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Abstract : We study a problem on improving the robustness of airline schedules.
A schedule is robust if the schedule can minimize the effect of flight delays in day-
to-day operations. We improve the robustness of flight schedules by re-timing
departure time of flights. We derive stochastic optimization models to change
departure times of flights in which the feasibility of both aircraft and crew con-
nections are maintained. We solve the models using flight delay simulation. The
computational results show that the re-timing flights can improve the robustness
of aircraft routings significantly.
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1 Introduction

Airline schedules are operated under some uncertain conditions. Some factors
such as bad weather conditions or high aircraft traffic often disrupt the schedule
operations, and these may cause flight delays or cancellations. Any flight delay
or flight cancelation is not only bad for passenger satisfaction, but also it will
increase the airline operational costs. For example, the airlines might pay extra
money for fuel or extra salary for their crews; the passengers should be gave delay
compensation during long waiting for their flights.

To reduce operational cost, airlines need to have proactive strategies by plan-
ning robust schedules. Robust schedules are the schedules that are insensitive to
yield delay propagations, or easy (or cheap) to recover. Hence, a robust schedules
can minimize operational costs while increasing on-time performance of the airline.

In airline schedules, each aircraft or crew must serve a sequences of flight. In
these sequences, we find slacks between two consecutive flights. Slack is defined
as the additional time beyond the time required for each aircraft connection, crew
connection, or passenger connection in the schedule [8]. An insufficient slack will
increase the probability of propagated delay, while an unnecessary slack might
reduce aircraft utility and crew productivity. Thus, we can have a robust schedule
if we can allocate optimal slacks into the schedule. We mean by the optimal slacks
as the slacks with the minimum lengths while can keep a certain level of schedule
of robustness.

Recently, some authors have shown that slacks in schedule connections can be
distributed by re-timing departure time of flights or arrival time of flights. Lan et
al. [7] constructed a re-timing model to obtain robust aircraft routes which mini-
mized the expectation of total propagated delays, where the model might construct
new aircraft routing due to re-timing. The other model was also developed in [7] to
select departure time of flights that minimized the expected number of disrupted
passengers, while maintained the current fleeting, aircraft routes, and passenger
itineraries. The re-timing models have been considered to improve the robustness
of the integrated schedules. Lee [4] introduced a multi-objective model to revise
departure time of flights without change the fleet assignment, aircraft routings,
and crew pairings. The same approach is used by [2] for simultaneous re-timing
flights and aircraft re-routing, subject to fixed fleet assignment. Other research in
this area can be found in [5, 6].

In [1], they derived deterministic mix-integer programming models to re-time
departure time of flights. The models are constructed to reduce delay propagations
due to aircrafts and cockpit crews. To capture delay propagation from multiple
resources, they use propagation tree. But the propagation tree still can not ac-
curately take into account simultaneous delay from different propagation trees,
[8]. In [8], slacks were re-allocated by re-timing both departure time and arrival
time of flights. The re-timing model was build to minimize total arrival delay of
flights in aircraft routings according some delay scenarios. A delay scenario was
represented by one-day operation in historical data. Then, the re-timing model is
solved under a number of delay scenarios. But this approach will work well if each
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delay scenario is equally like. In this paper, we derive stochastic programming
models for re-timing departure times of flights in which we preserve the connect-
ing flights in aircraft routings and crew pairings, since the aircraft routings and
crew pairings in the original schedule are one which minimize the total planned
cost. But unlike the models in [1] and [8] which just consider propagated delays
along aircraft routings, our re-timing model consider propagated delay along air-
craft routings and crew pairings2 as well. By considering more factors that can
cause propagated delays, it is hopped that we have more realistic models.

We propose a solution technique by assuming that we have a finite set of sce-
narios. In each scenario, we generate primary delays randomly according primary
delay distributions in departure airports, which inferred from the historical delay
data. This delay generation yields a deterministic optimization model which can
be solved with any deterministic solution method. We perform a large number of
the delay generations so that we can obtain a large number solutions. From these
solutions, we choose the median of the solutions as the optimal solution.

This paper is written as follows. We discuss flight departure model in Section
2. A model to re-time departure times of flight is presented in Section 3. A
re-timing model with combined propagated delay is discussed in Section 4. The
solution technique for solving our models is discussed in Section 5. We present the
data, and the computational result in Section 6. We conclude and focus on our
future work in the last section.

2 Flight Delay Model

In this section we derive mathematical expressions of departure delay and
propagated delay. A model we derive here is based on a flight delay decomposition
defined by Lan et al. (2006) [7]. Lan et al. (2006) stated that a flight delay can
be decomposed into two components, that are

1. Propagated delay
Flight delay caused by waiting for incoming aircraft.

2. Primary delay
Flight delay caused by other reasons.

Let depi and depi be the planned departure time of flight fi and the actual
departure time of flight fi, respectively.

Definition 2.1. The departure delay of flight fi is defined as

ddi = depi − depi.

If di and pmi are the propagated delay of flight fi and the primary departure delay
of flight fi, respectively, the departure delay of flight fi is expressed as

ddi = di + pmi. (2.1)

2A crew pairing is a sequence of flights starting and ending ending at the cockpit crew
base
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Let F be a set of flights. Let R be a set of aircraft routings, where each
r ∈ R is defined by r = (f1, ..., fi, fj , ..., fn), fi ∈ F , i = 1, ..., n. A set of aircraft
connections, denoted by A, is a set all (fi, fj) ∈ r, r ∈ R, where fi, fj ∈ F .

Definition 2.2. Slack between two consecutive flights fi and fj in A, denoted by
sij, is defined by

si,j = ci,j −mi,j ,

where ci,j is the connecting time between flights fi and fj, and mi,j is the minimum
required connecting time between flights fi and fj.

Assume that there is no delay in the air. The following proposition shows the
relationship between departure delay and propagated delay in an aircraft routing
r.

Proposition 2.1. The departure delay of flight fi in routing r is given by

dd1 = pm1, ddi = pmi + max{di + pmi − si−1,i, 0}, (2.2)

for i = 2, ..., n.

Proof. It is clear that we do not have propagated delay for the first flight in r. So,
we have dd1 = pm1. For flight fi, i = 2,...,n, we have

di = max{adi−1 − si−1,i, 0},

where adi is arrival delay of flight fi−1. Since we assume that there is no delay in
the air, we have adi = ddi. Hence, we get

dj = max{di + pmi − sij , 0}, (2.3)

for i = 2, ..., n. Use Equation (2.1) to complete the proof.

3 The Model

In day-to-day operation, each aircraft or crew serves a sequence of flights. If
there is not enough slack between two consecutive flights in that sequence, one
flight delay often results in delay propagations for downstream flights. But the
large size of slack can decrease aircraft utility or crew productivity. It means that
slack should be allocated optimally.

Our modeling approach is to reduce propagated delay by re-allocating slack
in aircraft connections. We re-distribute slack by re-timing departure times of
flights. To protect passenger prediction in flight schedule generation, we limit the
departure changes in small time windows. Figure 1 illustrates an example of re-
timing flights and their effect on propagated delay. Assume that flight a, flight
b, and flight c in the same routing. Suppose, based on historical data, flight a is
often delayed for 25 minutes. If ma,b = mb,c = 25, sa,b = 5 and sb,c = 10 minutes,
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then flight b will be delayed for 20 minutes, and causing flight c to be delayed.
But, if flight a is moved 15 minutes earlier and flight b is moved 5 minutes later,
we have new slack for connecting flight a and flight b, s′a,b = 25, and new slack for
connecting flight b and flight c, s′a,b = 5. This new slack for connecting flight a
and flight b will omit propagated delay to flight b and flight c.

Figure 1: An example of re-timing flights.

Since delays propagate along the aircraft routes, we propose flight re-timing
models for moving departure times of flights in aircraft routing. The model is
derived to allocated slack in important connections that are needed, so that the
expectation of total propagated delay is minimum. We assume that: We re-time
departure times of flights in small time windows, as long as the required minimum
connecting time can be fulfilled; The flight times of flights before and after re-
timing are not changed. So, the change of arrival time of each flight is the same
with the change of the departure time; The fleet assignments and aircraft routings
are fixed; We maintain the feasibility of connecting aircraft assignments.

We define sets, parameters, and variables of re-timing models as follow:
Sets:
F : a set of flights
A : a set of aircraft connections
A0 : a set of the first flights in each aircraft connection
W : a set of delay scenarios

Parameters:
sij : slack between flight fi and flight fj in the original schedule,

(fi, fj) ∈ A
pdωfj : primary delay of flight fj ∈ F for given delay scenario ω ∈ W
lj : the limit of departure time of flight fj ∈ F to be changed earlier
uj : the limit of departure time of flight fj ∈ F to be changed later

Variables:
xj : the change of departure time of fj ∈ F
s′i,j : the new slack of between flight fi and fj , (fi, fj) ∈ A
dωj : propagated delay to flight fj ∈ F for given delay scenario ω ∈ W
ddωj : departure delay of flight fj ∈ F for given delay scenario ω ∈ W

We set the variable xj by a negative value if the departure time of flight fj is
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moved earlier, and we takes a positive value for xj if the departure time of flight
fj is moved later. The re-timing model for flights in aircraft routing is formulated
as the following model.

Minimize:

E

∑
f∈F

df

 (3.1)

Subject to:

s′i,j = si,j − xi + xj ∀(fi, fj) ∈ A, (3.2)

dωj ≥ ddωi − s′i,j ∀(fi, fj) ∈ A,∀ω ∈ W, (3.3)

dωj = 0 ∀fj ∈ A0,∀ω ∈ W, (3.4)

ddωj = dωj + pmω
j ∀fj ∈ F,∀ω ∈ W, (3.5)

lj ≤ xj ≤ uj ∀fj ∈ F, (3.6)

xj ∈ Z, ∀fj ∈ F, (3.7)

s′i,j ≥ 0 ∀(fi, fj) ∈ A, (3.8)

ddωj , d
ω
j ≥ 0 ∀fj ∈ F,∀ω ∈ W. (3.9)

The objective function (3.1) is to minimize the total expected propagated delay
over all flights. Constrain (3.2) calculates the new slack between two flights after
moving the departure times. Constrain (3.3) and (3.4) calculate the propagated
delay for each flight connection. Constrain (3.5) determines total departure delay
for each flight. We limit the change of departure time of each flight in constrain
(3.6). Constrain (3.7) states that the change of the departure time in integer value.
Constrain (3.8) and (3.9) ensure that all variables are non negative values.

The optimization model above almost similar with flight re-timing model pro-
posed by Chiraphadhanakul and Bernhart (2013) [8]. The main difference are
that our model consider total departure delay and only re-time departure times of
flights. But, Chiraphadhanakul and Bernhart’s model consider total arrival delay
and re-time both departure times and arrival times of flights. Chiraphadhanakul
and Bernhart’model did not yet consider propagated delay caused by crew late. In
reality, delayed flights are often caused by waiting for crews. In the next section,
we will extend the above model by consedering combined propagated delays along
aircraft routes and crew pairings.

4 The Re-timing Model with Combined Propa-
gated Delays

Let C be a set of crew connections. Let S and T be a set of first flights in
A and C, respectively. If (fi, fj) ∈ A and (fk, fj) ∈ C, by Proposition 2.1, the
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propagated delay of flight fj caused by flight fi along a path in aircraft connection
is calculated as

dAj = max{dAi + pmi − si,j , 0}, fj ∈ F, fj 6∈ S; and dAfj = 0, fj ∈ S.

By using the same formula, we also can calculate propagated delay of flight fj
caused by flight fk along a path in crew connection as

dCj = max{dCk + pmk − sk,j , 0}, fj ∈ F, fj 6∈ T ; and dRj = 0, j ∈ T.

Now, We determine combined propagated delay of flight j as

dj = max{dAi + pmi − si,j , dCk + pmk − sk,j , 0}.

Flight re-timing model with combined propagated delay is modeled as follow.

Minimize:

E

∑
f∈F

df

 (4.1)

Subject to:

s′i,j = si,j − xi + xj ∀(fi, fj) ∈ A, (4.2)

dA,ω
j ≥ ddωi − s′i,j ∀fj ∈ F,∀fj /∈ A0,∀(fi, fj) ∈ A,∀ω ∈ W, (4.3)

dA,ω
j = 0 ∀fj ∈ A0,∀ω ∈ W, (4.4)

dC,ω
j ≥ ddωk − s′k,j ∀fj ∈ F,∀fj /∈ C0,∀(fk, fj) ∈ C,∀ω ∈ W, (4.5)

dC,ω
j = 0 ∀fj ∈ C0,∀ω ∈ W, (4.6)

dωj = max{dA,ω
j , dC,ω

j } ∀fj ∈ F,∀ω ∈ W, (4.7)

ddωj ≥ dωj + pmω
j ∀fj ∈ F,∀ω ∈ W, (4.8)

xj = 0 ∀fj ∈ F0, (4.9)

xj ∈ Z ∀fj ∈ F, (4.10)

lj ≤ xj ≤ uj ∀fj ∈ F, (4.11)

s′i,j ≥ 0 ∀(fi, fj) ∈ C,A (4.12)

ddωj , d
ω
j , d

A,ω
j , dC,ω

j ≥ 0 ∀fj ∈ F,∀ω ∈ W. (4.13)

The objective function (4.1) is to minimize the total expected propagated delay
over all flights. Constrain (4.2) calculates the new slack between two flights after
moving the departure times. Constrain (4.3) and (4.4) calculate the propagated
delay for each flight connection in each aircraft routing. Constrain (4.5) and (4.6)
calculate the propagated delay for each flight connection in each crew pairing. The
combined propagated delay is given by Constrain (4.7). Constrain (4.8) determines
total departure delay for each flight. Constrain (4.9) ensures that the duty period
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of each crew before and after re-timing are not changed. Constrain (4.10) states
that the change of the departure times in integer values. We limit the change
of departure times of each flight in constrain (4.11). Constrain (4.12) and (4.13)
restrict all variables in non negative values.

5 Solution Technique

Our re-timing models are stochastic discrete optimization models. We solve
the re-timing models by performing flight delay simulations. Given primary delay
distributions of flight depart from airports and a finite number of scenarios. In
each scenario, we perform the following steps.

1. Generate primary delays of each flight randomly according primary delay
distributions in departure airports.

2. Consider the re-timing models as the deterministic models, and then solve
the models.

To obtain optimal solutions of the re-timing models, we choose the median of the
solution from all scenarios. The objective function we choose is

E

∑
f∈F

df

 =
∑
f∈F

∑
ω∈W

pfE(dωj ),

where pf is probability of flight f to be delayed.
Let B = (bij) be a coefficient matrix corresponding to constrains (3.2)-(3.5).

Proposition 5.1. The solution of (3.1)-(3.9) are integer, given all integer con-
strain parameters.

Proof. Consider an aircraft routing r = (f1, ..., fn) where fk ∈ F for k = 1, ..., n
and (f(k−1), fk) ∈ A for k = 2, ..., n. The departure delay of flight fk ∈ r is given
by:

ddωk = dωk + pmω
k

≥ ddω(k−1) − s
′
(k−1),k + pmω

k

= ddω(k−1) − (s(k−1),k − x(k−1) + xk) + pmω
k

= dω(k−1) + pmω
(k−1) − s(k−1),k + x(k−1) − xk + pmω

k

≥ ddω(k−2) − s
′
(k−2),(k−1) + pmω

(k−1) − s(k−1),k + x(k−1) − xk + pmω
k

≥ ddω(k−2) − (s(k−2),(k−1) − x(k−2) + x(k−1)) + pmω
(k−1) − s(k−1),k

+x(k−1) − xk) + pmω
k

= ddω(k−2) + x(k−2) − xk −
∑k

j=k−1 s(j−1),j +
∑k

j=k−1 pm
ω
j

...

≥ ddω1 + x1 − xk −
∑k

j=2 s(j−1),j +
∑k

j=2 pm
ω
j

= pmω
1 + x1 − xk −

∑k
j=2 s(j−1),j +

∑k
j=2 pm

ω
j

= x1 − xk −
∑k

j=2 s(j−1),j +
∑k

j=1 pm
ω
j

Then, for each fk ∈ r
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ddωk − x1 + xk ≥
k∑

j=1

pmω
j −

k∑
j=2

s(j−1),j . (5.1)

Equation 5.1 shows that Constrain (3.1)-(3.9) can be reduced by Equation (5.1).
From Equation (5.1), we know that all entries B are -1,0, or +1.

For any collection of column B = (bij), let C1 be a set of columns associated
with the decision variable ddωi , and C2 be a set of columns associated with the
decision variable xi. For each row j of C1 and C2,∑

j∈C1

aij = 1 and
∑
j∈C2

aij = 0.

Therefore
|
∑
j∈C1

aij −
∑
j∈C2

aij | = 1,∀i.

According Ghouila-Houri, B is totally unimodular matrix. Hoffman and Kruskal’
Theorem stated that if B be a totally unimodular matrix and let b, l, and u be
integral vectors, then polyhedron {x|Ax ≤ b, l ≤ x ≤ u} is integral. The Theorem
complete our proof.

Property 5.1 shows the technique to solve our model efficiently. Since the
coefficient matrix corresponding to constrains (5.1) is totally unimodular, and
constrains (3.6) - (3.9) are bound constrains, to solve the optimization model (3.1)
- (3.9), we do not need consider the model as the integer programming. But we
only need to solve the linear programming relaxation of the model, and give all
integer parameters of the model.

The linear programming relaxation technique can not be applied to solve model
(4.1) - (4.13). The model is a non linear integer programming that is NP-hard
problem. We use heuristic genetic algorithm to solve the model efficiently.

6 Computational Study

We use one-day schedules of an airline in Indonesia for computational study,
where the data characteristics are shown in Table 6. By using the technique
in [3], we model the probability distribution of primary delay for each airport
based on the one-year historical delay data of the airline. We found that for all
airports, the probability distributions of primary delays can be modeled as log-
normal distributions. The probability density function of a log-normal distribution
is given by

f(x;µ, σ) =
1

xσ
√

2π
exp(− (lnx− µ)2

2σ2
), x > 0, (6.1)

where µ and σ are mean and standard deviation, respectively. We found that the
logarithm of parameters in the log-normal distributions for our historical data are
µ ∈ [2.8− 3.4] and σ ∈ [0.4− 0.6].
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Table 1: The planned schedule characteristics
Number of flights 287
Number of aircraft routings 92
Number of crew pairings 89
Number of aircraft connections 195
Number of crew connections 185

We use 1500 scenarios, where in each scenario we generate primary delay of
each flight randomly. To solve the re-timing models, we use the technique in
Section 5. Table 2 shows the re-timing results of model in Section 3 (Model 1) and
Section 4 (Model 2). From Table 2, we know that the departure changes cause
the increasing of the average slack in connections. Since model 1 only consider
propagated delays along aircraft routings, the average slacks of Model 1 is higher
than the average slacks of Model 2.

Table 2: The re-timing results.

Minutes Original Model 1 Model 2

Total slacks 3220 4792 4269
Average of slacks 15 20 18
Average of departure changes - 12 8

In order to compare the robustness of the revised schedules and the original
schedules, we construct a robustness simulation in which in each iteration consists
of the following steps:

1. Generate a number of flight delays and their primary delays.

2. Check all connecting times due to the flight delay generated. We per-
form reactionary delays using push-back recovery strategy, so that a mini-
mum connecting time is fulfill in all connecting times. Mathematically, for
(fi, fj) ∈ T , let fi is delayed by η minutes. Then, flight fj will be delayed
for max{η − s′i,j , 0}.

3. Calculate total propagated delays and total departure delays.

We perform the simulation to both the revised schedules and the original schedules,
each for 100000 iterations. In each iteration, we compute the average value of
the robustness measures for comparison. Table 3 shows that both new schedules
can decrease total propagated delay significantly. Hence, it causes the reduction
of total departure delay. We obtain the same pattern for the number of flight
delays. If we use 15-OTP as the on-time performance metric (see Table 4), the
new schedules of Model 1 reduce 8% of flight delays and the new schedules of Model
2 reduce 17% of flight delays. An 15-OTP measures the percentage of flights that
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depart at the gate no later than 15 minutes after the schedule departure time. This
results indicate that the new schedules are more robust than the old schedules.
The schedules of Model 2 is the most robust schedules since the schedules consider
propagated delay along both aircraft routings and crew pairings.

Table 3: The robustness measures.

Robustness measure Original Model 1 Model 2

Total propagated delay (mins) 4403.2 2358.1 1040
Total departure delay (mins) 5870.3 3725.2 2707.7
delayed flights (%) 28 22 15

Table 4: The distribution of total departure delays.

(0,15] (15,20] (20,30] > 30

Original schedules (%) 77 8 10 5
Model 1 (%) 85 9 4 2
Model 2 (%) 94 2 3 1

7 Conclusion

In this paper we develop two stochastic optimization models to improve the ro-
bustness of flight schedules by distributing slacks between two consecutive flights.
We developed a model to re-time departure times of flights in the schedules such
that the estimation of total propagated delay along aircraft routings can be min-
imize. Then, the model is extended to integrate propagated delay caused by late
crew. We test our models by implementing them to real schedules of an airline
in Indonesia. Our simulation for measuring the robustness of the original and
the revised schedules show that our models can improve the robustness of airline
schedules.

Our models revise only departure time of flights and does not change any
aircraft routings, any fleet assignments, and any crew pairings. It means that
our method can improve the schedule robustness without increasing the planned
cost significantly. Hence, our technique can be implemented at a post-traditional
optimization step to generate robust schedules. In reality, passenger late also gave
the significant contribution to the delayed flights. It is means that to get more
realistic models we should include passenger connection to our models. This is the
subject of our further research.
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