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1 Introduction

Synchronization of chaotic systems has become a great deal of interest among
many researches due to its potential applications in secure communication, power
convertors, biological systems, information processing and chemical reactions [1].
In practice, system uncertainties and external disturbances are ubiquitous in re-
ality. In addition, owing to un-modeled dynamics, structural variations of the
system and measurement and environment noises, the chaotic systems should be
considered with uncertainties and external disturbances. Thus, synchronization
of chaotic systems with uncertainties and external disturbances is effectively im-
portant in applications. A number of control techniques have been proposed to
synchronize of chaotic systems such as adaptive control [2], [11], passive con-
trol [3], sliding mode control [4], [5], [13], [14], [15], [16], backstepping control
[6],[7],[17],[18], active control [8],[9], [19], fuzzy control [10], [20], observer-based
control [12] and so on. However, most of the aforementioned works have stud-
ied asymptotical synchronization of chaotic systems. In other word, they have
guaranteed that the slave system state can reach the master system state over an
infinite time horizon. In real world applications, it is more practicable to realize
synchronization in a finite time.

To obtain fast convergence speed in a control system, the finite-time control
technique is a powerful strategy. Finite-time control methods can force the con-
trolled systems to their targets in finite time. Up to now, finite-time controllers
have been designed to stabilize a number of nonlinear systems. Terminal slid-
ing mode control (TSMC) has been developed by introducing the fractional power
term into the sliding surface. This technique offer the convergence of system states
in finite time [21]. Thus, it could ensure finite-time convergence and strong ro-
bustness when the terminal sliding mode (TSM) is reached. However, using this
technique, there often exists a singularity when the conventional TSMC is applied
in actual cases. To overcome this difficulty, the adopted nonsingular terminal slid-
ing mode (NTSM) concept has been proposed in [22], [23] to ensure finite-time
stability and good control precision. Recently, Wang et al. [24] has proposed a
novel terminal sliding mode controller and applied it into chaotic systems. How-
ever, the discontinuity property of the switching surface made it inconvenient for
actual applications.

Higher order sliding mode control (HOSMC) is an extension of the traditional
sliding mode control. This control method can preserve the advantages of SMC. It
also gives higher accuracy and chattering attenuation. The main characteristic of
HOSM is based on the action of a discontinuous control in the higher-order time
derivative [25], [26], [27], [28], so the chattering can be attenuated because the
control signal is continuous. Furthermore, HOSM can bring better accuracy than
conventional SMC while the robustness of the control system is similar to SMC.
Super twisting (ST) control algorithm is a well-known second-order sliding mode
control method [28], [29]. It has been presented in [30] for the attitude tracking
of a four rotors UAV.

This research studies chaos synchronization of different two chaotic systems
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with uncertain parameters and external disturbances. The Lyapunov stability
theory is used to guarantee the stable synchronization. We propose a nonsingu-
lar terminal sliding mode and super-twisting sliding mode controllers to make the
states of the slave system have same amplitude with the states of the master sys-
tem in finite time.

The rest of the paper is organized as follows. In Section 2, preliminary con-
cepts and problem statement are stated. Section 3 presents a nonsingular terminal
sliding mode design. The finite-time stability is also analyzed. In Section 4, a new
finite-time STW controller is designed. In Section 5, simulation results are given.
Conclusions are presented in Section 6.

2 System Description and Problem Statement

The problem discussed in this study concerns with the the master-slave con-
figuration in the presence of system uncertainties and external disturbances. The
master system is described as follows:

ẏ1(t) = y2(t),

ẏ2(t) = g(y, t) + ∆g(y, t), (2.1)

where y1(t), y2(t) ∈ R are the states of the master system, y = [y1 y2]T ∈ R2,
g(y, t) ∈ R is the nonlinear function of the master system, ∆g(y, t) ∈ R is the
uncertain term of the master system.
The slave system is described by

ẋ1(t) = x2(t),

ẋ2(t) = f(x, t) + ∆f(x, t) + v(t) + b(x, t)u, (2.2)

where x1(t), x2(t) ∈ R are the states of the slave system, x = [x1 x2]T ∈ R2,
f(x, t) ∈ R is the nonlinear function term of the slave system, ∆f(x, t) ∈ R is
the uncertain term of the slave system, v(t) is the disturbance input of the slave
system, b(x, t) ∈ R is the nonzero control coefficient of the slave system and
u(t) ∈ R is the control input.
We define the synchronization error as

e1 = x1 − y1 and e2 = x2 − y2. (2.3)

From the master system (2.1) and the slave system (2.2), we get the error dynamic
system

ė1(t) = e2(t),

ė2(t) = f(x, t)− g(y, t) + d(x, y, t) + b(x, t)u(t), (2.4)

where d(x, y, t) = ∆f(x, t)−∆g(y, t)+v(t) is the error perturbation term including
system uncertain term and disturbance.
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Assumption 2.1. The error perturbation term d(x, y, t) and it first time deriva-
tive ḋ(x, y, t) are bounded i.e.,

|d(x, y, t)| ≤ D1 and |ḋ(x, y, t)| ≤ D2, (2.5)

where D1 and D2 are positive constants.

We consider the master and slave chaotic systems described by (2.1) and (2.2),
respectively. The aim is to find a controller u(t) so that the error state e1 and e2
in (2.4) converge to zero in finite time. In other word, lim

t→T
‖e(t)‖ = 0, where T is

a positive constant and ‖ · ‖ denote the Euclidean norm.
Next, the following Lemmas that will be used in the later section are provided.

Lemma 2.1. ([31]) consider the system

ẋ = f(x), f(0) = 0, x ∈ Rn (2.6)

where f : D → Rn is continuous on an open neighborhood D ⊂ Rn. Assume that
there is a continuous differential positive-definite function V (x) : D → R, real
numbers β > 0 and 0 < γ < 1, such that

V̇ (x) + βV γ(x) ≤ 0, ∀x ∈ D. (2.7)

Then, the origin of system (2.6) is a locally finite-time stable equilibrium, and the
setting time, depending on the initial state x(0) = x0, satisfies

T ≤ V 1−γ(x0)

β(1− γ)
. (2.8)

In addition, if D = Rn and V (x) is also radially unbounded, then the origin is a
globally finite-time stable equilibrium of system (2.6).

Lemma 2.2. ([32]) For any numbers λ1 > 0, λ2 > 0, 0 < $ < 1, an extended
Lyapunov condition of finite-time stability can be given in the form of fast terminal
sliding mode as

V̇ (x) + λ1V (x) + λ2V
$(x) ≤ 0. (2.9)

The setting time can be estimated by

T ≤ 1

λ1(1−$)
`n

(
λ1V

1−$(x0) + λ2
λ2

)
. (2.10)
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3 Finite-time nonsingular terminal sliding mode
controller

In this section, a new nonsingular terminal sliding surface and finite-time ter-
minal sliding mode controller are designed. The finite-time stability of synchro-
nization system under the action of the proposed control law is analyzed.
We define a nonsingular terminal sliding surface as:

s = ė1 + β1e1 + β2e
−λt|e1|−2α+1sign(e1) (3.1)

where β1, β2 > 0, 0 < α < 1 and λ > 0.
When sliding mode occurs, the following is satisfied:

s = ė1 + β1e1 + β2e
−λt|e1|1−2αsign(e1) = 0, (3.2)

which can be obtained as

ė1 = −β1e1 − β2e−λt|e1|1−2αsign(e1). (3.3)

A NTSM controller is designed as

u(t) = −(qs+ ηsign(s) + f − g + β1e2 + β2φ), (3.4)

where q and η are positive constants and

φ = β2
(
e−λt|e1|−2αė1 − 2αe−λt|e1|−2αė1 − λeλt|e1|−2αe1

)
. (3.5)

Theorem 3.1. For the systems (2.4), if the control law is designed as (3.5) and the
gain η satisfies η > |d(x, y, t)|, the synchronization errors e1 and e2 will converge
to the terminal sliding surface s = 0 in finite time.

Proof. Consider the following Lyapunov function:

V1 =
1

2
s2 (3.6)

Finding the first derivative of the sliding surface (3.1) with respect to time, we
have

ṡ = ė2 + β1ė1 + β2φ, (3.7)

where φ is expressed by (3.5).
Differentiating V1 with respect to time, and substituting (3.4) and (2.4) in to the
differential result, we obtain

V̇1 = s(ė2 + β1ė1 + β2φ)

= s(f − g + d+ u+ β1ė2 + β2φ)

= s
(
f − g + d+

(
− (qs+ ηsign(s) + f − g + β1e2 + β2A)

)
+ β1ė2 + β2φ

)
≤ −qs2 − η|s|+D1|s|
= −qs2 − ε0|s| ≤ 0, (3.8)
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when ε0 = η −D1 > 0. Using (3.6), we have s =
√

2V
1
2
1 . Thus, (3.8), becomes

V̇1 ≤ −2qV1 −
√

2ε0V
1
2
1 (3.9)

By Lemma 2.2, the synchronization error converges to the terminal sliding surface
s = 0 in finite time TR defined as

TR ≤
1

q
`n

(
2qV

1
2
1 (x0) +

√
2ε0√

2ε0

)
(3.10)

This completes the proof.

Theorem 3.2. Consider the sliding surface (3.1). If the sliding mode occurs
(s = 0), then both states of the synchronization errors e1 and e2 converge to zero
in finite time

Ts ≤
`n (1 + (V α2 (0)/a))

2αβ1 − λ
, (3.11)

where a =
21−ααβ2
2αβ1 − λ

> 0, with α, βand λ satisfying 2αβ1 > λ.

Proof. Consider the Lyapunov function:

V2 =
1

2
e21. (3.12)

Substituting (3.3) into the first time derivative of V2 in (3.12), one obtains

V̇2 = e1ė1

= e1(−β1e1 − β2e−λt|e1|−2α+1sign(e1))

= −β1e21 − β2e−λt|e1|−2α+1|e1|
= −β1e21 − β2e−λt|e1|−2α+2

= −2β1V2 − 21−αβ2e
−λtV 1−α

2 ≤ 0. (3.13)

Therefore, using the Lyapunov stability, it is obvious that the origin is globally
asymptotically stable.
Next, it is required to show that the system state converge to zero in finite time.
Multiplying both sides of (3.13) by αV α−12 , we have

αV α−12

dV2
dt
≤ −2β1αV

α
2 − 21−αβ2αe

−λt

and

αV α−12

dV2
dt

+ 2β1αV
α
2 ≤ −21−αβ2αe

−λt. (3.14)
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Next, multiplying both sides of (3.14) by e2αβ1t yields

e2αβ1t

(
dV α2
dt

+ 2β1αV
α
2

)
≤ −21−αβ2αe

(2αβ1−λ)t

and

d

dt

(
e2αβ1tV α2

)
≤ −21−ααβ2e

(2αβ1−λ)t. (3.15)

Integrating both sides of (3.15) from 0 to Ts and using V2(Ts) = 0, we obtain

−e2αβ1(0)V α2 (0) ≤ −21−ααβ2
2αβ1 − λ

[
e(2αβ1−λ)Ts − 1

]
,

which can be written as

e(2αβ1−λ)Ts ≤ 1 +
V α2 (0)

a
, (3.16)

where

a =
21−ααβ2
2αβ1 − λ

> 0. (3.17)

Taking the natural logarithm of both sides of (3.16), one has

(2αβ1 − λ)Ts ≤ `n
(

1 +
V α2 (0)

a

)
. (3.18)

From(3.13), we obtain Ts as

Ts ≤
`n (1 + (V α2 (0)/a))

2αβ1 − λ
(3.19)

This completes the proof.

4 Finite-time super-twisting nonsingular
terminal sliding mode controller

The super-twisting control law is a powerful second-order sliding mode control
algorithm. It generates a continuous control signal that drives the sliding variable
and its derivative to zero in finite time. In this section, a super-twisting based-
nonsingular terminal sliding mode (ST-NTSM) controller is designed.
We use the sliding variable defined in (3.1) and introduce a new reaching law as:

ṡ = −k1|s|
γ+1
2 sign(s)− k2

∫ t

0

|s|γsign(s)dτ, (4.1)
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where k1 and k2 are positive constants and 0 < γ < 1.
Considering the error dynamic system (2.4), the ST-NTSM controller is designed
as

u = −
(
k1|s|

γ+1
2 sign(s) + k2

∫ t

0

|s|γsign(s)dτ + f − g + β1e2 + β2φ

)
, (4.2)

where φ is expressed by (3.5)
Finding first time derivative of s defined in (3.1) and substituting (4.2) into the
result, one has

ṡ = −k1|s|
γ+1
2 sign(s)− k2

∫ t

0

|s|γsign(s)dτ + d. (4.3)

Let us defined

z1 = s

z2 = −k2
∫ t

0

|s|γsign(s)dτ + d. (4.4)

Finding ż1 and ż2 from (4.4), one can obtain

ż1 = −k1|z1|
γ+1
2 sign(z1) + z2

ż2 = −k2|z1|γsign(z1) + ḋ. (4.5)

Next, for the system (4.5) under Assumption 2.1, the proof of finite-time stability
is given.

Theorem 4.1. Under Assumption 2.1, the states z1 and z2 in (4.5) converge in
finite time to the region

‖ζ‖ ≤
(

LD2

λmin{Q}

) γ+1
2γ

, (4.6)

where |ḋ| ≤ D2, ζ =
[
|z1|

γ+1
2 sign(z1) z2

]T
, L = ‖[k1 − 2]‖, and

Q =
k1
2

[
2k2 + k21(γ + 1) −k1(γ + 1)
−k1(γ + 1) (γ + 1)

]
.

In (4.6), λmin{Q} denotes the minimum eigenvalue of the matrix Q.

Proof. We select the following Lyapunov function

V3 =
2k2
γ + 1

|z1|γ+1 +
1

2
z22 +

1

2
(k1|z1|

γ+1
2 sign(z1)− z2)2, (4.7)



30 N. Tino, P. Siricharuanun and C. Pukdeeboon

which can be written as

V3 =

(
2k2
γ + 1

+
1

2
k21

)
|s|γ+1 + z2 − k1z|s|

γ+1
2 sign(s)

=
1

2

[
|z1|

γ+1
2 sign z2

] [ 4k2
γ+1 + k21 −k1
−k2 2

] [
|z1|

γ+1
2 sign(z1)
z2

]
(4.8)

Letting

P =
1

2

[
4k2
γ+1 + k21 −k1
−k1 2

]
, (4.9)

The Lyapunov function V3 can be obtained as

V3 = ζTPζ. (4.10)

From (4.9), we know that matrix P is symmetricand positive definite, and

λmin{P}‖ζ‖2 6 V3 6 λmax{P}‖ζ‖2, (4.11)

where λmin{P} and λmax{P} denote the minimum eigenvalue and maximum
eigenvalues of the matrix P , respectively.

The first time derivative of Lyapunov function (4.8) along the solutions of
system (4.5) is

V̇3 = −2k1k2|z1|
3γ+1

2 +
k21(γ + 1)

2
z2|z1|γsign(z1)

+k1

(
k2 −

k21(γ + 1)

2

)
|z1|

3γ+1
2 − k1(γ + 1)

2
z22 |z1|

γ−1
2

+
k21(γ + 1)

2
z2|z1|γsign(z1)− (k1|z1|

γ+1
2 sign(z1)− 2z2)ḋ. (4.12)

V̇3 in (4.12) can be rearranged as

V̇3 = −k1
2
|z1|

γ−1
2

[
|z1|

γ+1
2 sign(z1) z2

] [
2k2 + k21(γ + 1) −k1(γ + 1)
−k1(γ + 1) (γ + 1)

]
×
[
|z1|

γ+1
2 sign(z1) z2

]T
+
[
k1 −2

] [|z1| γ+1
2 sign(z1)
z2

]
ḋ (4.13)

Letting

Q =
k1
2

[
2k2 + k21(γ + 1) −k1(γ + 1)
−k1(γ + 1) (γ + 1)

]
, (4.14)

and

L = ‖[k1 − 2]‖ =
√
k21 + 4. (4.15)



Chaos Synchronization of Two Different Chaotic System ... 31

V̇3 becomes

V̇3 ≤ −|z1|
γ−1
2 ζTQζ + LζT ḋ.

Using the fact that

‖ζ‖2 = |z1|γ+1 + z22 , (4.16)

and 0 < γ < 1, one obtains

|z1|
γ−1
2 > ‖ζ‖

γ−1
γ+1 . (4.17)

Therefore, using (4.17), we have

V̇3 6 −|z1|
γ−1
2 λmin{Q}‖ζ‖2 + LD2‖ζ‖

6 −λmin{Q}‖ζ‖
3γ+1
γ+1 + LD2‖ζ‖

= −(λmin{Q}‖ζ‖
2γ
γ+1 − LD2)‖ζ‖

6 −
(
λmin(Q)‖ζ‖

2γ
γ+1 − LD2

) V
1/2
3√

λmax(P )
. (4.18)

If λmin(Q)‖ζ‖
2γ
γ+1 − LD2 > 0, (4.18) can be written as V̇3 ≤

ΩV
1
2
3√

λmax(P )
where

Ω = λmin(Q)‖ζ‖
2γ
γ+1 − LD2 > 0.

Thus, V̇3 ≤ 0 is always kept, when λmin(Q)‖ζ‖
2γ
γ+1 > LD2. It follows that ‖ζ‖ is

reduced and converges to the region ‖ζ‖ ≤
(

LD2

λmin(Q)

) γ+1
2γ

in finite time. This

completes the proof.

5 Numerical simulations

In this section, through a typical numerical example, we study the chaos synchro-
nization based on previous theory result obtained.
We consider the master system (2.1) and the slave system (2.2), where
g(y, t) = y1 − 0.2y2 − y31 − 0.32cos(1.2t), f(x, t) = 2x1 − 1.4x2 − 0.8x21,
∆g(y, t) = −0.02y1, ∆f(x, t) = 0.01x2, v(t) = −0.1sin2(2t).
The simulation is carried out with step size 0.001 second. The initial condition is
set as x(0) = [−2 3]T , y(0) = [0.8091 0.5155]T and control parameters are chosen
in Table 1.

Table 1: Control parameters
NTSM β1 = β2 = 1, η = 2, q = 1, α = 0.3, λ = 3
ST-NTSM β1 = β2 = 1.2, k1 = 4, k2 = 3, α = 0.3, γ = 0.1, λ = 3
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Figure 1: Synchronization of two different chaotic systems for NTSM.

We compare the results between the synchronization error obtained by the pro-
posed NTSM control and ST-NTSM control schemes. As shown in Figure 1 and
Figure 2, for both control methods, states of the slave system completely track
the states of the master system in about 4 seconds. The control responses from
the proposed ST-NTSM control and NTSM control are shown in Figure 3. One
can easily see that that the ST-NTSM gives smoother control signal and higher
precision synchronization than the NTSM control method. Figure 4 shows the
responses of the sliding surfaces. Clearly, the sliding surface from the ST-NTSM
method is also smoother than NTSM method. In view of these simulation results,
the ST-NTSM control method offers better results of synchronization.

6 Conclusion

In this paper, the NTSM control and ST-NTSM control techniques have been
developed to synchronize two different two second-order chaotic systems. NTSM
control avoids the singularity problem but this method cannot reduce the chat-
tering phenomenon. The ST-NTSM controller solves the singularity problem and
provides better synchronization results and higher accuracy. Using the Lyapunov
theory, we have proved the finite-time convergence of synchronous errors. The
simulation results are given to show the effectiveness of the developed control
methods.
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Figure 2: Synchronization of two different chaotic systems for ST-NTSM.
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Figure 3: Control responses for ST-NTSM and NTSM.
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Figure 4: Sliding variables for ST-NTSM and NTSM.
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