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Abstract : In this article, we propose an iterative algorithm for approximating
a common element of solution sets of equilibrium problems, the fixed point sets of
nonspreading mappings and the fixed point sets of k;-strictly pseudo contractive
mappings in Hilbert spaces. Furthermore, we prove that the proposed iterative
scheme converges strongly to a common element of those three sets. Finally, to
support our main results, the numerical examples are given.
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1 Introduction

Let C be a nonempty closed convex subset of a real Hilbert space H with
the inner product (-,-) and the norm || - ||. Throughout this article, the notations
Y =" and Y =" denote weak convergence and strong convergence, respectively.
The fixed point problem for the mapping T : C — H is to find « € C such that

x="Tx.

We denote the fixed point set of a mapping T by Fix(T).
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Definition 1.1. Let T : C — C be a mapping. Then

(i) a mapping T is called nonexpansive if

[Tz =Tyl <z =yl Yo,y € C;

(i) T is said to be k-strictly pseudo-contractive if there erists a constant x €
[0,1) such that

ITa — Tyl < lle — yl* + & |(I = T)a — (I = T)y|]* Va,y € . (L1)

Note that the class of k-strictly pseudo-contractions strictly includes the class
of nonexpansive mappings.
In 2008, Kohsaka and Takahashi [6] introduced the nonspreading mapping T in
Hilbert space H as follows:

2| Tz — Ty||*> < ||Tx — y|*> + ||z — Ty|* Va,y € C. (1.2)

In 2009, it is shown by Iemoto and Takahashi [9] that (1.2]) is equivalent to the
following equation.

Tz — Ty||* < ||z — y||* + 2(x — T2,y — Ty), for all z,y € C.

Many researcher proved the strong convergence theorem for nonspreading mapping
and some related mappings in Hilbert space, see for example [13], [14].
Let F: C x C' — R be bifunction. The classical equilibrium problem is to find
x € C such that
F(z,y) >0,Vy € C, (1.3)

which was first considered and investigated by Blum and Oettli [2] in 1994. The
set of solutions of is denoted by EP(F).

The equilibrium problem provides a general framework to study a wide class of
problems arising in economics, finance, network analysis, transportation, elasticity
and optimization. The theory of equilibrium problems has become an explosive
growth in theoretical advances and applications across all disciplines of pure and
applied sciences, see [2] 5] [7, &, 10, 11 [12].

In 2013, Suwannaut and Kangtunyakarn [I6] introduced the combination of
equilibrium problem which is to find x € C such that

N
> aiF; (x,y) > 0,¥y € C, (1.4)
=1

where F; : C x C — R be bifunctions and a; € (0,1) with Zivzl a; = 1, for every
t=1,2,...,N. The set of solution (|1.4) is denoted by

N N
EP <Z aF> = {m €eC: (Z aF> (z,y) > 0,Vy € c} :
i=1 =1
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If F; = F\Vi = 1,2,..., N, then the combination of equilibrium problem
becomes the classical equilibrium problem .

Motivated by the above research, we prove a strong convergence theorem for
finding a common element of a finite family of solution sets of equilibrium problems,
the set of common fixed points of a finite family of nonspreading mappings and
the set of common fixed points of a finite family of strictly pseudo contractive
mappings in Hilbert spaces. Finally, to support our main results and compare
the numerical results between the combination of equilibrium problem and the
classical equilibrium problem, a numerical example are given and illustrated.

2 Preliminaries

In this section, some well-known definitions and Lemmas are recalled. For
every x € H, there is a unique nearest point Pox in C such that

|z — Poz| < [z —yl,Vy € C.
Such an operator P is called the metric projection of H onto C.
Lemma 2.1 ([3]). For a given z € H and u € C,
u=Poze (u—z,v—u)>0,YveC.
Furthermore, Pc is a firmly nonexpansive mapping of H onto C and satisfies
|Pcx — Pey||* < (Pox — Pey, @ —y) Va,y € H.

Lemma 2.2 ([3]). Let H be a Hilbert space, let C be a nonempty closed convex
subset of H and let A be a mapping of C into H. Then, for A > 0,

Fix(Po(I — MA) =VI(C,A),
where P is the metric projection of H onto C.

Lemma 2.3 ([I]). Each Hilbert space H satisfies Opial’s condition, i.e., for any
sequence {x,} C H with x, — x, the inequality

limin |, — o] < liminf |z, — y]

holds for every y € H with y # x.

Lemma 2.4 ([4]). Let {s,} be a sequence of nonnegative real numbers satisfying
Snt1 < (1= ap)sp + 0,, V0 > 0,

where a,, s a sequence in (0,1) and {6,} is a sequence such that

(1) Zan = 00,
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6 oo
2) limsup — <0 or On| < 0.
(2) timsup 2 <0 0 >[5,

n=1

Then, lim s, =0.
n—oo

For solving the equilibrium problem for a bifunction F' : C' x C — R, let us
assume that F' and C satisfy the following conditions:
(A1) F(z,z) =0 for all z € C;
(A2) F is monotone, i.e., F(z,y) + F(y,z) <0 for all z,y € C;
(A3) For each z,y,z € C,

lting (tz4+ (1 —t)z,y) < F(z,y);

(A4) For each z € C,y — F(x,y) is convex and lower semicontinuous.
Lemma 2.5 ([I6]). Let C be a nonempty closed convex subset of a real Hilbert

space H. Fori = 1,2,... N, let F; : C x C — R be bifunctions satisfying
N

(A1) — (A4) with (| EP (F;) # 0. Then,
i=1

N N
EP (Z aF> = ﬂ EP (F,),
i=1 =1

N
where a; € (0,1) for everyi=1,2,...,N and Zai =1.
i=1

Lemma 2.6 ([2]). Let C be a nonempty closed convex subset of H and let F' be
a bifunction of C x C into R satisfying (A1)-(A4). Let r > 0 and x € H. Then,
there exists z € C' such that

1
F(z,y)+;<y—z7z—x>ZO,VyeC-

Lemma 2.7 ([5]). Assume that F : C x C — R satisfies (A1) — (A4). Forr >0,
define a mapping T, : H — C as follows:

1
T.(z) = {zEC:F(z,y)Jr;(yfz,z—zz:) >0,vy € C}

for all x € H. Then, the following hold:
(i) T, is single-valued;

(i) T, is firmly nonexpansive, i.e., for any x,y € H,

I (2) = T ()II* < (T(2) = Tr(y),x = y) 5
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(i11) Fix (T,) = EP(F);
(iv) EP(F) is closed and convez.

N
Remark 2.8 ([10]). From Lemma |2.5, it is easy to see that ZaiFi satisfies

i=1
(A1)-(A4). By using Lemma[2.7, we obtain

N N
Fix(T,) = EP (Z aF) = [ EP(F),
i=1 i=1

N
where a; € (0,1), for eachi=1,2,...,N, and Zaizl.

=1

Lemma 2.9 ([I7]). Let C be a nonempty closed convex subset of a real Hilbert
space H and let T : C' — C be a nonspreading mapping with Fiz(T) # 0. Then
there hold the following statement:

(i) Fiz(T)=VI(C,I-T);
(i1) For every u € C and v € Fiz(T),

| Pc(I —XI —T))u—v| < ||u—vl|, where X € (0,1).

Using the concept of properties of a strictly pseudo-contractive mapping in
Banach space, see [15], we can obtain the following results.

Lemma 2.10. Let C be a nonempty closed convex subset of a real Hilbert space
H and let T : C — C be a k-strictly pseudo-contractive mapping with Fix(T) # (.
Then there hold the following statement:

(i) Fiz(T) =VI(C,I~T);
(i1) For every u € C and v € Fizx(T),
|Pc(I —XI —T))u—v|| <|u—v|, where A € (0,1 — k).
Proof. To show (il), we let * € Fiz(T). Then z* = Tz*.
Since (y —2*, (I = T)z*) = 0,Yy € C, then we have z* € VI(C,I —T). This

follows that Fiz(T) CVI(C,I—T).
Next, claim that VI(C,I —T) C Fix(T). Let £ € VI(C,I —T). Then we get

(y—z,(I-T)x) >0,y € C. (2.1)
Let «* € Fiz(T). Since T is a strictly pseudo-contraction, we derive that

~ %112 ~ %12 ~ %112
|T% = Ta*||” < |2 — 2| + s |(I - T)2Z — (I = T)z"||
- 2 2
=z —2"|" + s (I - T)Z|". (2:2)
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Observe that

IT% - 2*|)* = |17 —2* — (I - D)3
= || — 2" —2(& — 2", ([ - T)&) + | - T)&|*.  (2.3)

By (2.1), (2.2) and (3.3), we deduce that
(1=r) (I - T)&|* <2(3 - 2*,(I - T)7) < 0.

This yields that Z € Fixz(T). Hence we get VI(C,T) C Fixz(T).
Therefore Fix(T) =VI(C,I-T).
To prove (), let € C,y € Fiz(T) and A € (0,1 — x). Since T is a x-strictly
pseudo-contractive mapping, we obtain
1T = Ty||* < |l —y|* + £ |(I = T)z — (I - T)y|*
= llz —y|* + & (I = T)z|*. (2.4)
Since
T2 =y = |lz —y — (I = T)z|*
=[lz —y* =2 (z —y, (I = T)x) + | (I = T)a||*,
by (3.4), we have
(=R I = Tl < 2w -y, (I - T)z) < 0. (2.5)
From and Lemma we get
y€ Fix(T)=VI(C,I-T)=Fix (Pc(I —XI-1T))). (2.6)
By nonexpansiveness of P, (3.5) and (3.6, we derive that
IPo(I = MI = T))x = y|* = ||[Po(I = XTI = T))a — Po(I = \(I = T))yl|*
< =AI=T))z— (I = AT -T))yl”
=z —y =M = T)e — (I - T)y)|I*
= |lz —y = A(I = T)a|?
= ||z —yl* = 2X (& =y, (I = T)x) + N [|(I = T)a||”
<lz —yl* = A1 = R) |(I = T)[|* + X (T = T)|®
= llz = yl* = M(1 = r) = M) (I = T)z|?
<z -yl

That is, |Pc(I — A(I —T))x —y|| < ||z — y||. Hence Pc(I — (I —T)) is a quasi-
nonexpansive mapping. U
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3 Strong convergence theorem

Theorem 3.1. Let C be a nonempty closed convex subset of a real Hilbert space H .
Fori=1,2,...,N, let F; : C x C — R be a bifunction satisfying (A1) — (A4). Let
{Tl}fil be a finite family of k;-strictly pseudo-contractive mappings of C into itself
and let {Si}ﬁvzl : C — C be a finite family of nonspreading mappings. Suppose
that © = ﬂf\[:l EP(F;)nN ﬂfil Fix (T;) N ﬂi\; Fix (S;) # 0. Let the sequences
{zn} and {u,} be generated by x1 € C and

N
1

Zain‘ (Unay) + — <y_un7un _xn> >0,y e C,
T

i=1

Y = BnPc (I = pin (I = 8i)) n + (1= Bn) Po (I = A (I = T;)) n,
Tyl = onf (xn) + (1 - an) Zf\il pizy:uvn €N,

(3.1)

where f : C — C is a contractive mapping with coefficient T and {an}, {Bn},
{pn}, {Pi} € (0,1), for every i = 1,2,...,N, {\,} € (0,1 — k), where k =

veey

the following conditions hold:

(i) >0° = o0 and lim, oo ay, = 0,

(ii) 0<n<pB,<pu<l,VneN,
(iii) 0 <w<r,<p<1,VneN,

(iv) 302y b < 00 and 3507 1 An < 00,

(v) 0<v<p,<é<1l,VneNandi=1,2,...,N withzzﬁzlpilzl,

(Vi) g |ntr = an| <00, 3007 4 Bt = Bal < 00,307 |rns1 — 1 < o0,
o0 o0 o0 L L
Zn:l [Ant1 — An| < o0, _Zn:l |41 — tn| < o0 and Zn:l |P2L+1 - P:z’ <
o0, for eachi=1,2,...,N.

Then the sequences {x,} and {u,} converge strongly to g = Pe f(q).

Proof. The proof will be divided into five steps.
Step 1. We show that {z,} is bounded.

Since Zf\il a; F; satisfies (A1)-(A4) and
al 1
ZaiFi (u'my) + " <y — Un, Un — xn> >0,Vy € C,
i=1 "
by Lemmaand Remark we have u,, = T, @, and Fiz(T, ) = ﬂf\;l EP (F;).

From Lemma and Lemma , we obtain

Fix(S;)=VI(C,I—-S,;)=Fiz(Pc (I —pu, (I —S;))), forevery i=1,2,... N.
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Similarly, by Lemma [2.2] and Lemma [2.10(fi), we also have
Fix (T;) =VI(C,I - T;) = Fix (Pc (I =\, (I = T3))), foralli=1,2,...,N.

Let z € ©. By nonexpansiveness of P and T, for each i = 1,2,..., N, we derive
that

o7, — =
=1Bn (P (I = pn (I = 8)) 2n — 2) + (1 = Bn) (Po (I = Ay (I = T)) un — 2)|
<BnllPo (I = pn (I = 8i))xn — 2| (1= Bn) [[Po (I = A (I = T3)) upn — 2||
<Bn Hxn - ZH (1- Bn) ”Trnajn - Z”
<|l@n — 2] - (3.2)

From (3.2)), it deduces that

N
lTni1 — 2| < [lan (f (2n) —2) + (1 — an) Z yn -z

N

<an||f (@n) =2l + (1 - an) Z (4 — 2)
=1

N
< an |1f (@n) = FE +an [1£(z) = 2]+ (1= an) D o [lyi = 2]

=1
S ant [lzn = 2) + an [|£(2) = 2] + (1 — an) [|2n — 2]|
(1 —an(l = 7)) lzn — 2] + an [[f(2) — 2|

< max{nxl A, )1 }

Using mathematical induction, this implies that {z,,} is bounded and so are {u, }
and {yn} forany i=1,2,...,N.

Step 2. Prove that lim,, o [|Zn+1 — zn|| = 0.

Using the same argument as [16], we get

1
lun — up_1]| < ||n — 2p_1f + — ‘Tn Tnot| ||un — zn]|. (3.3)
By (3.3), for each i = 1,2,..., N, we derive

llun, = vn—1 |
<Bn |Pc (I = pn (I =8i))xn — Po (I — pin—1 (I = 5;)) xp1]|
+|Bn = Br—1l [[Pc (I = pin—1 (I = 5;)) Tp—1]|
+ (A =Bu) |1Pc (I = A (I =T3)un — Po (I = An—1 (I = T3)) un—1]|
+ 180 = Bn-1l 1P (I = A1 (I = T3)) upn—1|



Convergence theorem for solving the combination of equilibrium problem... 85
B lln = @] + B 110 (1 = S) 2 — (I = 59) v |

+ lpn = a1 |(1 = i) -1l + 1Br — Br-1| | Pc (I — pn—1 (I = i) Tn—1]|

+ (1= Bn) lun = un—1ll + (1 = Bn) (A [(I = Ti) un — (I = Ti) un—1|

+ A = Xt (1 = Ti) wn—1ll + Bn = Bu-1l | Po (I = An1 (I = Ti)) up—1|

B llen = znall + pn (I = Si) @ — (I = i) Tn 1 |
+lpn = pna [ [T = Si) @nsll + |Bn = Bral [Po (I = pn—1 (I = 5i)) &na|

1
+ (1= Bn) | llTn — 2n—1ll + © 7 — Tt |un — 0|
+ M (L =T5) un — (I = T) un—1|| + [An = An—1| [[({ = T5) tn—1|

+ ‘/Bn - ﬁn—1| HPC (I - >\n—1 (I - Tz))”n—l”
<wn = p—1ll + pn (I = Si) 2 — (I = 85) Tpor || + |t — prn—1| | (L = Si) Tp—1]|

1
+1Bn = Bn-1l |Pc (I = pin—1 (I — Si)) Tn_1]|| + o 77 — 1] [[un — 20|

+ A (I =T)up — (I = Ti) un—1l| + [An = Aa—1| [[(1 = T5) wup—1|
+1Bn = Brnal [Po (I = A1 (I = T7)) up—1]| - (3.4)

By the definition of z,, and (3.4)), we have

lns1 — znl|
<ap Hf (In> - f (wn—l)” + |an - O‘n—1| ||f (mn—l)H

N . . N . . N . . N . .
(L= an) Dol =D by |+ A= an) D phvh 1 = > b Y
i=1 i=1 i=1 i=1

N
+ ‘an - anfl‘ Zp;—lyi—l
i=1
N . .
SanT||2n — Tnoa || + o — an—1| | [ (@n-1)] + ZP%—ly;L—l
i=1
N . . . N . . .
+ (L= an) Y ph v = v ||+ (= an) Y ok = ph | [lwi |
i=1

i=1

N

<ot ||z = zn-1|| + o — an—a| | [[f (@n-1)]| + Zpg—ly;—l
i=1

N
(1= an) D" ph | lon = @noall + pon T = S 2 = (I = Si) e
i=1
i = fn 1| (T = S sl + 1B = Bus | [Pe (T = pn1 (T = 8) |
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1
+ w 70— Tt lun — 2ol + A (|(1 = T3) wn, — (I = T;) un—1|

+ A = A1l 1T = T3) un 1|l + |8 — Bn-1| |Pc (I = An—y (I = T5)) Un71||}

N
+ (1= an) Y |oh = | yh |
=1

N
S =an(l=7)[zn — 2pall + lan — ana| | 1f (@n-1)l| + Z Pr—1Yn-1
=1
+tin Y P (I =S wn = (I = Si) nall + [pn — pin—1] > iy (1 = i) 1 |
i=1 i=1
al 1
+|Bn — Bn— 1|an 1Pc (I — pn—1 (I = 8;i)) Ty 1”Jr 7 — 1| |un — 0|
=1
S = Tt = (=Tl + P = Atl 6 I = Tyt
i=1 i=1
7 _

+18n = Baal D P 1Pe (I = Xy (I = T3)) | + > ol = £l | |1 |

=1 i=1
<= an(l=7)) lzn — 2p_1ll +2M oy — ap1| +2M pn + M [y, — pn—1]

N
M ) )
+2M |Bn = Bn-1| + " [T = rn—1| + MAn + M Ay — Ap—a| + MZ |p; - p;,—l‘ )
i=1
(3.5)
where M = maners { 1 (e |55, ohsi| 1T = S2) 2l I1Pe (7 = o (T = 8) 2l

lun — Znll, |(T = T) unll, || Pe (I — A (I = T3)) ]|, H} fori=1,2,...,N.
By ., applying Lemma and the condition (j . we obtain

|Znt1 — 2] = 0 as n — oo. (3.6)
Step 3. Claim that lim ||Po (I — pn(I = S;)) 2 — 25| =0, lim [|Pe (I = A\n(I = T3)) 2 — || =
n—00 B n—00
0 and lim |lu, —x,| =0, foralli=1,2,...,N.
n—oo

To prove this, let z € ©. Since u,, = T, x, and T, is firmly nonexpansive, we
have

2 — un”2 =Ty, 2 — Trnxn”Q
<A(Ty,z—Tp Tn,z2 — Tn)

1Ty = 21 + o = 217 = T2 — 2al?]
which follows that

i = 2% < llen = 211 = llun — ol (3.7)
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Next, from (3.7, we derive

2
(el
_ 2
N
5 S
<ap Hf (xn) - z|| + (1 - an) Zp; (y; - Z)

i=1
N
<an | (wn) = 2l* + (0 =) 3 gl [ — 2

i=1
N
<an |f (@a) = 2+ (1= an) [ D2 9t (Ba 1P (1 = i (= 1)) 2 — 211
=1

+ (1= B) 1P (T = Au (T = T2)) = 2 )|
<an|f (a) = 217 + (1 = ) (Bu ln = 21 + (1 = Ba) l1un = 2]*)
<anlf (@) = 2I* + (L= an) (Bn lon = 2I1° + (1 = B) (o — 21
~ flun = 22]1*))
San|f (@n) = 21 + llzn = 21> = (1 = @) (1 = B) llun — 2l
which implies that
(1= ) (1= ) [t — 2]

2 2 2
Slan =207 = l#n4r = 2l + an [|f (z0) = 2|

2
Slzn = 2ol Uz — 2l + lZnga — 21D 4 o [1f (2n) — 2[17. (3.8)

From ({3.6)) and the condition , , taking n — oo in (3.8)), we get
|un, — x| — 0 as n — oco. (3.9

Consider

_ 2
N

Hxn-i-l - ZH2 = ZP:L (y:z - Z) +an
i=1
2

>
S ) +2a< 3o ) )
SR

IN

i=1

(¥n)|| llznsr — ]

N
<> o llun =l + 20
i=1
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N
S i B 1P (1 = (1 = i) e = 211 + (1= Ba) | Pe (I = An (= T0)) up — 2|
= Bn (1= Ba) |1Pc (I = pn (I = Si))xn — Po (I = Ay (1 = T))un”

+20|\f (@n) = ) P (yn)|| lnss — 2]

M=

Il
—

B lln — 2 + (1 = Bn) llun — 2|
= Bn (1= Bn) |Pc (I = pin (I = Si)) 2y — Po (I = Ay (I*Ti))“nHQ

N
+ 2« f(xn) - ZP; (y;) ”anrl - Z”

<l = 2l* = Bn (1= Ba) 1Pe (T = pn (I = Si)) 0 = Po (I = A (I = T5)) ||

N
+2a |\ f (za) = > i (yh) || lwnss — =11

which yields that

B (1= B) 1Pe (I = o (I = Si)) @ — Po (I = N (I = T;)) unl|®

L

<lzn = zngall (lzn = 2l + 2041 = 2[]) + 20 )| lnss — 21l

From (3.6, the condition , we obtain

|1Po (I —pn(I—=25:)xn—Pe(I—=Xy(I-=T;))us|| >0asn—o0. (3.10)

Since

”mn — Pc (I — Hn (I - Sl)) an
<n = Tps1 | + |2ng1 — Po (I — pin (I = Si)) 2|
<o = Tngrl| + an || f (2n) = Po (I — pn (I = Si)) 2|

N
+<1_an)zp;Hy'fL_PC'(I_Mn(I_Si»mnH
i=1
= lzn = py1 |l + an | f (20) — Po (I = pn (I = 5;)) ]|
N
+ (1= o) (1—5y) sz’LHPC I =X (I =T5)) un — Po (I = pn (I = Si)) @al|,
=1

by (3.6), (3.10) and the condition , we have

|20 — Po (I — pn (I = S;)) 2p]l — 0 as n — oo, (3.11)
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for each i = 1,2,..., N. Similarly, we observe that

|2n — Po (I = An (I = T7)) unl|
<zn = gl + |Tns1 — Po (I = A (I = T7)) unl|
< ||-’En - xn-l—l“ +an Hf (xn) - PC (I - )\n (I - Tz)) un“
N
+ (1 =an) > o [y = Po (I =X (I = T2) u|
i=1
=20 — Tny1ll + an |f (20) = Po (I = A (I = T;)) un ||
N
+ (L= an)Bn Y i 1Pe (I = pn (I = S))@n — Po (I = A (I=T)) ]

i=1

From (3.6)), (3.10) and the condition , we obtain
|z, — Pc (I — A (I —T3)) up]| = 0 as n — oo, (3.12)

for any i = 1,2,..., N. Since

un | + |1Pe (I = A (I = T3)) un — Po (I = Ay (I = T5)) |
Unll + [(I = A (I = T3)) up — (I = A (I = T5)) 0|
Un | + [[un — 2o ll + An [[(I = T3) up — (I = T3) 2|,

by (3.9), (3-12), the condition (i), we deduce that
|xn — Po (I — Ay (I =T;)) x| — 0 as n — oo, (3.13)

for any i =1,2,...,N.
Step 4. Show that limsup,,_, .. (f(¢) — ¢, zn — q) <0, where ¢ = Po f(q).
To show this, take a subsequence {x,, } of {z,} such that

limsup <f(Q) —q,Tpn — q> = lim <f(Q) —4,Tn;, — q> .

n—oo k—o0

Since {z,} is bounded, then we can assume that x,, — 0 as k — oo. From (3.9)),
we also obtain u,, — 6 as k — oco.
Since wuy,, — 6 as k — oo and (3.9)), applying the same method as in [16], we get

N
0e()EP(F). (3.14)

i=1

Assume 0 ¢ ﬂf\ll Fix (S;), thatis, 0 ¢ Fixz (S;),Vi =1,2,...,N. Since Fiz (S;) =
Fix (Po (I — pin,, (I — S;))), foreveryi=1,2,..., N, then we get 0 # P (I — pip, (I —5;)) 0,
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for any i = 1,2,..., N. By nonexpansiveness of Pc, (3.11)), the condition and
the Opial’s condition, we have

lim inf ||z, — 0| <liminf |2, — Po (I — pn, (I —5S:))0||
k—o00 k—oo
<liminf [ 2n, — Po (I — pin,, (I = S3)) Tn, ||
k—oo
1P (= i (1 = 83)) @, = Por (I = pin, (1 = 5:)) 6]
<liminf [||acnk — Po (I = pin, (I = S;)) . ||
k— o0

o, = 01l + ang (T = S5) @, — (1 = 5:) 6]

This is a contradiction. Thus we obtain

N

0 € () Fix(S). (3.15)

i=1
Similarly, let 6 ¢ ﬂfv;l Fix (T;), that is, 0 ¢ Fixz (T3),Vi = 1,2,... ,N. Because
Fix (T;) = Fir (Pc (I — A, (I = T;))), for each i = 1,2,...,N, we have 0 #
Po(I—M\,, (I—=T;))0, for all i = 1,2,...,N. Using nonexpansiveness of P,
(3-13)), the condition and the Opial’s condition, we have

liminf ||z, — 0| <liminf ||z, — Poc (I — An, (I = T3))0||
k—o0 k—o0

<liminf [ |n, — Po (I = Any (I —T3)) an, |

k—o0

1P (I = Ay (T = T0)) 2, = Po (I = Any, (1= T)) 0] |
<timinf [ |lzn, — Po (I = A, (I = T5)) @, |
k— o0

o ln, = Ol + Any (I = Ti) 2, — (= T3) 6] |
=l|zn, — 0.

This is a contradiction. Thus we obtain

N
0 € (| Fiz (T;). (3.16)
i=1

From ({3.14), (3.15)) and (3.16)), it yields that
0 e 0. (3.17)
Since z,, — 0 as k — oo, (3.17) and Lemma thus we get

hfff;ip (f(@) =20 —q) = lim (f(q) = ¢, 20, —a) = (f(g) = 4,0 —q) <O
(3.18)
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Step 5. Finally, Prove that the sequence {z,} converges strongly to ¢ = Pg f(q).
Observe that

Znt1 — q||2
2

= ||an (f (zn) — @) + 1_04n yn_q

v ||M2‘

N

<(1—on)® | Yok (v —a)|| + 200 (f (Tn) = @, Znt1 — q)
=1

N
< —an)® ok |lh — al|* + 20 (f (@) = F(@), ns1 — )
=1

+ 200 (f(q) — ¢, Tnt1 — q)
N
< (=) Y ph [BullPe (I = un (I = 83)) w0 — g

(1= Ba) 1P (1= Xa (1 = T)) i = al]* | + 200 I (@) = £(@)| 001 —
+ 200 (f(q) — ¢, Tnt1 — q)
< (1= an)® [Bu l2n = all* + (1 = Ba) llun = al* | + 2007 20 = gll [ 2ns1 =gl
+ 200 (f(q) = ¢ Tnt1 — @)
< (1= )’ on = gl + an | l2n = al* + lenss — gl |
+ 200 (f(@) = ¢ Tnt1 — q) -
This implies that

.
—

[
2
ol T g 22 (o) - gt — )
~ (1= 2D o, — o a2 (10— gt — )

+ i (f(@) — ¢ znp1 —q>]

Using the condition (f]), (3.18) and Lemma [2.2] we can conclude that the sequence
{z,} converges strongly to ¢ = Pof(q). By (3.9), we also obtain {u,} converges

strongly to ¢ = Pe f(q). This completes the proof. O

The following corollary is a direct consequence of Theorem
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Corollary 3.2. Let C' be a nonempty closed convex subset of a real Hilbert space

H. Let F : C x C — R be a bifunction satisfying (Al) — (A4). Let {Tl}f\il
be a finite family of k;-strictly pseudo-contractive mappings of C into itself and

let {Si}f;l : C = C be a finite family of nonspreading mappings. Suppose that
© = EP(F)N ﬂf\le Fix (T;) N ﬂfvzl Fix (S;) # 0. Let the sequences {x,} and
{un} be generated by x4 € C and

1
F(“nvy)+7<y_unaun_wn> >0,Vy € C,

Tn
yfm:ﬂnPC(I*Un(I*Si))xnf(l*ﬂn)PC([*/\n(I*Ti))um

Tny1 = anf (xn) + (1 - an) Zzlil p;y:mvn €N,

(3.19)
where f 1 C — C is a contractive mapping with coefficient 7 and {a,}, {6n},
{ua}, {pL} C (0,1), for every i = 1,2,...,N, {\,} € (0,1 — k), where k =
max;_; o N Ki- Suppose the following conditions hold:

(i) >0 an =00 and lim, oo oy, =0,

(i) 0<n<pB,<pu<1l,VneN,

(iti)) 0 <w<r,<p<1,VneN,

(iv) D07 pn <00 and Yo7 A, < 00,

() O<v<pi<&é<lV¥neNandi=12,...,N with) g =1,

(vi) ZZO:1 |1 — a| < 0072211 |Bni1 — Bul < OO?ZZO:l |71 — 7| < 00,
o0 oo oo 7 7
Zn:1 [Ang1 — An| < o0, Zn=1 ltns1 — pn| < 00 and Zn=1 |pzn+1 - p;| <
oo, for eachi=1,2,...,N.

Then the sequences {x,} and {u,} converge strongly to ¢ = Po f(q).

Proof. Put F; = F,¥i=1,2,...,N. Then we can obtain the desired result. O

4 A Numerical Example

In this section, we give a numerical example to support our main theorem.
According to numerical results, we have that the iteration algorithm for the com-
bination of equilibrium problem converges faster than the iterative algorithm
for the classical equilibrium problem .

Example 4.1. Let R be the space of real numbers. For every i =1,2,..., N, let
fR—>Rand F; : R xR — R be defined by

T
:1 —
fz —|—4,

Fi(x,y) =1 (—53:2 +xy +4y?), for all z,y € R.
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Foreachi=1,2,...,N,let S; :R—=R and T; : R — R be defined by

S;x = —M, for allz € R
1+ 1

E(E _ x, fo € (_00?0)7

Z. ifxel0,00).

_ 1 _ _5 _ _3 _ 1 _ 1 _ 2nt1 2 _
Let o = 5o, Bn = 70450 ™n = 7ndgs Hn = 385 An = gz and py, = 555, 0, =
g;ﬁg, p3 = 5’;148, for every n € N. Put a; = & + wax, for everyi=1,2,... N.
Solution. For every i =1,2,..., N, it is obvious to see that T; is a nonspreading

mapping and
{z}, ifz e (-00,0),

Fiz (T;) = {{0}, if x € [0,00).

Moreover, S; is a H_—Q -strictly pseudo-contractive mapping, for each 1,2,...,N

wzthﬂl LV Fiz (8;) = {0}. Since a; = & + xgw, fori=1,2,...,N, we obtain

XN: ZN: 5 1
a;Fy(z,y) = (Z + ) i (=52 + zy + 4y?)
= — 6 N6N

=

o (=52 +zy + 4y°) ,

where o = Zfil (& + 7w ) i- It is easy to see that val a; F; satisfies all con-

ditions in Theorem H and 1 € EP(ZZ 10 F;) = ﬂz L EP (F;). If we choose
x1 € [0,00), then we have

N
ﬂ Fiz (T ﬂ Fiz (8 ﬂ EP (F;) = {0}.

By the definition of F, we have

| /\

Tn

al 1
Z un7 )+7< unaun*xn>

o (—5;];2 +xy + 4y2) + 7 (y — un) (un — xn)
n

A

1
n (—5:22 +zy + 4y2) + — (y - Un) (Un - $n)

n

= 40ry? + (CUpTn + Uy — T0) Y + Un Ty — ui — 5auirn.

Let G(y) = 40rp,y? + (0UpTy + Up — ) Y + Un®y, — u2 — bouZr,. Then G(y) is
a quadratic function of y with coefficient a = 4or,, b = oupry + Uy — Ty, and
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€= UpT, —u2 — boulr,. Determine the discriminant A of G as follows
A =b? — dac
= (Uunrn + Uy — mn)z —4 (40rn) (unmn —u? — 5ou? Tn)
=u, — 2Uupx, + x + 180rn — 18orpunTy + 8102r 2 i
= (un — Ty + 901"nun)2 )
We know that G(y) > 0,Vy € R. If it has most one solution in R, then A <0, so

we obtain
N

Up = m, ’U}he’re g = FZI (674 + WV) 7. (41)

From , the iterative method becomes

f1h= g s (1= i) (=3 0= 7) (8.

% (1 + %) + (1 - %) Ei:l pnymvn €N,

Tn1 =
(4.2)
Furthermore, if we put F; = F.¥i=1,2,..., N, where the bifunction F': RxR —

R is defined by F(x,y) = =522 + xy + 4y?, for all z,y € R., then we obtain the
following iterative scheme

{ Yn = 7316 (I_ 53 (I—S-))x (1 - 7n+6) (I-5(I-Ty) (Jé}n),

Tp+1 =

(4.3)

For the iterative scheme (ﬂ) and (4.5 (-) Tablel 1| and Figure show the numerical
results of sequences {u,}, and {x,} with x1 =3 and n =N =60, N = 3.

-—=t ===,

u and

=5

a
o i
B it il
"r
a
o i
P

&
. B
in
===z

1] @ 1] 40 50 ) ] o Frl ] 40 50 L=
r )

(a) the iterative algorithm (3.1) (b) the iterative algorithm (3.15)

Figure 1: The convergence comparison of {u,} and {z,} with initial value

x1 = 3 for the iterative algorithm (3.1) and (3.15)).
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the iterative algorithm 1) the iterative algorithm (|3.19))

n U, Tn U T

1 0.707547 3.000000 0.810811 3.000000
2 -0.252068 -1.212893 -0.281186 -1.174365
3 -0.051259 -0.258859 -0.060812 -0.266053
4 -0.015262 -0.079069 -0.019155 -0.085886
5 -0.002439 -0.012836 -0.003880 -0.017665
30 0.003387 0.018841 0.004084 0.019617
56  0.001757 0.009829 0.002114 0.010208
57 0.001725 0.009651 0.002076 0.010023
58  0.001694 0.009479 0.002039 0.009844
59 0.001664 0.009313 0.002003 0.009671
60 0.001636 0.009153 0.001968 0.009504

Table 1: The values of {u,} and {x,} with an initial value z; = 3 for the

iterative algorithm (3.1 and (3.19).

Remark 4.2. From the above numerical results, we can conclude that

(i) For the iterative algorithm (3.1), Table[1] shows that the sequences {u,} and
{zn} converge to {0} = ﬂfvzl Fix (T;) N ﬂf\il Fix (S;) N ﬂfvzl EP (F;) and
the convergence of {un}, {vn}, {yn} and {z,} can be guaranteed by Theorem
31

(ii) For the iterative algorithm (3.15), Table[] shows that the sequences {uy} and
{zn} converge to {0} = ﬂf\il Fiz (Ti)ﬂﬂfvzl Fix (S;)NEP(F) and Corollary
guarantees the convergence of {u,} and {z,}.

(iii) From Table we have that the iterative method for the combination of equi-

librium problem converges faster than the that the iterative method for
the classical equilibrium problem .
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