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The Laplace Transform Dual Reciprocity
Method for Linear Wave Equations

P. Satravaha and S. Rujivan

Abstract : The Laplace Transform Dual Reciprocity Method (LTDRM) is ex-
tended to solve linear wave equations. The time dependence of the problem is
removed temporarily from the equations by the Laplace transform. The trans-
formed equation which is now of an elliptic type can be solved in the Laplace
space using the dual reciprocity method. Stehfest’s algorithm is then used to
retrieve numerical solutions to time domain. The efficiency of the LTDRM is ob-
vious, especially when the solutions at large time are required, due to an allowance
of unlimited time-step size to be used. Several examples are presented to demon-
strate the acuracy of the method by comparing the results with those obtained
from the coupled finite difference - dual reciprocity method and exact solutions.
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1 Introduction

The linear wave equations (LWEs) play a significant role in engineering and
applied science. Many problems that occur in engineering pratice and applied
science such as vibrations of a membrane [7], propagation of acoustic wave [11],
and propagation of electromagnetic wave [4], etc., can be modeled by this type
of equations. Efficiently and accurately solving LWEs is a usual task faced by
scientists and engineers.

From the starting point of the dual reciprocity method (DRM) in 1983 when
Brebbia and Nardini [6] proposed the way of changing domain integral in the
BEM (boundary element method) analysis into boundary integrals, DRM now
becomes a well-established method for numerically solving many kinds of problems,
e.g., solid mechanics [8], elastodynamic problems [1], biharmonic problems [5],
etc. On the other hand, the Laplace transform is one of the most classical tool
used for solving problems governed by ordinary differential equations or partial
differential equations (PDEs), especially for solving transient problems such as
heat and wave problems which involve at least one temporal derivative term. In
1994, Zhu, Satravaha and Lu [12] combined DRM with the Laplace transform into
the so-called Laplace transform dual reciprocity method (LTDRM) and proposed
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to solve transient diffusion problems. Since then, the LTDRM has been successfully
extended and applied to solve various problems [10, 2].

In this paper, the LTDRM is extended and applied to solve one class of hyper-
bolic PDEs, i.e. the linear wave equations. This method employs the advantage
of the Laplace transform to temporarily remove time dependence of the problem,
thus transforming the LWE into a Poisson equation which is of an elliptic type
PDE. The DRM is then used to solve the transformed equation, and the solutions
in the original time domain are obtained through the utilisation of the Stehfest’s
numerical inversion of the Laplace transform. In this way, the required solutions
can be calculated in one jump no matter how small or large the observation times
are. The detail formulation of the LTDRM is given in the next section. Numerical
examples are provided in section 3, and discussion and concluding remarks are
given in the last section.

2 Method Formulation

The LTDRM will be outlined in this section for the linear wave equation

∇2u(x, t) =
1
c2

∂2u

∂t2
u(x, t), x ∈ Ω, t > 0 (2.1)

where u(x, t) is the unknown function of spatial point x = (x, y) in a bounded do-
main Ω with an enclosing boundary Γ at time t, ∇2 is the two-dimensional Laplace
operator, and a non-zero constant c represents the velocity of wave propagation.

By the theory for linear partial differential equations, the LWE is well-posed
if it equips with two types of conditions. The first type is initial conditions, also
known as Cauchy conditions, which specify values of the unknown function u and
its first time-derivative at the initial point, i.e.,

u(x, 0) = u0(x), x ∈ Ω (2.2)

and
∂u

∂t
(x, 0) = v0(x), x ∈ Ω (2.3)

where u0 and v0 are known functions.
The second type is boundary conditions which fall into the following three

categories:

• Dirichlet conditions : values of the unknown function u are prescribed at
each point on the boundary Γ1 as

u(x, t) = u(x, t), x ∈ Γ1, t > 0 (2.4)

• Neumann conditions : values of the normal derivative of the unknown func-
tion u are prescribed at each point on the boundary Γ2 as

∂u

∂n
(x, t) = q(x, t), x ∈ Γ2, t > 0 (2.5)
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• Robin conditions : values of a linear combination of the unknown function
u and its normal derivative are prescribed at each point on the boundary
Γ3 as

u(x, t) + λ
∂u

∂n
(x, t) = r(x, t), x ∈ Γ3, t > 0 (2.6)

where Γi, i = 1, 2, 3 are complementary segments of Γ, n is the unit outward
normal vector on the boundary Γ, λ is a non-zero constant, and u, q, r are known
functions.

Usually in the vibrations of a membrane problem, the edge of a membrane
is fixed. Thus the only boundary condition imposed is the Dirichlet boundary
condition and it reads u ≡ 0 on the boundary for all t. However, sometimes the
boundary (or part of it) is left “free” meaning that it can move in the vertical
direction and there is no external transverse force acting on it. This is equivalent
to the boundary condition ∂u

∂n ≡ 0 on the boundary for all t. Moreover, an in-
termediate case is also possible; the boundary may be elastically supported and
capable of producing a transverse force proportional to the displacement. This
situation is equivalent to the boundary condition u + λ ∂u

∂n ≡ 0 on the boundary
for all t.

Let the Laplace transform of u(x, t) be symbolised as U(x, p) and defined by

U(x, p) =
∫ ∞

0

e−ptu(x, t) dt (2.7)

Applying Laplace transform to Equations (2.1) and (2.4) - (2.6) gives

∇2U(x, p) =
1
c2
{p2U(x, p)− pu0(x)− v0(x)} (2.8)

with transformed boundary conditons

U(x, p) = U(x, p), x ∈ Γ1 (2.9)

∂U

∂n
(x, p) = Q(x, p), x ∈ Γ2 (2.10)

U(x, p) + λ
∂U

∂n
(x, p) = R(x, p), x ∈ Γ3 (2.11)

Equation (2.8) is a Poisson equation and solving it with the traditional BEM
[3] leads to an integral equation that contains domain itegral involving initial
conditions. Such an obstacle can be overcome by utilising the DRM to convert this
domain integral term into equivalent boundary integrals. Zhu et al. [12] proposed
using the DRM based on the known fundamental solution to the Laplace operator
with the Laplace transformed diffusion equation. Then, considering Equation
(2.8), this means that the DRM will be used to convert the right-hand side to
equivalent boundary integrals. Thus the required DRM approximation is

1
c2

{
p2U(x, p)− pu0(x)− v0(x)

}
=

N+L∑

j=1

fj(x)αj (2.12)
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where fj ’s are interpolation functions and αj ’s are the coefficients to be determined
by the collocation method with N boundary collocation points and L internal
collocation points. After applying Equation (2.12) to all collocation points, the
matrix form of this equation is obtained as

~α =
1
c2

F−1
{
p2U− pu0 − v0

}
(2.13)

The standard DRM can now be applied to Equation (2.8), giving

clUl −
N∑

k=1

Qkglk +
N∑

k=1

Ukhlk =
N+L∑

j=1

αj

{
cl(ûj)l −

N∑

k=1

(q̂j)kglk +
N∑

k=1

(ûj)khlk

}
,

(2.14)
which is valid at all the point xl, acting as the source point of the fundamental
solution of the Laplace operator, that can be any point inside or on the boundary
of the domain Ω. After applying this equation to all collocation points, one has a
matrix system of the form

HU−GQ =
(
HÛ−GQ̂

)
~α (2.15)

It should be noted that the entries in matrices H and G depend on boundary
elements being used. Substituting the expression from Equation (2.13) into Equa-
tion (2.15) gives the LTDRM formulation for linear wave problems in the Laplace
space as (

H− p2

c2
S
)

U−GQ = − 1
c2

S(pu0 − v0) (2.16)

which can be reduced to a square system by applying transformed boundary con-
ditions.

Once the values of the unknown functions are found in the Laplace space, the
Stehfest’s method is used to retrieve the values of the unknown functions in the
original time domain. According to Stehfest [9], if F (p) is the known Laplace
transform of f(t), f(t) is approximated by

f(t) ≈ ln 2
t

Np∑
ν=1

WνF (pν) (2.17)

where Np is an even integer and

pν =
ln 2
t

ν (2.18)

and the weight Wν is defined as

Wν = (−1)ν+σ

min{ν,σ}∑

k=[(ν+1)/2]

kσ (2k)!
(σ − k)! k! (k − 1)! (ν − k)! (2k − ν)!

(2.19)
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for σ = Np/2 and [r] denoting the integral part of the real number r. For the
value of Np, its optimal value depends on the arithmetic precision using in the
calculation and the accuracy in the evaluation of F (p). Stehfest suggested Np to
be 10 for single precision variables, and 18 for double precision variables. However,
Zhu et al. [12] reported that accurate solutions can be obtained for Np as small
as 6 and this number will then be used herein.

At this stage one can see that in order to obtain values of the unknowns on the
boundary at specific time one needs to solve Equation (2.16) 6 times to get 6 values
for each of the unknowns, which takes up the main bulk of the whole computation
time. Fortunately, the matrices H, G, S and vectors u0, v0 are independent of the
Laplace parameter. Therefore, they have to be constructed only once and stored
for subsequent uses. After 6 values of the unknowns are determined, Stefest’s
method is then used to numerically invert these values to obtain a solution at each
nodal point in the time domain. If the value of the unknown at an internal point
is required, all the 6 values of the unknowns on the boundary in the Laplace space
can be used in conjunction with Equation (2.14) to get 6 values of the unknown at
an internal point in the Laplace space and these values are inverted numerically
to obtain the required value.

The LTDRM can be easily extended to equations of the form

∇2u(x, t) =
1
c2

∂2u

∂t2
u(x, t) + b

(
x, t, u,

∂u

∂t
,
∂u

∂x
,
∂u

∂y

)
, x ∈ Ω, t > 0 (2.20)

and the function b is in the form

b

(
x, t, u,

∂u

∂t
,
∂u

∂x
,
∂u

∂y

)
= z(x, t) + β1u + β2

∂u

∂t
+ β3

∂u

∂x
+ β4

∂u

∂y
(2.21)

where z is a known function and βi, i = 1, 2, 3, 4 are constants.
For the case b = z + β1u, we obtain a Poisson equation of Equation (2.20) in

the Laplace space as

∇2U(x, p) =
1
c2

{
p2U(x, p)− pu0(x)− v0(x)

}
+ Z(x, p) + β1U(x, p) (2.22)

and the LTDRM formulation in this case is
[
H−

(
p2

c2
+ β1

)
S
]
U−GQ = − 1

c2
S(pu0 + v0 − Z) (2.23)

For the case b = β2∂u/∂t, we get a Poisson equation of Equation (2.20) in the
Laplace space as

∇2U(x, p) =
1
c2
{p2U(x, p)− pu0(x)− v0(x)}+ β2{pU(x, p)− u0(x)} (2.24)

and the LTDRM formulation in this case is
[
H−

(
p2

c2
+ β2p

)
S
]
U−GQ = −S

[( p

c2
+ β2

)
u0 +

1
c2

v0

]
(2.25)
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For the case b = β3∂u/∂x or b = β4∂u/∂y, we have a Poisson equation of
Equation (2.20) in the Laplace space as

∇2U(x, p) =
1
c2

{
p2U(x, p)− pu0(x)− v0(x)

}
+ β3

∂U

∂x
(x, p) (2.26)

and the LTDRM formulation in this case is[
H− p2

c2
S
]
U−GQ = − 1

c2
S(pu0 + v0) + β3S

∂U
∂x

(2.27)

To make Equation (2.27) in the form we can solve, we have to relate ∂U/∂x to U
via

∂U
∂x

=
∂F
∂x

F−1U (2.28)

Therefore, Equation (2.27) becomes
[
H− p2

c2
S− β3R

]
U−GQ = − 1

c2
S(pu0 + v0) (2.29)

where
R = S

∂F
∂x

F−1 (2.30)

For comparison, the couple finite difference - dual reciprocity method (FD-
DRM) is considered. This method discretises the time domain in a finite difference
manner. At the particular time tm, the time derivative can be approximated using
the centered finite difference scheme as

∂2u

∂t2
(x, tm) ≈ u(x, tm+1)− 2u(x, tm) + u(x, tm−1)

(∆t)2
(2.31)

where ∆t is a time-step size. This allows the LWE at this particular time to be
approximated as

∇2u(x, tm) ≈ u(x, tm+1)− 2u(x, tm) + u(x, tm−1)
(∆t)2

(2.32)

After applying the standard DRM to Equation (2.32) we arrive at the matrix
equation

Hum −Gqm =
(
HÛ−GQ̂

)
~αm (2.33)

where
~αm = F−1 1

(c∆t)2
(um+1 − 2um + um−1) (2.34)

Rearranging terms we finally have the FDDRM formulation for the LWP as

ωSum+1 + Gqm = (H + 2ωS)um − ωSum−1 (2.35)

where ω = 1/(c∆t)2 and initial conditions u−1 and u0 can be found from Equations
(2.2) and (2.3).

The FDDRM can also be easily extended to a more general Equation (2.20)
in a similar fashion as the LTDRM.
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3 Numerical Examples

In this section, several examples representing various kinds of vibrations of mem-
brane problems are presented to illustrate the efficiency and the accuracy of the
LTDRM. Constant boundary elements together with linear radial basis functions
as interpolation functions are used in both the LTDRM and the FDDRM. In order
to measure the accuracy of the obtained numerical solutions, an average relative
error at time t denoted by Eav(t) will be used and is defined by

Eav(t) =
1

Ns

Ns∑

k=1

|ue(xk, t)− ua(xk, t)|
|ue(xk, t)| × 100 (3.1)

where xk’s are sample points, Ns is the number of sample points, and ue and ua are
exact and approximated values of u, respectively. For all the examples presented,
Ns = N + L.

Example 1. In this example, the boundary of a membrane is rectangular such
as Ω = [0, a]× [0, b] and it is fixed, i.e. u ≡ 0 on Γ. The analytical solution can be
obtained using the method of separation of variables as

u(x, y, t) =
∞∑

m=1

∞∑
n=1

{Amn cos(ωmnt) + Bmn sin(ωmnt)} sin
(mπx

a

)
sin

(nπy

b

)

(3.2)
where

Amn =
4
ab

∫ a

0

∫ b

0

u0(x, y) sin
(mπx

a

)
sin

(nπy

b

)
dy dx, (3.3)

Bmn =
4

abωmn

∫ a

0

∫ b

0

v0(x, y) sin
(mπx

a

)
sin

(nπy

b

)
dy dx, (3.4)

and

ωmn = πc

√
m2

a2
+

n2

b2
(3.5)

For this example, we let a = b = 1 and two initial conditions are

u0(x, y) = x(1− x)y(1− y) (3.6)

and
v0(x, y) = 0 (3.7)
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Figure 1: The domain Ω and all collocation points in Example 1.

In applying the LTDRM and the FDDRM to this problem, the boundary Γ
is discretised into 20 equal-size constant elements and 16 internal points are used
as shown in Figure 1. Average relative errors Eav(t) obtained using LTDRM and
FDDRM to solve this problem for c = 10−4 and c = 10−5 are illustrated in Figures
2 and 3. It can be seen that numerical solutions obtained from both methods when
c = 10−5 are more accurate than the ones obtained when c = 10−4. In fact, our
experiments have shown that they are in very good agreement with analytical
solution for small observation times as well as large observation times when c ≤
10−5. On the other hand, they are often accurate only at small observation times
when c > 10−5.
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Figure 2: Average relative errors of the LTDRM.

Figure 3: Average relative errors of the FDDRM.
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Example 2. The vibration of a membrane problem without source term with
Ω = [0, 1]×[0, 1] is solved in this example. Unlike Example 1, two initial conditions
are

u0(x, y) = 0 (3.8)

and
v0(x, y) = x (3.9)

and the free boundary condition ∂u/∂n ≡ 0 on Γ is imposed. To solve this
problem, all collocation points in Example 1 are used. The analytical solution,
which is obtained via the method of separation of variables, is of the form

u(x, y, t) =
∞∑

m=0

∞∑
n=0

Amn cos(nπx) cos(mπy)hmn(t) (3.10)

where

hmn(t) =
{

t, m = 0, n = 0
sin(ωmnt), otherwise (3.11)

in which ωmn is defined in Equation (3.5) and

Amnh′mn(0) =

∫ 1

0

∫ 1

0
x cos(nπx) cos(mπy) dy dx∫ 1

0

∫ 1

0
cos2(nπx) cos2(mπy) dy dx

(3.12)

Figures 4 and 5 show average relative errors of the LTDRM and the FDDRM
for the case c = 10−4. It can be seen that results obtained from the LTDRM
agree well with those obtained from the FDDRM for the case c = 10−4. Our
experiments have also shown that both methods are very accurate when c ≤ 10−4

and start to deteriorate when c > 10−4.
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Figure 4: Average relative errors of the LTDRM with c = 10−4.

Figure 5: Average relative errors of the FDDRM with c = 10−4.
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Example 3. In this example, we investigate the vibration of a circular membrane.
The governing equation of this problem is

∂2u

∂t2
= c2∇2u (3.13)

where ∇2 = 1
r

∂
∂r

(
r ∂

∂r

)
+ 1

r2
∂2

∂θ2 is the Laplace operator in polar coordinates. The
domain in this case is a circular disk Ω = {(r, θ) | 0 < r ≤ r0,−π < θ ≤ π} for some
r0 > 0. If the boundary of the membrane is fixed, i.e. u ≡ 0 on Γ, and initial
conditions u0(r, θ) = (r2

0−r2) sin(θ) and v0(r, θ) ≡ 0 are prescribed, the analytical
solution is expressed as

u(r, θ, t) =
∞∑

m=0

∞∑
n=1

Jm(λmnr) {Amn cos(mθ) + Bmn sin(mθ)} cos(λmnct) (3.14)

where Jm is the Bessel function of the first kind of order m, λmnr0 is the nth root
of Jm and

Amn =
2

πr2
0J

2
m+1(λmnr0)

∫ r0

0

∫ π

−π

rJm(λmnr)u0(r, θ) cos(mθ) dθ dr (3.15)

and

Bmn =
2

πr2
0J

2
m+1(λmnr0)

∫ r0

0

∫ π

−π

rJm(λmnr)u0(r, θ) sin(mθ) dθ dr (3.16)

Figure 6: The domain Ω and 56 collocation points in Example 3.
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To solve this problem, 56 collocation points as shown in Figure 6 are chosen.
Average relative errors of the LTDRM and the FDDRM for the case c = 10−4 and
c = 10−5 with r0 = 1 are illustrated in Figures 7 and 8. It can be noticed for both
methods that Eav varies with time when c = 10−4 while it is small (less than 1 %)
and stable over a long time period when c = 10−5. In fact, Eav of both method
are small when c ≤ 10−5. Again, the results from both methods agree well with
each other.

Figure 7: Average relative errors of the LTDRM.
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Figure 8: Average relative errors of the FDDRM.

Figure 9: The domain Ω and all collocation points in Example 4.
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Example 4. Consider a more general form of the LWE

∇2u =
1
c2

∂2u

∂t2
u + (−2 + cx2) cos(ct) + (2 + cy2) sin(ct) + u− ∂u

∂t
(3.17)

defined on a half circular domain Ω (see Figure 9), with two initial conditions

u0(x, y) = y2 (3.18)

and
v0(x, y) = cx2 (3.19)

and the Dirichlet boundary condition

u(x, y, t) = x2 sin(ct)− y2 cos(ct) (3.20)

70 collocation points as shown in Figure 9 are used in the LTDRM and the
FDDRM procedures. Average relative errors from both methods for the case
c = 10−5 and c = 10−6 are shown in Figures 10 and 11. It can be seen again that
Eav reduces as c decreases.

Figure 10: Average relative errors of the LTDRM.
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Figure 11: Average relative errors of the FDDRM.

Example 5. As for the last example, we consider the vibration of a membrane
problem with a source term of the form

∇2u =
1
c2

∂2u

∂t2
u + z − 10u− ∂u

∂t
− 3

∂u

∂x
+

∂u

∂y
(3.21)

where

z = −e− sin(ct)
{
cos(x2 + y2)

(−10 + 4x2 + 4y2 + c cos(ct) + cos2(ct) + sin(ct)
)

+ 2(2 + 3x− y) sin(x2 + y2)
}

(3.22)

The Neuman boundary conditions are imposed on Γ1 and Γ3. On Γ2 the Dirichlet
boundary condition is prescribed. The exact solution to this problem is

u(x, y, t) = cos(x2 + y2)e− sin(ct) (3.23)

The domain Ω for this problem together with 50 collocation points used in the
numerical procedures is shown in Figure 12. Average relative errors for the case
c = 10−5 and c = 10−6 given in Figures 13 and 14 show that the LTDRM gives
accurate results which agree well with the FDDRM and is stable for a long time
period when c ≤ 10−6. However, the method deteriorates when c gets bigger.
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Figure 12: The domain Ω and all collocation points in Example 5.

Figure 13: Average relative errors of the LTDRM.
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Figure 14: Average relative errors of the FDDRM.

4 Discussions and Concluding Remarks

The Laplace transform dual reciprocity method is devised to numerically solve
linear wave equations and is extended to a more general form of LWEs. The
highlights of this method are the transformation of an LWE into a Poisson equation
using Laplace transform technique and the utilisation of the DRM to solve this
transformed equation. This allows a time-free and boundary-only integral equation
to be obtained. Consequently, the dimension of the problem is virtually reduced
by two. Although a system of linear equations need to be solved several times in
the Laplace space when the solutions at a specific time are required, the matrices
involved in the calculation have to be constructed only once and stored for later
uses. In this way, solutions at any observation time can be calculated swiftly in
one jump no matter how small or large the observation times are. The efficiency
of the LTDRM is therefore obvious and it becomes prominent when solutions at
a large observation time are required, comparing to the FDDRM which uses a
step-by-step calculation in the time domain.

Several examples are included to demonstrate the accuracy of the LTDRM. It
was shown that numerical solutions obtained from the LTDRM are in very good
agreement with the corresponding analytical solutions and numerical solutions
obtained from the FDDRM, for small as well as large observation times with the
same accuracy when c ≤ c0 for some c0 > 0. In most cases, c0 is approximately
10−5 even though there might be some problems that c0 can be bigger, such as 1.

The numerical procedures described in this paper use only constant boundary
elements and linear radial basis functions as interpolation functions. The accuracy



The Laplace Transform Dual Reciprocity Method for Linear Wave Equations369

of solutions in the Laplace space can be improved through the use of higher order
elements and higher order radial basis functions, instead of increasing the number
of constant boundary elements. This could stretch the limitation on the value of
c0 to be larger than presently is. Moreover, it is possible to extend the LTDRM
to solve nonlinear wave equations which is left for future works.
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