let A : Hy — H be
a bounded linear operator. Let {C;}52, and {Q;}52, be two families of nonempty

closed convex subsets of Hy and Has, respectively and assume that C = ﬂ C; and
i=1

o0
Q= ﬂ Q;. Let M C Hy and suppose that g : M — C is a bijection continuous
i=1
function and g=* : C' — M is a continuous function. Assume that GSFPg has a
nonempty solution set Q and f is a self k-contraction mapping of Hy. Let {x,} be
a sequence generated by xo € M as

1

9(Tny1) = ang(@n) + Bnfg(zn) + Z'Yn,iPCi (I— An,iA*(I - PQi)A)g('Tn) (3.1)
i=1

where ozn—l—ﬁn—I—Z Yni = 1. If the sequences {caun}, {Bn}, {1n.i} and {\,;} € (0,1)
i=1
satisfy the following conditions:

(i) lim B, =0 and Y _ By = oo,

n=0

(i) for each i € N,liminf a7y, ; > 0,
n— oo

2
(i11) for each i € N,{\,;} C (0,72) and 0 < liminf A\, ; < limsupA,; <
4] S i
2
AP

Then, the sequence {x,} converges strongly to x* € ), where g(x*) solves the
following variational inequality;

((f = Dg(z"),9(z) — g(z*)) <0, VYg(z) € CNATHQ). (3-2)

Proof. First, we will show that g(z,,) is bounded and let p € Q. Fori =1,2,3,...,n,
we see that Pg, (I — A, ;A*(I — Pg,)A) are nonexpansive mappings and so we have
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lg(@n+1) — g(p)l]
= |llang(@n) + Bfg(zn) + Z%zpc (L = A A1 = Pg,)A)g(zn)] — g(p)
anllg(za) = g(p)Il + Bull Folen) — o)
Y Ami P, (I = A i A*(I = Po,)A)g(xn) + ang(p) + Bug(p) — 9(0)|

i=1

)
)
anllg(@n) — 9@ + Bullfg(zn) — 9(P)ll
)
)
)

IN

IN

IS i Pou (I = M A (I = o) Ag() + (0 + B = Do)
lgl@n) = a@ + Ball Fg(an) - 9o

+ D nillPe (I = A iA™(I = Po,) A)g(wn) — g(p)ll.

i=1

IN

Since Pg, (I — Ay, ;A*(I — Pg,)A is nonexpensive for all ¢ = 1,2,3,...,n, then we
get that

lg(znt1) —g(@)|l < anllg(xn)— g + Bl fa(zn) — g@)|
+Z'Yn illg(xn) — g(p)ll

< (1 - ﬁn)Hg(wn) —g@ + Bullfg(xn) — g(p)ll

< (1 =B8u)llg(zn) — gl + Bull fg(zn) — fa(p)l
+Bnllfa®) — g)|

< (1 - /Bn)Hg(xn) - ( )H + 6nk”g($n) - g(p)”
+Bullf9(p) — g(p)|l

< (1= Bn+ Bak)llg(xn) — g)|| + Bull fa(p) — 9(p)|l

< (1= =k)B)lg(xn) —g@)l + Bullfg(p) — g(p)|l

< (1-(1-k)Bn %II g(zn) — g(@)|l
(L= k)Bn. 7l fg () gl

< max{llg(wn) 9wl 7= 179(p) = 9(0)II}

< max{llg(zo) ~ 9wl 7 I Fo(p) — 9}

Therefore {g(x,)} is bounded, and also {fg(x,)}.

Next, we will show that for each i € N,
lim Hg(xn) - PCz‘ (I - )‘n,zA*<I - PQL)A)g(xn)H =0. (33)
n—oo

Since every p € Q, by using Lemma [2.2] we obtain that
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19(zny1) —g(p)|\2

= Nlang(@n) + Bufg(@n) + > _ P, (I = AnjAT(I = Pg,)A)g(zn) — g(p)|

= laglo(e) — o)) + Balo(r) — g0

+ D niPo, (I = A A" = Po;)A)g(wn) = 9(p) + ang(p) + Bug()®
— Jaulo(ea) — 9(0)) + Balfa(z) - o(p)

+ g Po(I =X AT = Po,)A)g(xn) — (1 = an — Ba)g(p)|?

= an[g(xn) —9(p)] + Bulfa(zn) — g(p)]
+ Z’Yn,jPCj (I - )‘n,jA*(I - PQj)A)g(xn) - g(p)||2

J=1

< an!g(xn) —g)|I” + Bl fg(zn) — g(p)|?

F 3 gl P, (T = A A*(1 = Po,) Alg(an) - g(o)

ol P (L = ML~ Po) A)g(za) — o)~ lofe) — oo
< anllg(zn) = g@)|* + Ballfo(zn) — g)II* + z; Tnglg(@n) — g(p)I®

—0n il | Po, (I — A iA*(I — Pg,)A)g(zn) — g(p) — [9(zn) — g(p)][I*-

Hence, for each i € N, we have

Y il Poy (I = A i A*(I = Po,)A)g(xn) — g(p) — [9(zn) — g(@n)] 1

< g(n) — 90) 12 = lg(@ns1) — 9DIP + Bull Falen) — 9| (3.4)

In order to prove that z,, — x* as n — 0o, we consider two possible cases.

Case I: Assume that {|g(z,) — g(z*)||} is monotone sequence. We have
llg(zn) — g(x*)|| is convergent. Since ILm Bn = 0 and {fg(z,)} is bounded, we

get that

T oyl Pe, (T = A sA*(1 = Po,)A)g(wn) — glaa) 2= 0. (35)

By assuming that lim inf o7y, ; > 0, we obtain that
n— 00 ’

lim ||Pe,(I — X, ;A*(I — Pg,)A)g(xn) — g(zn)|| =0, Vi € N. (3.6)

n— oo

Now, we will show that

lim sup(fg(z*) — g(«7), g(wn) — g(z7)) < 0. (3.7)

n—oo
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To show this inequality, we choose a subsequence {g(xy, )} of {g(z,)} such that

Jim (fg(2™) = 9(27), g(n,) — g(a)) = limsup(fg(z”) — g(27), g(zn) — g(a))-
(3.8)
Since {g(xn, )} is bounded, there exists a subsequence {g(x,, )} of {g(xy, )} which
converges weakly to g(w) where w € Hy. Without loss of genérality, we can assume
that g(zn,) = g(w)

Notice that for each i € N, Po, (I — A\, ;A*(I — Pg,)A) is nonexpansive. Thus,
from Lemma[2.4] we have Pe, (I—A,A*(I—Pg,)A)g(w) = g(w) and by proposition
we also have w € . Therefore, it follows that

limsup(fg(z*) — g(a%), g(xn) —g(z)) = lim (fg(z") = g(2"), g(zn,) — g(z"))

o éfg(w*) = 9(@"), 9(w) = g(z7))

IA I

Finally, we show that z,, — z*. Apply Lemma we have that

lg(@n41) — g(@*)|1>

= lang(zn) + Bufglzn) + Z’Yn,ipci (I = XA = Pg,)A)g(as) — g(a")|?
[(ng(zn) — g(z*)) + Z’Yn,i(PCi (I - An,iA*(I - PQ@)A)g(xn) —g(z"))

=1

+04ng +Z'7n zg +5nfg(xn) 7g($*)||2

< lan(g(@n) — g(z7)) +Z%” Po, (I = A iA™(I = Po,)A)g(an) — g(a)|?
+2/Bn<fg( n) = (37*)7 (anrl) g9(z"))

< (1= Bn)?llg(@a) — g(@)II? + 28 (fg(zn) — f9(z*), g(@n+1) — g(a*))
+26n(f9(x") — 9(x7), 9(Tny1) — g(2™))

< (1= Bn)?llg(@a) — g(@)II? + 2Bnkllg(2n) — g(@)llllg(@n+1) — g(*)]]
+2Bn<fg( ) (1' )a (xn+1) (.’E*)>

< (1=50)%lg(@n) — g(@)I1” + Buk{llg(zn) — g(@*)|I? + llg(znt1) — g(=*) |17}
+260(f9(x") — 9(x7), g(xn11) — g(2"))-

This implies that
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19(xn+1) — g(2")|?
< (1= 80)* + Bak)llg(zn) — g(@*)|* + Bukllg(n+1) — g(a*)|?
+25n<fg( ) 9(x*), g(xn41) — g(z*))
< 1 @ﬁ k g(xn) — g(z*)|]?
z*) = g(*), 9(®nt1) — g(2*))
2
= #Ilg(wn) —g(z*)|* + ﬁﬁ lg(xn) — g(z*)|1?
T Eﬁgnkﬁg(x*) —9(@*), g(xns1) — g(z*))
= = 2D lgten) - gt + 220 2
e (Fga) = g(a),g(enen) — 9(a)
< (I —=na)llg@n) - g(x*)HQ + Nnon,
where 5. )
O = 2(1"_ Pl H{f9(a™) = 9(@™), g(2n41) = g(z")), (3.9)
M = sup{||g(z,) — g(x*)||> : n > 0} and n,, = % It is easy to see that

M — 0,% 00 =00 and lim supd, < 0. Hence, by Lemma the sequence
n—oo

{g(z,,)} converges strongly to g(x*). Since g~! is continuous, we have z,, — z*.

Case II: Assume that {||g(z,) — g(z*)||} is not a monotone sequence. Then,
we can define an integer sequence {u(n)} for all n > ng by

pu(n) = max{k € Nok <n:[lg(zr) — (") < llg(@r1) —g(@)[}. (3.10)

Clearly, u(n) is a nondecreasing sequence such that u(n) — co as n — oo and
vn > no,

9(z(n)) = () < llg(zpu(ny+1) — g(@™)[1}. (3.11)
From (3.4)), we obtain that

Following an argument similar to I, we have

limsup(fg(z”) — g(«"), g(2p(n)+1) — 9(z7)) <0 (3.13)

n—r oo

And by similar argument, we have



120 Kanokwan Sitthithakerngkiet and Waraporn Donsungpri

||g(mu(n)+l) ( )H2 (1 — Tu( n))Hg(mu(n ) (x*)H2 + nu(n)au(n)a (314)

where 7)) — 00, Z Nu(n) = o0 and nh—>Holo sup 6,,(n) < 0.
n=1

Hence, by Lamma we obtain lim ||g(z,wm)) — g(z*)| = 0 and
n— oo
nh_)rr;o lg(xun)+1) — g(x™)[ = 0. Now, from Lemma we have

0 <llg(zn)—g(*)||
< max{|lg(zyn)) — 9@, lg(xn) — g(z*)[1} (3.15)
< Hg(xu(n)+1) - g(x*)H

Therefore, {g(x,)} converges to g(z*). Since g~! is continuous, we have {x,}

converges strongly to x*. O

For all ¢ € N, We put C = C;, Q = Q; and \,,; = A, for each n € N and

Z Vn,i =1 — &, — Br. Then we have the following corollary.

n=1

Corollary 3.2. Let H and K be a real Hilbert spaces, and let A : H — K be
a bounded linear operator. Let C' and @Q be a closed convex subsets of H and K,
respectively. Let M C H suppose that g : M — C' is a bijection continuous function
and gt : C — M is continuous function. Suppose that f is a self k-contraction
mapping of H, and let {x,} be a sequence generated by xo € M as

9(Tpt1) = ang(xn)+Bnfg(xn)+(1_an_ﬁn)PC(I_)\nA*(I_PQ)A)g(xn)v n>0

(3.16)
If the nonnegative sequences {ay},{Bn} and {\,} € (0,1) satisfy the following
conditions :

(i) lim B, =0 and Z:Oﬂn = o0,

(ii) hnrggf pyn > 0,

(iii) {\n} C (0,

2
——=) and 0 < hm mf/\ < limsup A, <
||A||2 00 1Al

Then, the sequences {x,} converges strongly to =*, where g(x*) solves the following
variational inequality;

((f = Dg(z"),9(z) — g(z")) <0, VYg(x) € CNATHQ). (3.17)

Setting a continuous operator g = I. Then we have the following corollary
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Corollary 3.3. (Theorem 6 [6]) Let H and K be a real Hilbert spaces, and let
A: H — K be a bounded linear operator. Let {C;}52, and {Q;}2, be the families
of monempty closed convex subsets of H and K, respectively. Suppose that f is a
self k-contraction mapping of H, and let {x,} be a sequence generated by xo € H
as

Tn1 = 0nZn + B f(@n) + Y YniPo,(I=AniA*(I—Pg,)A)z,,  n>0 (3.18)
i=1

where o, + By, —|—Z'yn,i = 1. If the sequences {an}, {Bn}, {ni} and { A, i} satisfy
i=1
the following conditions :

(i) nlgr;oﬂn =0 and Zﬂn = 00,

n=0

(ii) for each i € N, liminf a7y, > 0,
n—oo

2
(iii) for each i € N, {\,.;} C (0, 5) and 0 < liminf A\, ; < limsup A, ; <
’ Al n—oo nooo
2
A2

Then the sequence {x,,} converges strongly to =* € , where x* solves the following
variational inequality;

(f—Da*,z—2*) <0, VzeCnA Q). (3.19)

4 The Nunerical Result

In this section, let us present the following numerical example to confirm the
convergence of our theoretical results.

1 1
Example 4.1. Let Hy = Hy, = R, C = [0,1] and Q; = [-1— =, 1+ =]. Let
i i
A : Hy — Hy be a operators defined by Ax = 2z, and let f be a contraction defined
1
by f(x) = 7% Let M = [-1,—0.5] and define a function g : [-1,—0.5] — [0,1] by

1

g(x) = 2x 4+ 2 then g is a bijective continuous function and g1 is a continuous

1 1, n
tion. A th t that {fn} = ——,{an} = z(——=), {m,i} =
func zmlz isume e parameters la {51} i {an} 2(n—|— 1) {Vn,i}
(1- - 1)§ and {\n;}=(1- m)ﬁ From , we obtain the following
algorithm;

Algorithm (The general split feasibility Problems in Hilbert Spaces)
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Step 1. Choose the initial point xo € M and compute g(xg). Let n = 1.

Step 2. Given xz,, € Hy and compute x,+1 € Hy as follows;
Un =Y AmiPo(l — A iA*(I — Po,)A)g(xy);
i=1 (4.1)
g(mn+1) = ang(xn) + ang(xn) + Yn

Step 3. Putn:=n+1 and go to step 2.

x - Values

20 25 30
Number of Iterations (n)

gx - Values

. . . . . . . .
0 5 10 15 20 25 30 35 40 45 50
Number of Iterations (n)

Figure 1: The convergent behaviors of g(x,) and x,,

It is easy to see that all of conditions in Theorem [3.T]are satisfied. First we take
zo = —1, Figure 1 shows that the sequence z,, converge to 0 which is the solution
of this example and the sequence g(x,,) converge to 0, i.e., g(—1) = 0 € CNA~(Q)
as a solution of this example where Q = (=, Qi.

Next, we take three initial point randomly generated by Matlab. In this way,
Figure 2 and Figure 3 indicate that x, and g(x,) converge to the same points,
respectively.
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datat
data2
30 —*— data3

x - Values

. . . . . . . . .
5 10 15 20 25 30 35 40 45 50
Number of Iterations (n)

Figure 2: The convergent behaviors of x,,
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Figure 3: The convergent behaviors of g(x,)
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