Thai Journal of Mathematics : (2016) 110-124 Special Issue (ACFPTO2016) on : Advances in fixed point theory towards real world optimization problems

http://thaijmath.in.cmu.ac.th Online ISSN 1686-0209

New General Split Feasibility Problems in Hilbert Spaces

Kanokwan Sitthithakerngkiet †,1 and Waraporn Donsungpri ‡

[†]Nonlinear Dynamic Analysis Research Center, Department of Mathematics, Faculty of Applied Science, King Mongkut's University of Technology North Bangkok,
1518, Pracharat 1 Road, Wongsawang, Bangsue, Bangkok, 10800, Thailand e-mail : kanokwan.s@sci.kmutnb.ac.th
[‡]Department of Mathematics, Faculty of Applied Science, King Mongkut's University of Technology North Bangkok,
1518, Pracharat 1 Road, Wongsawang, Bangsue, Bangkok, 10800, Thailand e-mail : d.waraporn1991@gmail.com

Abstract : In this paper, we establish the iterative algorithm for finding the solution of a general split feasibility problem (GSFPg) and show that the proposed algorithm converges strongly to solution of (GSFPg). Moreover, some numerical examples are presented to confirm our results.

Keywords : split feasibility problem; iteration method; Hilbert space **2000 Mathematics Subject Classification :** 47H09; 47H10 (2000 MSC)

1 Introduction

Let H_1 and H_2 be infinite-dimensional real Hilbert spaces and let $A : H_1 \to H_2$ be a bounded linear operator. Censor and Elfving was first introduced the split

Copyright $\textcircled{}_{\odot}$ 2016 by the Mathematical Association of Thailand. All rights reserved.

 $^{^0\}mathrm{This}$ research was supported by the King Mongkut's University of Technology North Bangkok

¹Corresponding author email: kanokwan.s@sci.kmutnb.ac.th

feasibility problem (SFP) in [1]. It can be formulated as the problem of finding a point x satisfying the property :

$$x \in C$$
 such that $Ax \in Q$, (1.1)

where C and Q are nonempty, closed and convex subset in \mathbb{R}^n and \mathbb{R}^m , respectively. The split feasibility problem (SFP) in the setting of finite-dimensional Hilbert spaces was introduce for modelling inverse problem which arise from phase retrievals and in medical image reconstruction [2]. Since then, a lot of work has been done on finding a solution of split feasibility problem (SFP). It has been found that the (SFP) can also be used to study the intensity-modulated radiation therapy. There are many algorithms invented to solve the (SFP), see e.g., [3, 4, 5] and references therein.

A special case of the SFP is the convexly constrained linear inverse problem (CLIP) in a finite dimensional real Hilbert space, that is to find $x^* \in C$ such that

$$Ax^* = b, \tag{1.2}$$

where C is a nonempty closed convex subset of a real Hilbert space H_1 and b is a given element of a real Hilbert space H_2 , which has extensively been investigated to solve solution by using the well-known Landweber iterative method:

$$x_{n+1} = x_n + \gamma A^T (b - A x_n), \qquad \forall n \in \mathbb{N}.$$
(1.3)

Otherwise, Mohammad and Abdul [6] considered a general split feasibility in infinite-dimensional real Hilbert spaces, that is to find x^* such that

$$x^* \in \bigcap_{i=1}^{\infty} C_i, \quad Ax^* \in \bigcap_{i=1}^{\infty} Q_i, \tag{1.4}$$

where $A: H_1 \to H_2$ and two sequences $\{C_i\}_{i=1}^{\infty}$ and $\{Q_i\}_{i=1}^{\infty}$ are the families of nonempty closed convex subsets of H_1 and H_2 , respectively.

In this paper, we consider a general split feasibility problem (for short GSFPg) which is different from [6], that is to find $x^* \in H_1$

$$g(x^*) \in \bigcap_{i=1}^{\infty} C_i$$
 such that $Ag(x^*) \in \bigcap_{i=1}^{\infty} Q_i$, (1.5)

where $g: H_1 \to H_2$ is a continuous mapping. We denote the solution set of (1.5) by Ω . The GSFPg can be reduced to the following problem;

find a point $x^* \in H_1$ such that

$$g(x^*) \in C$$
 and $Ag(x^*) \in Q.$ (1.6)

In 2013, Mohammad and Abdul [6] purposed the cyclic algorithm to solve GSFP 1.4 as follows;

$$x_{n+1} = \alpha_n x_n + \beta_n f(x_n) + \sum_{i=1}^{\infty} \gamma_{n,i} P_{C_i} (I - \lambda_{n,i} A^* (I - P_{Q_i}) A) x_n, \qquad n \ge 0 \quad (1.7)$$

where $\alpha_n + \beta_n + \sum_{i=1}^{\infty} \gamma_{n,i} = 1$. They proved that the sequences $\{x_n\}$ converges strongly to solution of GSFP.

In this paper, we establish the iterative algorithm for finding the solution of a general split feasibility problem (GSFPg) and show that the proposed algorithm converges strongly to solution of (GSFPg). Moreover, some numerical examples are presented to confirm our results.

2 Preliminaries

Throughout the paper, we denote H by a real Hilbert space with inner product $\langle \cdot, \cdot \rangle$ and norm $\|\cdot\|$. Let $\{x_n\}$ be a sequence in H and $x \in H$. Weak convergence and strong convergence of $\{x_n\}$ to x is denoted by $x_n \to x$ and $x_n \to x$, respectively. Let C be a closed and convex subset of H. For every point $x \in H$, there exists a unique nearest point in C, denoted by $P_C x$. This point satisfies

$$||x - P_C x|| \le ||x - y||, \quad \forall y \in C.$$
 (2.1)

The operator P_C is called the metric projection or the nearest point mapping of *H* onto *C*. The metric projection P_C is characterized by the fact that $P_C(x) \in C$ and

$$\langle y - P_C(x), x - P_C(x) \rangle \le 0, \quad \forall x \in H, y \in C.$$
 (2.2)

Recall that a mapping $T: C \to C$ is called nonexpansive if

$$||Tx - Ty|| \le ||x - y||, \quad \forall x, y \in C.$$
 (2.3)

It is well known that P_C is a nonexpansive mapping. It is also known that H satisfies Opial's condition, that is, for any sequence $\{x_n\}$ with $x_n \rightharpoonup x$, the inequality

$$\liminf_{n \to \infty} \|x_n - x\| < \liminf_{n \to \infty} \|x_n - y\|$$
(2.4)

holds for every $y \in H$ with $y \neq x$.

Lemma 2.1. [6] Let H be a Hilbert space. Then, for all $x, y \in H$,

$$||x+y||^2 \le ||x||^2 + 2\langle y, x+y \rangle.$$
(2.5)

Lemma 2.2. ([7]) Let H be a Hilbert space, and let $\{x_n\}$ be a sequence in H. Then, for any given sequence $\{\lambda_n\}_{n=1}^{\infty} \subset (0,1)$ with $\sum_{n=1}^{\infty} \lambda_n = 1$ and for any positive integer i, j with i < j,

$$\|\sum_{n=1}^{\infty} \lambda_n x_n\|^2 \le \sum_{n=1}^{\infty} \lambda_n \|x_n\|^2 - \lambda_i \lambda_j \|x_i - x_j\|^2.$$
(2.6)

Lemma 2.3. ([8]) Assume that $\{a_n\}$ is a sequence of nonnegative real numbers such that

$$a_{n+1} \le (1 - \gamma_n)a_n + \gamma_n\delta_n + \beta_n, \qquad n \ge 0 \tag{2.7}$$

where $\{\gamma_n\}, \{\beta_n\}$, and $\{\delta_n\}$ satisfy the following conditions:

(i)
$$\gamma_n \subset [0,1], \sum_{n=1}^{\infty} \gamma_n = \infty;$$

(ii) $\limsup_{n \to \infty} \delta_n \leq 0 \text{ or } \sum_{n=1}^{\infty} |\gamma_n \delta_n| < \infty;$
(iii) $\beta_n \geq 0 \text{ for all } n \geq 0 \text{ with } \sum_{n=0}^{\infty} \beta_n < \infty.$
Then $\lim_{n \to \infty} a_n = 0.$

Lemma 2.4. [9] Let C be a nonempty closed and convex subset of a real Hilbert space H. Let $T : C \to C$ be a nonexpansive mapping such that $Fix(T) \neq \emptyset$. Then, T is demiclosed on C, that is, if $y_n \rightharpoonup z \in C$, and $(y_n - Ty_n) \rightarrow y$, then (I - T)z = y.

Lemma 2.5. [10] Let $\{t_n\}$ be a sequence of real numbers such that there exists a subsequence $\{n_i\}$ of $\{n\}$ such that $t_{n_i} < t_{n_{i+1}}$ for all $i \in \mathbb{N}$. Then, there exists a nondecreasing sequence $\{\mu(n)\} \subset \mathbb{N}$ such that $\mu(n) \to \infty$, and the following properties are satisfied by all (sufficiently large) number $n \in \mathbb{N}$:

$$t_{\mu(n)} \le t_{\mu(n)+1}, \qquad t_n \le t_{\mu(n)+1}.$$
 (2.8)

In fact

$$\mu(n) = \max\{k \le n : t_k < t_{k+1}\}.$$
(2.9)

Proposition 2.1. [8] For given $x \in H_1$ and $z \in C$, $z = P_C x$ if and only if

$$\langle x - z, z - y \rangle \ge 0,$$
 for all $y \in C.$ (2.10)

Proposition 2.2. Given $x^* \in H_1$. Then $g(x^*)$ solves the GSFPg (1.5) if only if $g(x^*)$ solves the fixed point equation

$$P_{C_i}(I - \lambda_{n,i}A^*(I - P_{Q_i})A)g(x^*) = g(x^*), \qquad (2.11)$$

for all $i \in \mathbb{N}$

Proof. Let $\lambda_{n,i} > 0$, assume that $x^* \in \Omega$. Thus $Ag(x^*) \in \bigcap_{i=1}^{\infty} Q_i$ which implies that $(I - P_{Q_i})Ag(x^*) = 0$ and implies the equation $\lambda_{n,i}A^*(I - P_{Q_i})Ag(x^*) = 0$. Then

 $(I - \lambda_{n,i}A^*(I - P_{Q_i})A)g(x^*) = g(x^*)$. Requiring that $g(x^*) \in \bigcap_{i=1}^{\infty} C_i$, we obtain the fixed point equation:

$$P_{C_i}(I - \lambda_{n,i}A^*(I - P_{Q_i})A)g(x^*) = g(x^*).$$

Conversely, assume that $g(x^*)$ solves the fixed point equation (2.11). Then, for all $y \in \bigcap_{i=1}^{\infty} C_i$ by proposition 2.1 we obtain that

$$\langle (I - \lambda_{n,i}A^*(I - P_{Q_i})A)g(x^*) - g(x^*), y - g(x^*) \rangle \leq 0.$$
 (2.12)

That is

$$\begin{array}{ll} \langle A^*(I - P_{Q_i})Ag(x^*), y - g(x^*) \rangle &\geq 0 \\ \langle Ag(x^*) - P_{Q_i}Ag(x^*), Ay - Ag(x^*) \rangle &\geq 0 \\ \langle Ag(x^*) - P_{Q_i}Ag(x^*), Ag(x^*) - Ay \rangle &\leq 0. \end{array}$$
(2.13)

Since $g(x^*) = P_{C_i}(I - \lambda_{n,i}A^*(I - P_{Q_i})A)g(x^*)$, then we have

$$P_{Q_i}[Ag(x^*)] = P_{Q_i}[P_{C_i}(I - \lambda_{n,i}A^*(I - P_{Q_i})A)g(x^*)].$$

By proposition 2.1 for all $v \in \bigcap_{i=1}^{\infty} Q_i$,

$$\langle Ag(x^*) - P_{Q_i}Ag(x^*), v - P_{Q_i}Ag(x^*) \rangle \le 0.$$
 (2.14)

Adding two equations (2.13) and (2.14), then we have

$$\langle Ag(x^*) - P_{Q_i}Ag(x^*), Ag(x^*) - P_{Q_i}Ag(x^*) + v - Ay \rangle \leq 0,$$
 for all $v \in \bigcap_{i=1}^{\infty} Q_i$ and $y \in \bigcap_{i=1}^{\infty} C_i.$

So, we see that

$$\langle Ag(x^*) - P_{Q_i}Ag(x^*), v - Ay \rangle \le 0.$$

Since $g(x^*) \in \bigcap_{i=1}^{\infty} C_i$, then we can put $z = Ag(x^*) \in \bigcap_{i=1}^{\infty} C_i$. For all $v \in \bigcap_{i=1}^{\infty} Q_i$ we obtain that

$$\langle Ag(x^*) - P_{Q_i}Ag(x^*), v - Ag(x^*) \rangle \le 0,$$

and so $Ag(x^*) = P_{Q_i}Ag(x^*) \in \bigcap_{i=1}^{\infty} Q_i.$

3 Main Results

In the following result, we propose an algorithm and prove that the sequence generated by the proposed algorithm converges strongly to a solution of GSFPg.

Theorem 3.1. Let H_1 and H_2 be two real Hilbert spaces, and let $A : H_1 \to H_2$ be a bounded linear operator. Let $\{C_i\}_{i=1}^{\infty}$ and $\{Q_i\}_{i=1}^{\infty}$ be two families of nonempty closed convex subsets of H_1 and H_2 , respectively and assume that $C = \bigcap_{i=1}^{\infty} C_i$ and

 $Q = \bigcap_{i=1}^{\infty} Q_i. \text{ Let } M \subset H_1 \text{ and suppose that } g: M \to C \text{ is a bijection continuous}$

function and $g^{-1}: C \to M$ is a continuous function. Assume that GSFPg has a nonempty solution set Ω and f is a self k-contraction mapping of H_1 . Let $\{x_n\}$ be a sequence generated by $x_0 \in M$ as

$$g(x_{n+1}) = \alpha_n g(x_n) + \beta_n f g(x_n) + \sum_{i=1}^{\infty} \gamma_{n,i} P_{C_i} (I - \lambda_{n,i} A^* (I - P_{Q_i}) A) g(x_n)$$
(3.1)

where $\alpha_n + \beta_n + \sum_{i=1}^{\infty} \gamma_{n,i} = 1$. If the sequences $\{\alpha_n\}, \{\beta_n\}, \{\gamma_{n,i}\}$ and $\{\lambda_{n,i}\} \in (0,1)$ satisfy the following conditions:

(i)
$$\lim_{n \to \infty} \beta_n = 0$$
 and $\sum_{n=0}^{\infty} \beta_n = \infty$,

(*ii*) for each
$$i \in \mathbb{N}$$
, $\liminf_{n \to \infty} \alpha_n \gamma_{n,i} > 0$,

(iii) for each
$$i \in \mathbb{N}, \{\lambda_{n,i}\} \subset (0, \frac{2}{\|A\|^2})$$
 and $0 < \liminf_{n \to \infty} \lambda_{n,i} \leq \limsup_{n \to \infty} \lambda_{n,i} < \frac{2}{\|A\|^2}.$

Then, the sequence $\{x_n\}$ converges strongly to $x^* \in \Omega$, where $g(x^*)$ solves the following variational inequality;

$$\langle (f-I)g(x^*), g(x) - g(x^*) \rangle \le 0, \quad \forall g(x) \in C \cap A^{-1}(Q).$$
 (3.2)

Proof. First, we will show that $g(x_n)$ is bounded and let $p \in \Omega$. For i = 1, 2, 3, ..., n, we see that $P_{C_i}(I - \lambda_{n,i}A^*(I - P_{Q_i})A)$ are nonexpansive mappings and so we have

$$\begin{split} \|g(x_{n+1}) - g(p)\| \\ &= \| [\alpha_n g(x_n) + \beta f g(x_n) + \sum_{i=1}^{\infty} \gamma_{n,i} P_{C_i} (I - \lambda_{n,i} A^* (I - P_{Q_i}) A) g(x_n)] - g(p) \| \\ &\leq \alpha_n \|g(x_n) - g(p)\| + \beta_n \|fg(x_n) - g(p)\| \\ &+ \|\sum_{i=1}^{\infty} \gamma_{n,i} P_{C_i} (I - \lambda_{n,i} A^* (I - P_{Q_i}) A) g(x_n) + \alpha_n g(p) + \beta_n g(p) - g(p) \| \\ &\leq \alpha_n \|g(x_n) - g(p)\| + \beta_n \|fg(x_n) - g(p)\| \\ &+ \|\sum_{i=1}^{\infty} \gamma_{n,i} P_{C_i} (I - \lambda_{n,i} A^* (I - P_{Q_i}) A) g(x_n) + (\alpha_n + \beta_n - 1) g(p) \| \\ &\leq \alpha_n \|g(x_n) - g(p)\| + \beta_n \|fg(x_n) - g(p)\| \\ &+ \sum_{i=1}^n \gamma_{n,i} \|P_{C_i} (I - \lambda_{n,i} A^* (I - P_{Q_i}) A) g(x_n) - g(p)\|. \end{split}$$

Since $P_{C_i}(I - \lambda_{n,i}A^*(I - P_{Q_i})A$ is nonexpensive for all i = 1, 2, 3, ..., n, then we get that

$$\begin{split} \|g(x_{n+1}) - g(p)\| &\leq \alpha_n \|g(x_n) - g(p)\| + \beta_n \|fg(x_n) - g(p)\| \\ &+ \sum_{i=1}^n \gamma_{n,i} \|g(x_n) - g(p)\| \\ &\leq (1 - \beta_n) \|g(x_n) - g(p)\| + \beta_n \|fg(x_n) - g(p)\| \\ &\leq (1 - \beta_n) \|g(x_n) - g(p)\| + \beta_n \|fg(x_n) - fg(p)\| \\ &+ \beta_n \|fg(p) - g(p)\| \\ &\leq (1 - \beta_n + \beta_n k) \|g(x_n) - g(p)\| + \beta_n \|fg(p) - g(p)\| \\ &\leq (1 - (1 - k)\beta_n) \|g(x_n) - g(p)\| + \beta_n \|fg(p) - g(p)\| \\ &\leq (1 - (1 - k)\beta_n) \|g(x_n) - g(p)\| \\ &\leq (1 - (1 - k)\beta_n) \|g(x_n) - g(p)\| \\ &\leq (1 - (1 - k)\beta_n) \|g(x_n) - g(p)\| \\ &\leq (1 - (1 - k)\beta_n) \|g(x_n) - g(p)\| \\ &\leq (1 - (1 - k)\beta_n) \|g(x_n) - g(p)\| \\ &\leq \max\{\|g(x_n) - g(p)\|, \frac{1}{1 - k} \|fg(p) - g(p)\|\}. \end{split}$$

Therefore $\{g(x_n)\}$ is bounded, and also $\{fg(x_n)\}$.

Next, we will show that for each $i \in \mathbb{N}$,

$$\lim_{n \to \infty} \|g(x_n) - P_{C_i}(I - \lambda_{n,i}A^*(I - P_{Q_i})A)g(x_n)\| = 0.$$
(3.3)

Since every $p \in \Omega$, by using Lemma 2.2, we obtain that

$$\begin{split} \|g(x_{n+1}) - g(p)\|^2 \\ &= \|\alpha_n g(x_n) + \beta_n fg(x_n) + \sum_{j=1}^{\infty} \gamma_{n,j} P_{C_j} (I - \lambda_{n,j} A^* (I - P_{Q_j}) A) g(x_n) - g(p)\|^2 \\ &= \|\alpha_n [g(x_n) - g(p)] + \beta_n [fg(x_n) - g(p)] \\ &+ \sum_{j=1}^{\infty} \gamma_{n,j} P_{C_j} (I - \lambda_{n,j} A^* (I - P_{Q_j}) A) g(x_n) - g(p) + \alpha_n g(p) + \beta_n g(p)\|^2 \\ &= \|\alpha_n [g(x_n) - g(p)] + \beta_n [fg(x_n) - g(p)] \\ &+ \sum_{j=1}^{\infty} \gamma_{n,j} P_{C_j} (I - \lambda_{n,j} A^* (I - P_{Q_j}) A) g(x_n) - (1 - \alpha_n - \beta_n) g(p)\|^2 \\ &= \alpha_n [g(x_n) - g(p)] + \beta_n [fg(x_n) - g(p)] \\ &+ \sum_{j=1}^{\infty} \gamma_{n,j} P_{C_j} (I - \lambda_{n,j} A^* (I - P_{Q_j}) A) g(x_n) - g(p)\|^2 \\ &\leq \alpha_n \|g(x_n) - g(p)\|^2 + \beta_n \|fg(x_n) - g(p)\|^2 \\ &+ \sum_{j=1}^{\infty} \gamma_{n,j} \|P_{C_j} (I - \lambda_{n,j} A^* (I - P_{Q_j}) A) g(x_n) - g(p)\|^2 \\ &\leq \alpha_n \|g(x_n) - g(p)\|^2 + \beta_n \|fg(x_n) - g(p)\|^2 \\ &\leq \alpha_n \|g(x_n) - g(p)\|^2 + \beta_n \|fg(x_n) - g(p)\|^2 + \sum_{j=1}^{\infty} \gamma_{n,j} \|g(x_n) - g(p)\|^2 \\ &\leq \alpha_n \|g(x_n) - g(p)\|^2 + \beta_n \|fg(x_n) - g(p)\|^2 + \sum_{j=1}^{\infty} \gamma_{n,j} \|g(x_n) - g(p)\|^2 \\ &\leq \alpha_n \|g(x_n) - g(p)\|^2 + \beta_n \|fg(x_n) - g(p)\|^2 + \sum_{j=1}^{\infty} \gamma_{n,j} \|g(x_n) - g(p)\|^2 \\ &\leq \alpha_n \|g(x_n) - g(p)\|^2 + \beta_n \|fg(x_n) - g(p)\|^2 + \sum_{j=1}^{\infty} \gamma_{n,j} \|g(x_n) - g(p)\|^2 \\ &\leq \alpha_n \|g(x_n) - g(p)\|^2 + \beta_n \|fg(x_n) - g(p)\|^2 + \sum_{j=1}^{\infty} \gamma_{n,j} \|g(x_n) - g(p)\|^2 \\ &\leq \alpha_n \|g(x_n) - g(p)\|^2 + \beta_n \|fg(x_n) - g(p)\|^2 + \sum_{j=1}^{\infty} \gamma_{n,j} \|g(x_n) - g(p)\|^2 \\ &\leq \alpha_n \|g(x_n) - g(p)\|^2 + \beta_n \|fg(x_n) - g(p)\|^2 + \sum_{j=1}^{\infty} \gamma_{n,j} \|g(x_n) - g(p)\|^2 \\ &\leq \alpha_n \|g(x_n) - g(p)\|^2 + \beta_n \|fg(x_n) - g(p)\|^2 + \sum_{j=1}^{\infty} \gamma_{n,j} \|g(x_n) - g(p)\|^2 \\ &\leq \alpha_n \|g(x_n) - g(p)\|^2 + \beta_n \|fg(x_n) - g(p)\|^2 + \sum_{j=1}^{\infty} \gamma_{n,j} \|g(x_n) - g(p)\|^2 \\ &\leq \alpha_n \|g(x_n) - g(p)\|^2 + \beta_n \|fg(x_n) - g(p)\|^2 + \sum_{j=1}^{\infty} \gamma_{n,j} \|g(x_n) - g(p)\|^2 \\ &\leq \alpha_n \|g(x_n) - g(p)\|^2 + \beta_n \|fg(x_n) - g(p)\|^2 + \sum_{j=1}^{\infty} \gamma_{n,j} \|g(x_n) - g(p)\|^2 \\ &\leq \alpha_n \|g(x_n) - g(p)\|^2 + \beta_n \|fg(x_n) - g(p)\|^2 + \sum_{j=1}^{\infty} \gamma_{n,j} \|g(x_n) - g(p)\|^2 \\ &\leq \alpha_n \|g(x_n) - g(p)\|^2 + \beta_n \|g(x_n) - g(p)\|^2 + \beta_n \|g(x_n) - g(p)\|^2 \\ &\leq \alpha_n \|g(x_n) - g(p)\|^2 + \beta_n \|g(x_n) - g(p)\|^2 \\ &\leq \alpha_n \|g(x_n) - g(p)\|^2 + \beta_n \|g(x_n) - g(p)\|^2 \\$$

Hence, for each $i \in \mathbb{N}$, we have

$$\alpha_n \gamma_{n,i} \| P_{C_i} (I - \lambda_{n,i} A^* (I - P_{Q_i}) A) g(x_n) - g(p) - [g(x_n) - g(x_n)] \|^2$$

$$\leq \| g(x_n) - g(p) \|^2 - \| g(x_{n+1}) - g(p) \|^2 + \beta_n \| fg(x_n) - g(p) \|^2.$$

$$(3.4)$$

In order to prove that $x_n \to x^*$ as $n \to \infty$, we consider two possible cases.

Case I: Assume that $\{||g(x_n) - g(x^*)||\}$ is monotone sequence. We have $||g(x_n) - g(x^*)||$ is convergent. Since $\lim_{n \to \infty} \beta_n = 0$ and $\{fg(x_n)\}$ is bounded, we get that

$$\lim_{n \to \infty} \alpha_n \gamma_{n,i} \| P_{C_i} (I - \lambda_{n,i} A^* (I - P_{Q_i}) A) g(x_n) - g(x_n) \|^2 = 0.$$
(3.5)

By assuming that $\lim_{n\to\infty} \inf \alpha_n \gamma_{n,i} > 0$, we obtain that

$$\lim_{n \to \infty} \|P_{C_i}(I - \lambda_{n,i}A^*(I - P_{Q_i})A)g(x_n) - g(x_n)\| = 0, \quad \forall i \in \mathbb{N}.$$
 (3.6)

Now, we will show that

$$\limsup_{n \to \infty} \langle fg(x^*) - g(x^*), g(x_n) - g(x^*) \rangle \le 0.$$
(3.7)

To show this inequality, we choose a subsequence $\{g(x_{n_k})\}$ of $\{g(x_n)\}$ such that

$$\lim_{k \to \infty} \langle fg(x^*) - g(x^*), g(x_{n_k}) - g(x^*) \rangle = \limsup_{n \to \infty} \langle fg(x^*) - g(x^*), g(x_n) - g(x^*) \rangle.$$
(3.8)

Since $\{g(x_{n_k})\}$ is bounded, there exists a subsequence $\{g(x_{n_{k_j}})\}$ of $\{g(x_{n_k})\}$ which converges weakly to $g(\omega)$ where $\omega \in H_1$. Without loss of generality, we can assume that $g(x_{n_k}) \rightharpoonup g(\omega)$

Notice that for each $i \in \mathbb{N}$, $P_{C_i}(I - \lambda_{n,i}A^*(I - P_{Q_i})A)$ is nonexpansive. Thus, from Lemma 2.4, we have $P_{C_i}(I - \lambda_{n,i}A^*(I - P_{Q_i})A)g(\omega) = g(\omega)$ and by proposition 2.2, we also have $\omega \in \Omega$. Therefore, it follows that

$$\begin{split} \limsup_{n \to \infty} \langle fg(x^*) - g(x^*), g(x_n) - g(x^*) \rangle &= \lim_{k \to \infty} \langle fg(x^*) - g(x^*), g(x_{n_k}) - g(x^*) \rangle \\ &= \langle fg(x^*) - g(x^*), g(\omega) - g(x^*) \rangle \\ &\leq 0. \end{split}$$

Finally, we show that $x_n \to x^*$. Apply Lemma 2.1, we have that

$$\begin{split} \|g(x_{n+1}) - g(x^*)\|^2 \\ &= \|\alpha_n g(x_n) + \beta_n fg(x_n) + \sum_{i=1}^{\infty} \gamma_{n,i} P_{C_i} (I - \lambda_{n,i} A^* (I - P_{Q_i}) A) g(x_n) - g(x^*)\|^2 \\ &= \|(\alpha_n g(x_n) - g(x^*)) + \sum_{i=1}^{\infty} \gamma_{n,i} (P_{C_i} (I - \lambda_{n,i} A^* (I - P_{Q_i}) A) g(x_n) - g(x^*)) \\ &+ \alpha_n g(x^*) + \sum_{i=1}^{\infty} \gamma_{n,i} g(x^*) + \beta_n fg(x_n) - g(x^*)\|^2 \\ &\leq \|\alpha_n (g(x_n) - g(x^*)) + \sum_{i=1}^{\infty} \gamma_{n,i} (P_{C_i} (I - \lambda_{n,i} A^* (I - P_{Q_i}) A) g(x_n) - g(x^*))\|^2 \\ &+ 2\beta_n \langle fg(x_n) - g(x^*), g(x_{n+1}) - g(x^*) \rangle \\ &\leq (1 - \beta_n)^2 \|g(x_n) - g(x^*)\|^2 + 2\beta_n \langle fg(x_n) - fg(x^*), g(x_{n+1}) - g(x^*) \rangle \\ &\leq (1 - \beta_n)^2 \|g(x_n) - g(x^*)\|^2 + 2\beta_n k \|g(x_n) - g(x^*)\| \|g(x_{n+1}) - g(x^*)\| \\ &+ 2\beta_n \langle fg(x^*) - g(x^*), g(x_{n+1}) - g(x^*) \rangle \\ &\leq (1 - \beta_n)^2 \|g(x_n) - g(x^*)\|^2 + \beta_n k \{\|g(x_n) - g(x^*)\|^2 + \|g(x_{n+1}) - g(x^*)\|^2 \} \\ &+ 2\beta_n \langle fg(x^*) - g(x^*), g(x_{n+1}) - g(x^*) \rangle. \end{split}$$

This implies that

$$\begin{split} & \|g(x_{n+1}) - g(x^*)\|^2 \\ & \leq \quad ((1 - \beta_n)^2 + \beta_n k) \|g(x_n) - g(x^*)\|^2 + \beta_n k \|g(x_{n+1}) - g(x^*)\|^2 \\ & + 2\beta_n \langle fg(x^*) - g(x^*), g(x_{n+1}) - g(x^*) \rangle \\ & \leq \quad (\frac{(1 - \beta_n)^2}{1 - \beta_n k}) \|g(x_n) - g(x^*)\|^2 \\ & + \frac{2\beta_n}{1 - \beta_n k} \langle fg(x^*) - g(x^*), g(x_{n+1}) - g(x^*) \rangle \\ & = \quad \frac{1 - 2\beta_n + \beta_n k}{1 - \beta_n k} \|g(x_n) - g(x^*)\|^2 + \frac{\beta_n^2}{1 - \beta_n k} \|g(x_n) - g(x^*)\|^2 \\ & + \frac{2\beta_n}{1 - \beta_n k} \langle fg(x^*) - g(x^*), g(x_{n+1}) - g(x^*) \rangle \\ & = \quad (1 - \frac{2(1 - k)\beta_n}{1 - \beta_n k}) \|g(x_n) - g(x^*)\|^2 + \frac{2(1 - k)\beta_n}{1 - \beta_n k} \{\frac{\beta_n M}{2(1 - k)} \\ & + \frac{1}{1 - k} \langle fg(x^*) - g(x^*), g(x_{n+1}) - g(x^*) \rangle \} \\ & \leq \quad (1 - \eta_n) \|g(x_n) - g(x^*)\|^2 + \eta_n \delta_n, \end{split}$$

where

$$\delta_n = \frac{\beta_n M}{2(1-k)} + \frac{1}{1-k} \langle fg(x^*) - g(x^*), g(x_{n+1}) - g(x^*) \rangle, \qquad (3.9)$$

$$\begin{split} M &= \sup\{\|g(x_n) - g(x^*)\|^2 : n \geq 0\} \text{ and } \eta_n = \frac{2(1-k)\beta_n}{1-\beta_n k}. \text{ It is easy to see that} \\ \eta_n &\to 0, \sum_{n=1}^\infty \eta_n = \infty \text{ and } \lim_{n \to \infty} \sup \delta_n \leq 0. \text{ Hence, by Lemma 2.3, the sequence} \\ \{g(x_n)\} \text{ converges strongly to } g(x^*). \text{ Since } g^{-1} \text{ is continuous, we have } x_n \to x^*. \end{split}$$

Case II: Assume that $\{||g(x_n) - g(x^*)||\}$ is not a monotone sequence. Then, we can define an integer sequence $\{\mu(n)\}$ for all $n \ge n_0$ by

$$\mu(n) = \max\{k \in \mathbb{N}; k \le n : \|g(x_k) - g(x^*)\| < \|g(x_{k+1}) - g(x^*)\|\}.$$
 (3.10)

Clearly, $\mu(n)$ is a nondecreasing sequence such that $\mu(n) \to \infty$ as $n \to \infty$ and $\forall n \ge n_0$,

$$\|g(x_{\mu(n)}) - g(x^*)\| < \|g(x_{\mu(n)+1}) - g(x^*)\|\}.$$
(3.11)

From (3.4), we obtain that

$$\lim_{n \to \infty} \|P_{C_i}(I - \lambda_{\mu(n),i}A^*(I - P_{Q_i})A)g(x_{\mu(n)}) - g(x_{\mu(n)})\| = 0.$$
(3.12)

Following an argument similar to I, we have

$$\limsup_{n \to \infty} \langle fg(x^*) - g(x^*), g(x_{\mu(n)+1}) - g(x^*) \rangle \le 0.$$
(3.13)

And by similar argument, we have

$$\|g(x_{\mu(n)+1}) - g(x^*)\|^2 \le (1 - \eta_{\mu(n)}) \|g(x_{\mu(n)}) - g(x^*)\|^2 + \eta_{\mu(n)}\delta_{\mu(n)}, \quad (3.14)$$

where $\eta_{\mu(n)} \to \infty$, $\sum_{n=1}^{\infty} \eta_{\mu(n)} = \infty$ and $\lim_{n \to \infty} \sup \delta_{\mu(n)} \le 0$. Hence, by Lamma 2.3, we obtain $\lim_{n \to \infty} \|g(x_{\mu(n)}) - g(x^*)\| = 0$ and

 $\lim_{n \to \infty} \|g(x_{\mu(n)+1}) - g(x^*)\| = 0.$ Now, from Lemma 2.5, we have

$$\begin{array}{ll}
0 &\leq \|g(x_n) - g(x^*)\| \\
\leq \max\{\|g(x_{\mu(n)}) - g(x^*)\|, \|g(x_n) - g(x^*)\|\} \\
\leq \|g(x_{\mu(n)+1}) - g(x^*)\|.
\end{array}$$
(3.15)

Therefore, $\{g(x_n)\}$ converges to $g(x^*)$. Since g^{-1} is continuous, we have $\{x_n\}$ converges strongly to x^* .

For all $i \in \mathbb{N}$, We put $C = C_i$, $Q = Q_i$ and $\lambda_{n,i} = \lambda_n$ for each $n \in \mathbb{N}$ and $\sum_{i=1}^{\infty} \gamma_{n,i} = 1 - \alpha_n - \beta_n.$ Then we have the following corollary.

Corollary 3.2. Let H and K be a real Hilbert spaces, and let $A : H \to K$ be a bounded linear operator. Let C and Q be a closed convex subsets of H and K. respectively. Let $M \subset H$ suppose that $g: M \to C$ is a bijection continuous function and $q^{-1}: C \to M$ is continuous function. Suppose that f is a self k-contraction mapping of H, and let $\{x_n\}$ be a sequence generated by $x_0 \in M$ as

$$g(x_{n+1}) = \alpha_n g(x_n) + \beta_n fg(x_n) + (1 - \alpha_n - \beta_n) P_C(I - \lambda_n A^*(I - P_Q)A)g(x_n), \qquad n \ge 0$$
(3.16)

If the nonnegative sequences $\{\alpha_n\}, \{\beta_n\}$ and $\{\lambda_n\} \in (0,1)$ satisfy the following conditions :

- (i) $\lim_{n \to \infty} \beta_n = 0$ and $\sum_{n=0}^{\infty} \beta_n = \infty$,
- (*ii*) $\liminf_{n \to \infty} \alpha_n \gamma_n > 0$,

(iii)
$$\{\lambda_n\} \subset (0, \frac{2}{\|A\|^2})$$
 and $0 < \liminf_{n \to \infty} \lambda_n \le \limsup_{n \to \infty} \lambda_n < \frac{2}{\|A\|^2}.$

Then, the sequences $\{x_n\}$ converges strongly to x^* , where $g(x^*)$ solves the following variational inequality;

$$\langle (f-I)g(x^*), g(x) - g(x^*) \rangle \le 0, \quad \forall g(x) \in C \cap A^{-1}(Q).$$
 (3.17)

Setting a continuous operator $q \equiv I$. Then we have the following corollary

Corollary 3.3. (Theorem 6 [6]) Let H and K be a real Hilbert spaces, and let $A: H \to K$ be a bounded linear operator. Let $\{C_i\}_{i=1}^{\infty}$ and $\{Q_i\}_{i=1}^{\infty}$ be the families of nonempty closed convex subsets of H and K, respectively. Suppose that f is a self k-contraction mapping of H, and let $\{x_n\}$ be a sequence generated by $x_0 \in H$ as

$$x_{n+1} = \alpha_n x_n + \beta_n f(x_n) + \sum_{i=1}^{\infty} \gamma_{n,i} P_{C_i} (I - \lambda_{n,i} A^* (I - P_{Q_i}) A) x_n, \qquad n \ge 0 \quad (3.18)$$

where $\alpha_n + \beta_n + \sum_{i=1}^{\infty} \gamma_{n,i} = 1$. If the sequences $\{\alpha_n\}, \{\beta_n\}, \{\gamma_{n,i}\}$ and $\{\lambda_{n,i}\}$ satisfy the following conditions :

(i)
$$\lim_{n \to \infty} \beta_n = 0$$
 and $\sum_{n=0}^{\infty} \beta_n = \infty$,

(ii) for each $i \in \mathbb{N}$, $\liminf_{n \to \infty} \alpha_n \gamma_n > 0$,

(iii) for each
$$i \in \mathbb{N}$$
, $\{\lambda_{n,i}\} \subset (0, \frac{2}{\|A\|^2})$ and $0 < \liminf_{n \to \infty} \lambda_{n,i} \leq \limsup_{n \to \infty} \lambda_{n,i} < \frac{2}{\|A\|^2}$.

Then the sequence $\{x_n\}$ converges strongly to $x^* \in \Omega$, where x^* solves the following variational inequality;

$$\langle (f-I)x^*, x-x^* \rangle \le 0, \quad \forall x \in C \cap A^{-1}(Q).$$
 (3.19)

4 The Nunerical Result

In this section, let us present the following numerical example to confirm the convergence of our theoretical results.

Example 4.1. Let $H_1 = H_2 = \mathbb{R}$, C = [0,1] and $Q_i = [-1 - \frac{1}{i}, 1 + \frac{1}{i}]$. Let $A: H_1 \to H_2$ be a operators defined by Ax = 2x, and let f be a contraction defined by $f(x) = \frac{1}{2}x$. Let M = [-1, -0.5] and define a function $g: [-1, -0.5] \to [0, 1]$ by g(x) = 2x + 2 then g is a bijective continuous function and g^{-1} is a continuous function. Assume the parameters that $\{\beta_n\} = \frac{1}{n+1}, \{\alpha_n\} = \frac{1}{2}(\frac{n}{n+1}), \{\gamma_{n,i}\} = (1 - \frac{1}{n+2})\frac{1}{3^{i+1}}$. From (3.1), we obtain the following algorithm:

Algorithm (The general split feasibility Problems in Hilbert Spaces)

Step 1. Choose the initial point $x_0 \in M$ and compute $g(x_0)$. Let n = 1.

Step 2. Given $x_n \in H_1$ and compute $x_{n+1} \in H_1$ as follows;

$$\begin{cases} y_n = \sum_{i=1}^{\infty} \gamma_{n,i} P_C(I - \lambda_{n,i} A^* (I - P_{Q_i}) A) g(x_n); \\ g(x_{n+1}) = \alpha_n g(x_n) + \beta_n f g(x_n) + y_n \end{cases}$$
(4.1)

Step 3. Put n := n + 1 and go to step 2.

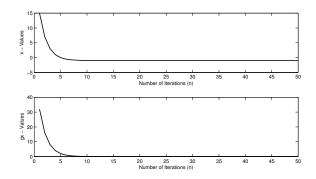


Figure 1: The convergent behaviors of $g(x_n)$ and x_n

It is easy to see that all of conditions in Theorem 3.1 are satisfied. First we take $x_0 = -1$, Figure 1 shows that the sequence x_n converge to 0 which is the solution of this example and the sequence $g(x_n)$ converge to 0, i.e., $g(-1) = 0 \in C \cap A^{-1}(Q)$ as a solution of this example where $Q = \bigcap_{i=1}^{\infty} Q_i$.

Next, we take three initial point randomly generated by Matlab. In this way, Figure 2 and Figure 3 indicate that x_n and $g(x_n)$ converge to the same points, respectively.

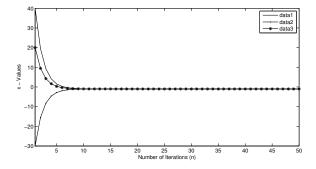


Figure 2: The convergent behaviors of x_n

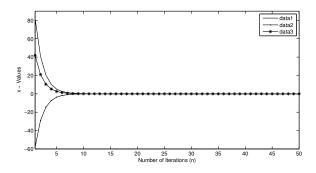


Figure 3: The convergent behaviors of $g(x_n)$

Acknowledgement(s): In this research, the first author was supported by King Mongkut's University of Technology North Bangkok (Contract no. KMUTNB-GEN-59-16). The second author would like to thanks the King Mongkut's University of Technology North Bangkok, Thailand.

References

- Y. Censor and T. Elfving, A multiprojection algorithm using Bregman projections in a product space, Numerical Algorithms, vol. 8, no. 2-4, pp. 221-239, 1994.
- [2] C. Byrne, Iterative oblique projection onto convex sets and the split feasibility problem, *Inverse Problems*, 18(2002), 441–453.

- [3] B. Qu and N. Xiu, A note on the CQ algorithm for the split feasibility problem, *Inverse Problems*, 21(2005), 1655–1665.
- [4] S. He and Z. Zhao, Strong convergence of a relaxed CQ algorithm for the split feasibility problem, *Journal Inequalities and Applications*, 197(2013), 11 pages.
- [5] H.K. Xu, Iterative algorithms for nonlinear operators, Journal of the London Mathematical Society, vol. 66, no. 1, pp. 240-256, 2002.
- [6] Mohammad, E, Abdul, L: General split feasibility problems in Hilbert spaces. Abstr. Appl. Anal. 2013, Artical ID 805104, 2013
- [7] S.S. Chang, J. K. Kim, and X. R. Wang, Modified block iterative algorithm for solving convex feasibility problems in Banach spaces, Journal of Inequalities and Applications, vol. 2010, Article ID 869684, 14 pages, 2010.
- [8] H.K. Xu, Iterative methods for the split feasibility problem in infinitedimensional Hilbert spaces, Inverse Problem, vol. 26, no. 10, Article ID 105018, 17 pages, 2010.
- [9] K. Goebel and W. A. Kirk, Topics in Metric Fixed Point Theory, vol. 28, Cambridge University Press, Cambridge, UK, 1990.
- [10] P.E. Maingé, Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization, Set-Valued Analysis, vol. 16, no. 7-8, pp. 899-912,2008.