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1 Introduction

The Banach fixed point theorem for contraction mappings has been generalized
and extended in many directions; see [I],[],[5] and [9] and the reference therein.
In [6], Dhage introduced the D-metric space as a generalization of the metric
space and proved some results in this setting. In [I3], S. Sedghi, N. Shobe and
A. Aliouche introduced the notion of S-metric space which is a generalization of
G-metric space of [6] and D*- metric space of [I4] and proved some fixed point
theorems on S-metric space. Later, S. Sedghi, N. V. Dung [12] proved generalized
fixed point theorems in S-metric spaces which is a generalization of [13].

In [I5], Wardowski introduce a new type of contractions called F-contraction
and prove a new fixed point theorem concerning F-contractions. In this way, War-
dowski [T5] generalized the Banach contraction principle in a different manner from
the well-known results from the literature. In [2], Batra and Vashistha generalized
the concept of the F-contraction to the Fi,-contraction and proved a fixed point
theorem for the F,-contraction in a complete metric space.
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In this paper, using the concept of the S-metric, we define a w-distance on a
complete S-metric space, which is a generalization of the concept of the w-distance
due to Kada, Suzuki and Takahashi [7]. Also, we introduce the concept of the F,,-
contraction in a complete S-metric space and extend the fixed point theorem. In
another way, we introduce the concept of the F,-contraction of Hardy-Rogers-type
in a complete S-metric space.

2 Preliminaries

In [I3], S. Sedghi, N. Shobe and A. Aliouche have introduced a new structure of
generalized metric spaces as follows.

Definition 2.1. [I3] Let X be a nonempty set. An S-metric on X is a function
S X3 — [0,00) that satisfies the following conditions for all x,y,z,a € X.

(i) S(z,y,2) =0if and only if t =y = 2.
(i) S(z,y,2) < S(z,@,a) + S(y,y,a) + 5(z, 2, a).
The pair (X, S) is called an S-metric space.

Immediate examples of such S-metric spaces are:

Example 2.2. [I3]

(i) Let X =R"™ and ||-|| a norm on X, then S(x,y,z) = ||y +z —2z|| + ||y — #]|
is an S-metric on X.

(ii) Let X be a nonempty set, d is ordinary metric on X, then S(z,y,z) =
d(z,z) +d(y, z) is an S-metric on X.

Lemma 2.3. [13] Let (X,S) be an S-metric space. Then S(z,z,y) = S(y,y,x)
forallz,y € X.

Lemma 2.4. [13] Let (X, S) be an S-metric space. Then
S(a,w,z) <28z, 2, y) + 5(y,9,2) and S(x,2,2) <25(x,2,y) +5(2,2,9)
forallz,y,z € X.

Definition 2.5. [I3] Let (X, S) be an S-metric space.

(i) A sequence {x,} C X is said to converge to z € X if S(xn,zn,x) = 0 as
n — 0o. That is, for each € > 0, there exists ng € N such that for alln > ng
we have S(xy,, xn,x) < e. We write x,, — x for brevity.

(ii) A sequence {x,} C X is called a Cauchy sequence if S(Zp, Tpn, Tm) — 0 as
n,m — oo. That is, for each € > 0, there exists ng € N such that for all
n,m > ng we have S(xy, Ty, Tm) < €.
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(iii) The S-metric space (X,S) is said to be complete if every Cauchy sequence
is a convergent sequence

Lemma 2.6. [I3] Let (X, S) be an S-metric space. If x,, — = and y, — y, then
S(@n, Tnyyn) = S(z,2,y).

In [I5], Wardowski introduced a new concept of F-contraction on a complete
metric spaces as follows.

Definition 2.7. [I5] Let F': RT™ — R be a mapping satisfying:
(F1) F is strictly increasing. Thatis, « < f = F(a) < F(B) foralla, p € RT.

(F2) For every sequence {a,} in Rt | we have li_)m a, = 0 if and only if
n oo
lim F(a,) = —o0.
n—oo
(F3) There exists a number k € (0,1) such that lirf)l+ a"F(a) =0.
a—

Definition 2.8. Let (X, S) be a S-metric space. A mapping T : X — X is said
to be a F-contraction if there exists a number T > 0 such that

STz, Ty, Tz) >0 = 74+F(S(Tz,Ty,Tz)) < F(S(z,y,2)) foralzy,zeX.

Remark 2.9. Clearly Definition[2.§ and (F1) implies that S(Tx, Ty, Tz) < S(z,y, 2)
for all x,y,z € X with Tx # Ty # Tz. Hence every F-contraction mapping is
continuous.

In [7], Kada, Suzuki and Takahashi introduced the concept of a weak distance
in a metric space. Analogously we define w-distance in a S-metric space as follows.

Definition 2.10. Let (X,S) be a S-metric space. A function p: X3 — [0,00) is
called a w-distance on X if the following conditions hold:

(wl) p(z,y,2) < pla,a,2) + pla, a,y) + pla, a,z) for all z,y,z,a € X;
(w2) for any z,y € X, p(z,z,.): X = [0,00) are lower semicontinuous;

(w3) for each € > 0, there exists § > 0 such that

pla,a,x) <6,pla,a,y) < 4§ and p(a,a,z) <5 = S(z,y,2) <e.

Example 2.11. (i) Let (X,S) is a S-metric space and p : X3 — [0,00] is
defined by p(x,y, z) = S(x,y,2) for x,y,z € X then p is a w-distance on X.
In fact, (w1) holds in view of Definition [2.1](ii) and Lemma[2.3; (w2) holds

g

in view of Lemma and finally, for a given € > 0, taking 6 = 5 it is easy

to verify (w3) in view of Definition[2.1](ii). That is every S-metric on a set
X is a w-distance on X.
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(i) Suppose Xo = {0,00} U{L : n > 1} and define S : X3 — [0,00) by
S(x,y,2) = |x — 2|+ |y — 2| for z,y,z € Xo. Then (Xo,S) is a S-metric
space (as a special case of Erample (zz)) Define p : X3 — [0,00) by
plx,y,z) = y+ 2z for x,y,2 € Xo Then p is a w-distance on Xg. To
verify this, for x,y,z,a € X note that p(a,a,z) + p(a,a,y) + pla,a,z) =
2(z+y+2z)+3a > y+2z = p(x,y, z) which gives (wl1); if {yn} € Xo converges
to y in (Xo,S) then (w2) holds, since nll)rr;o plx,z,yn) = nh_}rrgo(x + 2y,) =
v+ 2y = p(x,z,y) and finally for ¢ > 0 taking 6 = 5, we find that
pla,a,x) < 6, pla,a,y) < 3§ and p(a,a,z) <6 imply 2(x+y+z2)+3a <36 <¢
so that S(z,y,2) = |z +y — 22| < 2(x +y + 2) + 3a < &, proving (w3).

Remark 2.12. For a w-distance p on a S-metric space (X, S) observe that p(x,y, z) =
0 need not imply x = y = z. Therefore p(x,x,y) and p(y,y,x) need not be equal
for z,y € X. For instance, in Example |2.11|(ii), note that p(a,0,0) = 0 for all
acX.

Lemma 2.13. Let (X,S) is a S-metric space and p is a w-distance on X. Let
{zn} and {yn} be sequences in X, {an} and {B,} be sequences in [0,00) such that
lim o, = lim B, =0 and let z,y,z € X. Then we have the following:
n—oo n—00
(1) p(Tn,@n,y) < apn and p(Xp, Ty, 2) < By for everyn > 1 imply S(y,y,2) < e
and hence y = z.

(i) pn(Tn, Tn,yn) < an and p(zn,xn,2) < B, for every n > 1 imply that
S(Yn, Yn, 2) — 0 and hence y, — z as n — oo in (X, .5)

(i) p(@m, Tm, Tn) < ap for allm > n > 1 implies {x,} is a Cauchy sequence
in (X, 5)

(iv) p(y,y,xn) < ay for everyn > 1 implies {x,} is a Cauchy sequence in (X, S)

Proof. We first prove (ii). Let £ > 0 be given. From the definition of w-distance,
there exists a ¢ > 0 such that p(a, a,u) < 6 and p(a,a,v) < § imply S(u,u,v) < e.
Choose ng € N such that a,, < 6 and 3,, < ¢ for every n > ng.Then we have, for any
n > ng, P(Tn, Tn, Yn) < ap <0, p(Tn, Tn, 2) < Bn < 0, and hence S(yn, yn, 2) < ¢,
so that {y,} converges to z. It follows from (ii) that (i) holds. Let us now
prove (iii). Let € > 0 be given. As in the proof of (ii), choose 6 > 0 such
that p(@pn, Tn, Tm) < § for n,m > ng. In particular, p(Zny,Tn,,Tm) < § and
P(Xngs Tng, Ti) < 6 for m > k > ng which imply by (w3) that S(m, Tm,z) < €.
whenever m > k > ng. This implies that {z,} is a Cauchy sequence in (X,S).
Now prove (iv). For n > ng, we have p(y,y,z,) < d so that for m > n > ny,
Py, Y, Tm) < 0 and p(y,y,x,) < 6 and hence by (w3), S(zm,Tm,zn) < € for
m >n > ng giving {z,} is a Cauchy sequence in (X, 5). O

We now define the notion of the Fi,-contraction in a S-metric space and give
some examples.
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Definition 2.14. Let (X, S) be a S-metric space and p be a w-distance on X. Let
F be a mapping as defined in Definition[2. A mapping T : X — X is said to be
a F,-contraction if

(i) p(z,y,2) =0 = p(Tx,Ty,Tz) =0;
(ii) There exists a number 7 > 0 such that
T+ F(p(Tz, Ty, Tz)) < F(p(z,y,2)) forallz,y,z € X
with p(Tx, Ty, Tz) > 0.
If condition (ii) replace by

(ii") There exists a number T > 0 such that
T+ F(p(Tz, T, Ty)) < F(ap(x, z,y) + Bpla, x, Tx) +vp(y, y, Ty)

+ dpla, @, Ty) + Lp(y,y,Ta) ).
(2.1)

for all x;y € X with p(Tx, Tx,Ty) > 0, where « + B +~v+35 = 1,v# 1
and L > 0.

Then T is called an F-contraction of Hardy-Rogers-type.
Remark 2.15. Clearly, (i) of Definition implies that
p(Tx, Ty, Tz) < p(z,y, z) for all z,y,z € X with p(Txz,Ty,Tz) > 0.

Example 2.16. Define F: RT — R by F(a) =1Ina. Then F satisfies (F1), (F2)
and (F3) (for all k € (0,1)) of Definition[2.7] A mapping T : X — X satisfies

p(Tz, Ty, Tz) < Ap(,y,2), (2.2)
for all z,y,z € X and some X\ € [0,1) if and only if T is a Fy,-contraction.

Proof. Let us start with a mapping 7' : X — X satisfying . If A = 0 then
(i) and (ii) in Definition are satisfied. For 0 < A < 1, (i) is obvious and (ii)
is satisfied for 7 = ln%. Thus T is a Fy-contraction. Conversely, if T : X —
X is a Fy-contraction then (ii) of Definition implies that p(Tz, Ty, Tz) <
e Tp(x,y, z) for all z,y,z € X with p(Tz, Ty, Tz) > 0. Clearly it is satisfied even
for p(Tz, Ty, Tz) = 0. Thus p(Tx, Ty, Tz) < Ap(x,y, z) for all z,y,z € X, where
A=eTel0,1). 0

Example 2.17. (i) Consider G(a) =Ilna+ « for all « > 0. Then G satisfies
(F1), (F2) and (F3) of Definition[2.7, A mapping T : X — X is an G-
contraction if and only if

p(Tz, Ty, Tz)e!THTv T2 < Np(z,y, 2) (2.3)

forallz,y,z € X and A=e"7 €[0,1). Reason is similar to above example.
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(ii) Consider K(a) =1In(a?+a) for alla > 0. Then K satisfies (F1), (F2) and
(F3) of Definition . A mapping T : X — X is a Ky -contraction if and

only if
p(Tx, Ty, T2)(p(Tx, Ty, Tz) + 1)

p(zy,2)(p(x,y,2) + 1)
forallz,y,z€ X and A=¢e"" € [0,1).

< A (2.4)

Remark 2.18. Let F,G : RT — R be mappings satisfying (F1), (F2) and (F3)
of Definition together with F(a) < G(a) for all o > 0. Let H = G — F
be nondecreasing. Then every Fy-contraction T : X — X 1is a Gy-contraction.
Indeed for any x,y,z € X with p(Tz, Ty, Tz) > 0, we have,

T+ G(p(Tz, Ty, Tz)) = 7+ F(p(Tx,Ty,Tz)) + H(p(Tz, Ty, T=z))
F(p(a,y,2)) + H(p(x,y,2)) = G(p(x,y,2)).
Example 2.19. Let X = [0,00) and S(z,y,2) = |t —z|+|y—2z| for allz,y,z € X.
Then (X, S) is a complete S-metric space. Define p : X3 — R* by p(z,y,2) =

max{y, z} for xz,y,z € X Then p is a w-distance on X. Define a mapping T :
X=X by

IN

- 2 ofo<z<i,
xr =
0 ifz>1.

Since T is not continuous, therefore it is not a F'-contraction for any mapping F as
described in Definition[2.7] Now consider the mapping F' as described in Example
[2.16, We note that p(Tx, Ty, Tz) = max{Ty, Tz} > 0 if and only if 0 <y <1 or
0<z<1.

Now we have the following cases:

Tz, Ty, T 22 1
Forz,y,ze X with0 <y <1<z, wehcwep( 529, z):y/ < —.
Tx, Ty, T 2/2 1
Forx,y,z€ X with0< 2<1<y, wehavep( 1Y, Z):Z/ < -,
p(@,y, 2) y 2
Tx, Ty, T 2 1
Forxz,y,z€ X with0 <y <z <1, wehcwep( 529 Z):Z/ < -.
p(z,y,2) z T2
Tx, Ty, T 2/2 1
Forz,y,ze X with0< z<y<1, wehavep( il 1 Z):y/ < -.
p(z,y,z) y 2

So p satisfies (2.2) for all z,y,z € X and for A = % Thus T is a Fy,-contraction
which is not a F'-contraction for any F'.

3 Main results

Theorem 3.1. Let (X, S) be a complete S-metric space and p be a w-distance on
X. LetT : X — X be a Fy-contraction. Then T has a unique fized point z* in
X and for every xo € X, there is a sequence {T™xo} in X that converges to x*.
Further p(x*, z*,2*) = 0.
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Proof. For any two fixed points z* and y* of T in X with p(Tz*,Tz*, Ty*) > 0,
we have
T < F(p(a*,2",y")) — F(p(Tz*, Tz*,Ty")) = 0.

Thus p(Tx*, Tx*, Ty*) = p(x*,2*,y*) = 0 for any two fixed points z* and y* of T
in X. In particular, p(Tx*, Tz*, Ta*) = p(z*,z*,2*) = 0. By Lemmam (i), we
obtain z* = y* for any two fixed points x* and y* of T in X. Hence fixed point
x* of T if exists is unique and satisfies p(z*, 2*,2*) = 0.

Now we show the existence of a fixed point of T. Let xy € X be arbitrary.
Define a sequence {x,} in X by z, = Txz,_; for all n € N. If there exists k € N
with p(zk—1,2k—1, k) = 0 then, by Definition Mi), p(Txy_1,Txp_1,Tx)) =0,
that is, p(zk, zg, k+1) = 0. Therefore

P(Th—1,Th—1,Tht1) < 2p(Tk—1,Tk—1, k) + p(Tk, Tk, Th41) = 0.
By Lemmam(i) we have z;, = zr4+1. Inductively, we have x, = x4 for alli € N.
This implies T%(zx) = xy, for all i € N and in particular, for i = 1,T(x)) = zy.
Also lim T"(zg) = lim T*+(x) = lim T%(z) = 2. Thus we can take z* = z,
n—oo 71— 00 1— 00
in this case and settle the proof.
Now assume that p, = p(zp,Zn,Zny1) > 0 for all n € NU {0}. Then by

Definition ii) we get

F(pn) < F(pn—1) =7 < F(pn—2) =27 <--- < F(py) —nr. (3.1)
From (3.1)), we get nl;rrgo F(pn) = —oo. By (F2) of Definition we have
nl;rr;o pn = 0. (3.2)
Now, by (F3) of Definition we find that there exists k € (0, 1) such that
Jim py F(pn) = 0. (3:3)
By (3.1), we find that following holds for all n € N.
P (pn) = P (po) < pr(F(po) — n7) = prFpo) = —ppnT < 0. (3.4)
Letting n — oo in (3.4)) and using (3.2]) and (3.3]), we have
lim npf = 0. (3.5)
n—oo

By (3.5)), there exists a positive integer ng such that np% < 1 for all n > ny.
Consequently, we have

1

o0 o0
1
Since the series Z ik is convergent, therefore, by (3.6)), the series Z Pn is also
n=1 n=1
convergent. Now for any m > n we have

P(Tns Ty ) < Pyt + Ptz oo F P < a, (3.7)
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oo
where a;, = Z pi — 0 as n — oco. By Lemma [2.13| (iii), {z,} is a Cauchy
1=n—+1
sequence in X. By the completeness of X, there exists z* € X such that lim z, =

n—roo
a*. From (3.7)) and (w2) of Definition we get
(T, Tn, ") < ay. (3.8)

Now for p(Txp—1,T2pn—1,Tx*) > 0, we find from Remark and (3.8) that

(T X, TT™) = p(Txp—1, Txp—1,T2") < p(Tpn_1,Tn-1,2") < ap_1. (3.9)

Clearly (3.9) is satisfied even for p(Txp—1,Txn—1,T2*) = 0. Thus

(X, xn, TT*) < p_1; Yn €N (3.10)

From ({3.8)), (3.10) and Lemma (i), we get Tz* = z*. Also we have seen above

that 2* = lim z, = lim T™(x). O
n— 00 n— oo

Example 3.2. Consider the F,,-contraction T defined in Example[2.19 We note
that x = 0 is the unique fized point of T and p(0,0,0) = 0.

Since every contraction 7' : X — X satisfying [2.2] is an F,-contraction for
Fa) =Ina,a >0, Fla) < lna+ a = G(a) for all @ > 0 and G — F is non
decreasing, therefore, by Remark T is an G,-contraction and hence satisfies
(2.3). In the following example we shall present a mapping 7' : X — X which
is an G-contraction but not an F,,-contraction and hence satisfies but not
(2.2). Thus our theorem deals with the fixed points of a more general class of
contractions.

Example 3.3. Consider the sequence a, = w forneN. Let X ={a, :n €
N} and S(z,y,2) = |x — z| 4+ |y — 2| for all z,y,z € X. Then (X, S) is a complete
S-metric space. Define p: X* — R by p(z,y, z) = max{z,y} for all z,y,z € X.
Then p is a w-distance on X. Define a mapping T : X — X by Ta; = aq,
Ta, =an_1 forn>1. Take F as in Example and G as in Example (z)
T is not a F,,-contraction as

Tay, Tay, Tal) Up—1

tim 2 = lim - 1.
n—0oo p<a’n7a'n7a1) n—=0o0  Qp

But T is a Gy, -contraction. We first observe that p(Tay,, Tay,,Ta,.) > 0< Ta,, >
0 orTa,>0<m>2 orn>2. Now we have the following cases:

Form >2>n orm >mn> 2, we have

p(Tam, Tan, Tar) eP(Tam,Tan,Tar)=p(am,an,ar) _ Gm—1 edm—1=0m
p(am;an;ar) am

2
= (1—) el < elmm < 7L
m
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Forn>2>m orn>m> 2, we have

p(Tam, Tan, Tar) y(Ta, TanTar)plamanar) _ =1 0, 1-a,
p(amyanyar) an

2
(1—) el™ < el™m < 7L
n

Thus T is an Gy -contraction for 7 = 1. Clearly a; = 0 is a fixed point of T,
plai,a1,a1) = a1 =0 and for any a,, € X,

lim T"a,, = lim T""™a,, = lim T"(T™a,,) = lim T"a; = a
n—oo n—o0 n—oo n—oo

Theorem 3.4. Let (X,S) be a complete S-metric space and p be a w-distance on
X. LetT : X — X be a Fy-contraction of Hardy-Rogers-type, that is, there exists

a number T > 0 such that
T+ F(p(Tz, Tz, Ty)) < F(ap(x,x, y) + Bp(z,x, Tx) +vp(y,y, Ty) (3.11)
3.11
+0p(z,xz,Ty) + Lp(y,y, Tx)),

for all x,y € X with p(Tz, Tz, Ty) > 0, where a + +v+3) = 1,7y # 1 and
L >0. ThenT has a fized point. Moreover, if a +6 + L < 1, then the fixzed point
of T is unique.

Proof. Let xyp € X be arbitrary. Define a sequence {z,} in X by z, = Tz,
for all n € N. Now, let p, := p(xy, Tpn,Tpni1) for all n € NU{0}. If z,, # 211,
that is, Tx,,_1 # Tx, for all n € N, using the contractive condition with
r=x,1and y =2x, , we get

T+ F(pn) =7+ F(p(:z:n, T, xn+1)) =7+ F(p(T:En,lTa:n,l, Txn))

< F(ap(xn,l, Tn-1,Zn) + Bp(Tn-1,Tn-1,TTn_1) +vp(Tn, Tn, Tx,)
+0p(Tp—1,Tn—1,Txy) + Ld(xpn, T, Txn_l))

= F(ozp(xn,l, X1, Zn) + BP(Xp—1, Tn—1,Tn) + Yp(Tn, Tny Tpt1)
+0p(Tp-1,Tn—1,Tnt1) + Lp(xn, Ty, xn)>

= F(apn_l + Bpn—1+7pn +0p(xn—1,Tn-1, xn+1))

< F((a + B)pn—1+vpn + 6[2pn—1 + pn])

= F((a +B+28)pn—1+ (v + 5)pn).

Since F' is strictly increasing, we deduce

pn < (@+B+20)pp_1+(y+0)pn
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and hence
1—v—=08pn < (a+p+20)pp—1, forallneN.

From a4+ 8+ v+ 35 =1 and v # 1, we deduce that 1 —~v —§ > 0 and so

a+B+26

[ Pn—1= pn—1, forallmeN.

n

Consequently,
T+ F(pn) < F(pp-1), forallmneN.

This implies
Fpn) < Flpn-1) =7 < F(pn—2) =27 <--- < F(po) — nr.

In the same way to proof Theorem [3.1] we can conclude that T has a fixed point.
Now, we prove the uniqueness of the fixed point. Assume that z € X is another
fixed point of T', different from a*. This means that p(z*,z*,2z) > 0. Taking
xr = z* and y = z in the contractive condition , we have

T+ F(p(z*, 2%, 2)) = 7+ F(p(Tz*,Tz*,Tz))
< F(ozp(a;*,x*, 2) + Bp(a*, x*, Tx*) + vp(z, 2, T2)
+dp(a*, 2", Tz) + Ld(z, z, Tx*))
- F((a +6+ L)p(a*, 2", z)),
which is a contradiction, if @« +d + L < 1, and hence z* = z. O

As a first corollary of Theorem taking a =1and f=v=9§ =L =0, we
obtain the Wardowski’s result [I5] in a complete S-metric space with w-distance.
Further, putting a =6 = L =0 and 47 =1 and 3 # 0, we obtain the following
version of Kannan’s result [8] in a complete S-metric space with w-distance.

Corollary 3.5. Let (X,S) be a complete S-metric space and p be a w-distance
on X. Assume that there exist T : X — X be a F,,-contraction and 7 € RT such
that

7+ F(p(T2,Ta,Ty)) < F(Bpla,a,Ta) +p(y.y. Ty)),

forall z,y € X, Tx #+ Ty, where B+~ =1, v# 1. Then T has a unique fixed
point in X.

A version of the Chatterjea [3] fixed point theorem in a complete S-metric
space with w-distance is obtained from the Theorem puttinga=5=~v=0
and 6 = 1/2.
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Corollary 3.6. Let (X,S) be a complete S-metric space and p be a w-distance
on X. Assume that there exist T : X — X be a F,,-contraction and 7 € RT such
that

T+ F(p(Tm, Tz, Ty)) < F(%p(w, x,Ty) + Lp(y, y, ch))7

for all x,y € X, Tx # Ty. Then T has a unique fived point in X. If L < 1/2
then the fixed point of T is unique.

Finally, if we choose 6 = L = 0, we obtain a version of Reich [I1] type theorem.
in a complete S-metric space with w-distance.

Corollary 3.7. Let (X,S) be a complete S-metric space and p be a w-distance
on X. Assume that there exist T : X — X be a F,,-contraction and 7 € RT such
that

T+ F(p(Tﬂc, T, Ty)) < F(Otp(:& z,y) + Bp(z, z, Tx) +vp(y, v, Ty)),

forallz,y e X, Tx #Ty. where a++~v=1,7# 1. Then T has a unique fixed
point in X.
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