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Let C be a nonempty, closed and convex subset of a real Hilbert space H with
an inner product 〈·, ·〉 and a norm ‖ · ‖ respectively. Let {xn} be a sequence in C,
then xn → x (xn ⇀ x) denotes strong (weak) convergence of the sequence {xn}
to x. A mapping S : C → C is said to be L-Lipschitzian if there exists a constant
L > 0 such that

‖Sx− Sy‖ ≤ L‖x− y‖, ∀x, y ∈ C.

If 0 < L < 1, then S is a contraction and if L = 1, then S is nonexpansive. We
denote the fixed points set of the mapping S by F (S), i.e., F (S) = {x ∈ C : x =
Sx}.

Let A : H → 2H be a set-valued mapping. We denote D(A) by domain of A,
that is, D(A) = {x ∈ H : Ax 6= ∅}.

Definition 1.1. A set-valued mapping A : D(A) ⊂ H → 2H is said to be mono-
tone if for all x, y ∈ D(A) such that

〈u− v, x− y〉 ≥ 0 for u ∈ Ax and v ∈ Ay.

Definition 1.2. A monotone operator A : D(A) ⊂ H → 2H is said to be maximal
if its graph is not strictly contained in the graph of any other monotone operator
on H.

Definition 1.3. ([28]) Let A : D(A) ⊂ H → 2H be a maximal monotone. The
resolvent operator of A, denoted by JAλ : H → D(A) which is defined by

JAλ = (I + λA)−1,

where λ is any positive number and also denote A−10 by the set of zeros of A, that
is, A−10 = {x ∈ D(A) : 0 ∈ Ax}.

For the resolvent JAλ , λ > 0 the following facts are well known (see [25]).

(1) JAλ is a single-valued nonexpansive mapping;

(2) F (JAλ ) = A−10.

In this paper, we consider the following so-called variational inclusion problem:
Find x ∈ H of the sum of two monotone operators A and B such that

0 ∈ Ax+Bx, (1.1)

where A : C → H is a single-valued mapping, B : H → 2H is a set-valued
mapping and 0 is a zero vector in H. The set of solutions of (1.1) is denoted by
(A+B)−10. It is well known that the problem (1.1) has wide applications in the
fields of economics, structural analysis, mechanics, optimization problems, signal
processing, image recovery and applied sciences (see, e.g., [17, 18, 19, 20, 21, 22,
23, 24] and the references therein).

Now, we consider two special cases of the problem (1.1).
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(1) If H = Rn then the problem (1.1) reduces to the generalized equation, which
is introduced by Robinson [1].

(2) If A = 0 then the problem (1.1) reduces to the inclusion problem, which is
introduced by Rockafella [2, 3].

In recent years, many authors have constructed the several iterative methods
for solving variational inclusion in several settings (see, e.g., [4, 5, 15, 26, 33, 8, 9,
10, 11, 12, 34, 14, 15, 16] and the references therein).

In 2011, Manaka and Takahashi [26] introduced modified Mann’s ieration for
solving the problem (1.1) in a real Hilbert space H as follows:

xn+1 = αnxn + (1− αn)SJBλn
(xn − λnAxn), ∀n ≥ 1, (1.2)

where S is a nonexpansive mapping on C, A : C → H is an α-inverse strongly
monotone mapping, B is a maximal monotone operator on H such that the domain
of B is included in C and JBλ = (I + λB)−1 is a resolvent of B for all λ > 0.
They proved that the sequence {xn} defined by (1.2) converges weakly to point in
F (S) ∩ (A+B)−10 under suitable conditions on the parameters {αn} and {λn}.

To obtain strong convergence, Zhang et al. [15] introduced the following it-
erative method base on Halpern’s iteration for finding a common element of the
set of solutions to the problem (1.1) and the set of fixed points of a nonexpansive
mapping S:

xn+1 = αnx+ (1− αn)SJBλn
(xn − λnAxn), ∀n ≥ 1, (1.3)

where A : C → H is an α-inverse strongly monotone mapping, B is a maximal
monotone operator on H such that the domain of B is included in C and JBλ =
(I + λB)−1 is a resolvent of B for all λ > 0. Under some mild conditions, they
proved that the sequence {xn} defined by (1.3) converges strongly to point in
F (S) ∩ (A+B)−10.

Very, recently, Takahashi et al. [33] introduced an iterative method for finding
a common element of the set of solutions to the problem (1.1) and the set of
fixed points of nonexpansive mappings. They obtained the following convergence
theorem:

Theorem TTT Let C be a closed and convex subset of a real Hilbert space
H. Let A : C → H be an α-inverse strongly monotone mapping and let B be a
maximal monotone operator on H such that the domain of B is included in C.
Let JBλ = (I + λB)−1 be a resolvent of B for all λ > 0 and S : C → C be a
nonexpansive mapping such that F (S)∩ (A+B)−10 6= ∅. Let x1 = x ∈ C and let
{xn} ⊂ C be a sequence generated by

xn+1 = βnxn + (1− βn)S(αnx+ (1− αn)JBλn
(xn − λnAxn)), ∀n ≥ 1,

where {λn} ⊂ (0, 2α), {βn} ⊂ (0, 1) and {αn} ⊂ (0, 1) satisfy

0 < a ≤ λn ≤ b < 1, 0 < c ≤ βn ≤ d < 1,
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lim
n→∞

|λn+1 − λn| = 0, lim
n→∞

αn = 0 and

∞∑
n=1

αn =∞.

Then {xn} converges strongly to a point in F (S) ∩ (A+B)−10.
Motivated by the above works, we construct iterative methods with perturba-

tions for finding a common element x∗ ∈ Ω, where Ω is the set of common element
of the set of solutions of a variational inclusion problem (1.1) and the set of fixed
points of a nonexpansive mapping in Hilbert spaces. We prove a strong conver-
gence theorem of the proposed iterative schemes under some certain conditions.
As special cases, we can obtain x∗ is the minimum-norm common element of Ω.
Furthermore, we also apply our results to solving the variational inequality and
equilibrium problems. The main results obtained in this paper are improve and
generalize many known recent results in this field.

2 Preliminaries

Definition 2.1. A mapping A : C → H is said to be α-inverse strongly monotone
if there exists a constant α > 0 such that

〈Ax−Ay, x− y〉 ≥ α‖Ax−Ay‖2, ∀x, y ∈ C.

Remark 2.1. If A is α-inverse strongly monotone, then A is 1
α -Lipschitzian.

Lemma 2.2. ([30]) Let {xn} and {ln} be bounded sequences in a Banach space
and let {βn} be a sequence in [0, 1] with 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1.
Suppose xn+1 = (1− βn)ln + βnxn for all integers n ≥ 0 and lim supn→∞(‖ln+1−
ln‖ − ‖xn+1 − xn‖) ≤ 0. Then, limn→∞ ‖ln − xn‖ = 0.

Lemma 2.3. ([27]) Let C be a nonempty, closed and convex subset of a real Hilbert
space H. Let A : C → H be an α-inverse strongly monotone operator. Then, we
have

‖(I − λA)x− (I − λA)y‖2 ≤ ‖x− y‖2 + λ(λ− 2α)‖Ax−Ay‖2, (2.1)

where λ > 0. In particular, if 0 < λ ≤ 2α then I − λA is nonexpansive.

Lemma 2.4. (The Resolvent Identity [31]) For λ > 0, µ > 0 and x ∈ H, then

Jλx = Jµ

(
µ

λ
x+

(
1− µ

λ

)
Jλx

)
.

Lemma 2.5. For each r, s > 0 then

‖Jrx− Jsx‖ ≤
∣∣1− s

r

∣∣‖Jrx− x‖ for all x ∈ H.
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Proof. Follows from the resolvent identity, we can conclude the desired result
easily. 2

Lemma 2.6. ([15]) Let A : C → H be a mapping, B be a maximal monotone
operator in H such that the domain of B is included in C and let JBλ = (I+λB)−1

be a resolvent operator of B for all λ > 0. Then F (JBλ (I − λB)) = (A+B)−10.

Lemma 2.7. ([32]) (Demiclosed principle) Let C be a nonempty, closed and
convex subset of a Hilbert space H and T : C → C be a nonexpansive mapping.
Then I − T is demiclosed at zero, i.e., xn ⇀ x and xn− Txn → 0 implies x = Tx.

Lemma 2.8. ([29]) Assume that {an} is a sequence of nonnegative real numbers
such that

an+1 ≤ (1− γn)an + γnδn,

where {γn} is a sequence in (0, 1) and {δn} is a sequence in R such that

(i)
∑∞
n=0 γn =∞;

(ii) lim supn→∞ δn ≤ 0 or
∑∞
n=0 |γnδn| <∞.

Then, limn→∞ an = 0.

Lemma 2.9. Let H be a real Hilbert space. Then, the following inequality holds:

‖x+ y‖2 ≤ ‖x‖2 + 2〈y, x+ y〉, ∀x, y ∈ H.

3 Main Results

3.1 An implicit iteration scheme

Let C be a nonempty, closed and convex subset of a real Hilbert space H and let
A : C → H be an α-inverse strongly monotone mapping. Let B be a maximal
monotone operator in H such that the domain of B is included in C and let
JBλ = (I + λB)−1 be a resolvent operator of B for all λ > 0. Let S : C → C
be a nonexpansive mapping such that Ω := F (S) ∩ (A + B)−10 6= ∅. Assume
that λ is a positive constant such that λ ∈ [a, b] ⊂ (0, 2α) and {ut} ⊂ H is a
perturbation satisfy limt→0+ ut = u′ ∈ H. For each t ∈

(
0, 1 − λ

2α

)
, we define a

mapping St : C → C by

Stx := SJBλ (tut + (1− t)x− λAx), ∀x ∈ C.

By the nonexpansiveness of S, JBλ and by Lemma 2.3, for all x, y ∈ C, we have

‖Stx− Sty‖ = ‖SJBλ (tut + (1− t)x− λAx)− SJBλ (tut + (1− t)y − λAy)‖
≤ ‖JBλ (tut + (1− t)x− λAx)− JBλ (tut + (1− t)y − λAy)‖

= (1− t)
∥∥∥∥(I − λ

1− t
A

)
x−

(
I − λ

1− t
A

)
y

∥∥∥∥
≤ (1− t)‖x− y‖,
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which implies that the mapping St is a contraction. Hence, St has a unique fixed
point, denoted by xt, which uniquely solves the fixed point equation

xt = SJBλ (tut + (1− t)xt − λAxt). (3.1)

Theorem 3.1. Assume that {xt} is defined by (4.6), then {xt} converges strongly
as t → 0+ to a point x∗ ∈ Ω, where x∗ is the unique solution of the variational
inequality

〈u′ − x∗, z − x∗〉 ≤ 0, ∀z ∈ Ω. (3.2)

As a special case, if we take ut = 0, then the sequence {xt} converges strongly to
the minimum-norm common element of Ω.

Proof. First, we show that {xt} is bounded. Set xt = Syt, where yt = JBλ (tut +
(1− t)xt − λAxt). Take p ∈ Ω, we observe that

p = Sp = SJBλ (p− λAp) = SJBλ

(
tp+ (1− t)

(
p− λ

1− t
Ap

))
, ∀t ∈

(
0, 1− λ

2α

)
.

Since S, JBλ and I − λ
1−tA are nonexpansive (see Lemma 2.3), we have

‖yt − p‖ =

∥∥∥∥JBλ (tut + (1− t)
(
I − λ

1− t
A

)
xt

)
− JBλ

(
tp+ (1− t)

(
I − λ

1− t
A

)
p

)∥∥∥∥
≤

∥∥∥∥t(ut − p) + (1− t)
[(
I − λ

1− t
A

)
xt −

(
I − λ

1− t
A

)
p

]∥∥∥∥
≤ t‖ut − p‖+ (1− t)

∥∥∥∥(I − λ

1− t
A

)
xt −

(
I − λ

1− t
A

)
p

∥∥∥∥
≤ t‖ut − p‖+ (1− t)‖xt − p‖. (3.3)

Then, it follows that

‖xt − p‖ = ‖Syt − Sp‖
≤ ‖yt − p‖
≤ t‖ut − p‖+ (1− t)‖xt − p‖,

which implies that

‖xt − p‖ ≤ ‖ut − p‖.

Since limt→0+ ut = u′, then there exists a constant K1 > 0 such that K1 =
supt>0{‖ut‖}. Hence, {xt} is bounded, so are {yt}, {Sxt} and {Axt}.

Next, we show that limt→0+ ‖xt − Sxt‖ = 0. By the convexity of ‖ · ‖2 and
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(3.3), we have

‖xt − p‖2 ≤ ‖yt − p‖2

≤
∥∥∥∥(1− t)

[(
xt −

λ

1− t
Axt

)
−
(
p− λ

1− t
Ap

)]
+ t(ut − p)

∥∥∥∥2

≤ (1− t)
∥∥∥∥(xt − λ

1− t
Axt

)
−
(
p− λ

1− t
Ap

)∥∥∥∥2

+ t‖ut − p‖2

= (1− t)
∥∥∥∥(xt − p)−

λ

1− t
(
Axt −Ap

)∥∥∥∥2

+ t‖ut − p‖2

= (1− t)
[
‖xt − p‖2 −

2λ

1− t
〈Axt −Ap, xt − p〉+

λ2

(1− t)2
‖Axt −Ap‖2

]
+ t‖ut − p‖2

≤ (1− t)
[
‖xt − p‖2 −

2λα

1− t
‖Axt −Ap‖2 +

λ2

(1− t)2
‖Axt −Ap‖2

]
+ t‖ut − p‖2

= (1− t)
[
‖xt − p‖2 +

λ

(1− t)2

(
λ− 2(1− t)α

)
‖Axt −Ap‖2

]
+ t‖ut − p‖2

≤ ‖xt − p‖2 +
λ

1− t
(
λ− 2(1− t)α

)
‖Axt −Ap‖2 + t‖ut − p‖2,

which implies that

λ

1− t
(
2(1− t)α− λ

)
‖Axt −Ap‖2 ≤ t‖ut − p‖2.

Since t ∈
(
0, 1− λ

2α

)
, we have 2(1− t)α− λ > 0. Then, we obtain

lim
t→0+

‖Axt −Ap‖ = 0. (3.4)

Since JBλ is firmly nonexpansive, we have

‖yt − p‖2

= ‖JBλ (tut + (1− t)xt − λAxt)− JBλ (p− λAp)‖2

≤ 〈tut + (1− t)xt − λAxt − (p− λAp), yt − p〉

=
1

2

[
‖tut + (1− t)xt − λAxt − (p− λAp)‖2 + ‖yt − p‖2 − ‖tut + (1− t)xt − λ(Axt −Ap)− yt‖2

]
,
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which implies that

‖yt − p‖2

≤ ‖tut + (1− t)xt − λAxt − (p− λAp)‖2 − ‖tut + (1− t)xt − λ(Axt −Ap)− yt‖2

=

∥∥∥∥(1− t)
[(
I − λ

1− t
A

)
xt −

(
I − λ

1− t
A

)
p

]
+ t(ut − p)

∥∥∥∥2

− ‖tut + (1− t)xt − λ(Axt −Ap)− yt‖2

≤ (1− t)
∥∥∥∥(I − λ

1− t
A

)
xt −

(
I − λ

1− t
A

)
p

∥∥∥∥2

+ t‖ut − p‖2 − ‖tut + (1− t)xt − λ(Axt −Ap)− yt‖2

≤ (1− t)‖xt − p‖2 + t‖ut − p‖2 − ‖tut + (1− t)xt − λ(Axt −Ap)− yt‖2

≤ ‖xt − p‖2 + t‖ut − p‖2 − ‖tut + (1− t)xt − λ(Axt −Ap)− yt‖2

≤ ‖yt − p‖2 + t‖ut − p‖2 − ‖tut + (1− t)xt − λ(Axt −Ap)− yt‖2.

Then, we have

‖tut + (1− t)xt − λ(Axt −Ap)− yt‖2 ≤ t‖ut − p‖2.

From (3.4), we obtain that

lim
t→0+

‖xt − yt‖ = 0,

and hence

lim
t→0+

‖yt − Syt‖ = lim
t→0+

‖yt − xt‖ = 0. (3.5)

Moreover, we get that

‖xt − Sxt‖ ≤ ‖xt − yt‖+ ‖yt − Syt‖+ ‖Syt − Sxt‖
≤ 2‖xt − yt‖+ ‖yt − Syt‖ → 0 as t→ 0+. (3.6)

For z ∈ Ω, by Lemmas 2.3 and 2.9, we obtain that

‖xt − z‖2 ≤
∥∥∥∥(1− t)

[(
I − λ

1− t
A

)
xt −

(
I − λ

1− t
A

)
z

]
+ t(ut − z)

∥∥∥∥2

≤ (1− t)2

∥∥∥∥(I − λ

1− t
A

)
xt −

(
I − λ

1− t
A

)
z

∥∥∥∥2

+ 2t〈ut − z, xt − z〉

≤ (1− t)2‖xt − z‖+ 2t〈u′ − z, xt − z〉+ 2t〈ut − u′, xt − z〉
= (1− 2t)‖xt − z‖2 + t2‖xt − z‖2 + 2t〈u′ − z, xt − z〉+ 2t〈ut − u′, xt − z〉,

which implies that

‖xt − z‖2 ≤ 〈u′ − z, xt − z〉+ 〈ut − u′, xt − z〉+
t

2
‖xt − z‖2

≤ 〈u′ − z, xt − z〉+

(
‖ut − u′‖+

t

2

)
K2, (3.7)
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where K2 > 0 is a constant such that K2 = supt>0{‖xt − z‖, ‖xt − z‖2}.
Next, we show that {xt} is relatively norm-compact. Assume that {tn} ⊂ (0, 1)

is a sequence such that tn → 0+ as n → ∞. Put xn := xtn , yn := ytn , λn := λtn
and un := utn . From (3.6), we have

‖xn − z‖2 ≤ 〈u′ − z, xn − z〉+

(
‖un − u′‖+

tn
2

)
K2. (3.8)

Since {xn} is bounded, without loss of generality, we assume that there is a sub-
sequence {xni

} of {xn} such that xni
⇀ x∗ ∈ C as i → ∞. From (3.6), we have

limn→∞ ‖xn − Sxn‖ = 0. It follows from Lemma 2.7 that x∗ ∈ F (S). Further, we
show that x∗ ∈ (A+B)−10. Let v ∈ Bu. Note that

yn = JBλn
(tnun + (1− tn)xn − λnAxn).

Then, we have

tnun + (1− tn)xn − λnAxn ∈ (I + λnB)yn ⇐⇒
1

λn

(
tnun + (1− tn)xn − λnAxn − yn

)
∈ Byn.

Since B is maximal monotone, we have (u, v) ∈ B,〈
1

λn

(
tnun) + (1− tn)xn − λnAxn − yn

)
− v, yn − u

〉
≥ 0

⇐⇒ 〈tnun + (1− tn)xn − λnAxn − yn − λnv, yn − u〉 ≥ 0,

which implies that

〈Axn + v, yn − u〉 ≤
1

λn
〈xn − yn, yn − u〉+

tn
λn
〈un − xn, yn − u〉

≤ 1

λn
‖xn − yn‖‖yn − u‖+

tn
λn
‖un − xn‖‖yn − u‖

≤
(
‖xn − yn‖+ tn

)
K3, (3.9)

where K3 > 0 is a constant such that K3 = supn≥1

{
1
λn

(
‖yn−u‖, ‖un−xn‖‖yn−

u‖
)}

.

Since ‖xn − yn‖ → 0 and tn → 0+ as n→∞, then from (3.9), we obtain that
〈Ax∗+v, x∗−u〉 ≤ 0, that is 〈−Ax∗−v, x∗−u〉 ≥ 0, this implies that −Ax∗ ∈ Bx∗,
that is x∗ ∈ (A+B)−10. Hence x∗ ∈ Ω := F (S) ∩ (A+B)−10.

Now, replacing z in (3.8) with x∗, we have

‖xn − x∗‖2 ≤ 〈u′ − x∗, xn − x∗〉+

(
‖un − u′‖+

tn
2

)
K2. (3.10)

Since xn ⇀ x∗. Then, we get that xn → x∗. This proved the relatively norm
compactness of the net {xt} as t→ 0+.
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Now, we show that the solution of (3.2) is singleton. Assume that x̂, x∗ ∈ Ω
are solutions of (3.2). Then, we have

〈u′ − x̂, x∗ − x̂〉 ≤ 0

and

〈u′ − x∗, x̂− x∗〉 ≤ 0.

Adding up above two inequalities, we have

‖x∗ − x̂‖2 ≤ 0.

This implies that x̂ = x∗ and the uniqueness is proved. In summary, we have
shown that each cluster point of {xt} equal to x∗ as t→ 0+.

Finally, if we take ut = 0 then (3.2) is reduced to

〈−x∗, z − x∗〉 ≤ 0, ∀z ∈ Ω.

It follows that

‖x∗‖2 ≤ 〈z, x∗〉 ≤ ‖z‖‖x∗‖, ∀z ∈ Ω,

that is

‖x∗‖ ≤ ‖z‖, ∀z ∈ Ω.

Therefore, x∗ is a minimum-norm common element of Ω. This completes the proof.
2

3.2 An explicit iteration scheme

Theorem 3.2. Let C be a nonempty, closed and convex subset of a real Hilbert
space H and let A : C → H be an α-inverse strongly monotone mapping. Let B
be a maximal monotone operator in H such that the domain of B is included in C
and let JBλ = (I+λB)−1 be a resolvent operator of B for all λ > 0. Let S : C → C
be a nonexpansive mapping such that Ω := F (S)∩ (A+B)−10 6= ∅. For an initial
guess x1 ∈ C, define the sequence {xn} by{

yn = JBλn
(αnun + (1− αn)xn − λnAxn),

xn+1 = βnxn + (1− βn)Syn, ∀n ≥ 1,
(3.11)

where {λn} ⊂
(
0, 2α

)
, {αn} ⊂ (0, 1), {βn} ⊂ (0, 1) and {un} ⊂ H is a perturbation

for the n-step iteration, which satisfy the following conditions:

(C1) limn→∞ αn = 0 and
∑∞
n=1 αn =∞;

(C2) 0 < a ≤ βn ≤ b < 1;
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(C3) 0 < a′ ≤ λn ≤ b′ < 2α with limn→∞ |λn+1 − λn| = 0 and 0 < a′′ ≤ λn

1−αn
≤

b′′ < 2α;

(C4) limn→∞ un = u′ ∈ H.

Then {xn} defined by (3.11) converges strongly to a point x∗ ∈ Ω, where x∗ is the
unique solution of the variational inequality (3.2). As a special case, if we take
un = 0, then the sequence {xn} converges strongly to the minimum-norm common
element of Ω.

Proof. First, we show that {xn} is bounded. It is implies from (C4) that {un}
is bounded sequence. Take p ∈ Ω, then there exists a constant M1 > 0 such that
M1 = supn≥1{‖un − p‖}. We observe that

p = Sp = JBλn
(p− λnAp) = JBλn

(
αnp+ (1− αn)

(
p− λn

1− αn
Ap

))
.

Since JBλn
, S and I − λn

1−αn
A are nonexpansive (see Lemma 2.3), we have

‖yn − p‖

=

∥∥∥∥JBλn

(
αnun + (1− αn)

(
I − λn

1− αn
A

)
xn

)
− JBλn

(
αnp+ (1− αn)

(
I − λn

1− αn
A

)
p

)∥∥∥∥
≤

∥∥∥∥αn(un − p) + (1− αn)

[(
I − λn

1− αn
A

)
xn −

(
I − λn

1− αn
A

)
p

]∥∥∥∥
≤ αn‖un − p‖+ (1− αn)

∥∥∥∥(I − λn
1− αn

A

)
xn −

(
I − λn

1− αn
A

)
p

∥∥∥∥
≤ αn‖un − p‖+ (1− αn)‖xn − p‖. (3.12)

Then, it follows that

‖xn+1 − p‖ = ‖βn(xn − p) + (1− βn)(Syn − p)‖
≤ βn‖xn − p‖+ (1− βn)‖Syn − p‖
≤ βn‖xn − p‖+ (1− βn)‖yn − p‖

≤ βn‖xn − p‖+ (1− βn)

[
αn‖un − p‖+ (1− αn)‖xn − p‖

]
=

(
1− (1− βn)αn

)
‖xn − p‖+ (1− βn)αn‖un − p‖

≤ max{‖xn − p‖,M1}.

By induction, we have

‖xn − p‖ ≤ max{‖x1 − p‖,M1}, ∀n ≥ 1.

Hence, {xn} is bounded, so are {yn}, {Axn} and {Sxn}.
Next, we show that limn→∞ ‖xn+1 − xn‖ = 0. Set yn = JBλn

zn, where zn =

αnun + (1 − αn)xn − λnAxn. By the nonexpansivity of the mappings JBλn
and
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I − λn

1−αn
A, we have

‖yn+1 − yn‖
= ‖JBλn+1

zn+1 − JBλn
zn‖

≤ ‖JBλn+1
zn+1 − JBλn+1

zn‖+ ‖JBλn+1
zn − JBλn

zn‖

≤ ‖zn+1 − zn‖+ ‖JBλn+1
zn − JBλn

zn‖

= ‖αn+1un+1 + (1− αn+1)xn+1 − λn+1Axn+1 − (αnun + (1− αn)xn − λnAxn)‖+ ‖JBλn+1
zn − JBλn

zn‖

=

∥∥∥∥αn+1(un+1 − un) + (αn+1 − αn)(un − xn) + (1− αn+1)

[(
I − λn+1

1− αn+1
A

)
xn+1 −

(
I − λn

1− αn
A

)
xn

]
+(λn − λn+1)Axn

∥∥∥∥+ ‖JBλn+1
zn − JBλn

zn‖

≤ αn+1

(
‖un+1‖+ ‖un‖

)
+ |αn+1 − αn|

(
‖un‖+ ‖xn‖

)
+(1− αn+1)

∥∥∥∥(I − λn+1

1− αn+1
A

)
xn+1 −

(
I − λn

1− αn
A

)
xn

∥∥∥∥
+|λn+1 − λn|‖Axn‖+ ‖JBλn+1

zn − JBλn
zn‖

≤ (1− αn+1)‖xn+1 − xn‖+ αn+1

(
‖un+1‖+ ‖un‖

)
+ |αn+1 − αn|

(
‖un‖+ ‖xn‖

)
+ |λn+1 − λn|‖Axn‖

+‖JBλn+1
zn − JBλn

zn‖.

By Lemma 2.5, we have

‖JBλn+1
zn − JBλn

zn‖ ≤
|λn+1 − λn|

λn+1
‖JBλn+1

zn − zn‖.

Then, it follows that

‖yn+1 − yn‖
≤ (1− αn+1)‖xn+1 − xn‖+ αn+1

(
‖un+1‖+ ‖un‖

)
+ |αn+1 − αn|

(
‖un‖+ ‖xn‖

)
+|λn+1 − λn|‖Axn‖+

|λn+1 − λn|
λn+1

‖JBλn+1
zn − zn‖

≤ (1− αn+1)‖xn+1 − xn‖+

(
αn+1 + |αn+1 − αn|+ |λn+1 − λn|+

|λn+1 − λn|
λn+1

)
M2,

where M2 = supn≥1

{
‖un+1‖+‖un‖, ‖un‖+‖xn‖, ‖Axn‖, ‖JBλn+1

zn− zn‖
}

. Then,
we have

‖Syn+1 − Syn‖
≤ ‖yn+1 − yn‖

≤ (1− αn+1)‖xn+1 − xn‖+

(
αn+1 + |αn+1 − αn|+ |λn+1 − λn|+

|λn+1 − λn|
a′

)
M2.

From (C1) and (C3), we obtain

lim sup
n→∞

(
‖Syn+1 − Syn‖ − ‖xn+1 − xn‖

)
≤ 0.
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From Lemma 2.2, we get

lim
n→∞

‖Syn − xn‖ = 0. (3.13)

Consequently,

lim
n→∞

‖xn+1 − xn‖ = lim
n→∞

(1− βn)‖Syn − xn‖ = 0. (3.14)

Next, we show that limn→∞ ‖xn−Sxn‖ = 0. By the convexity of ‖ · ‖2 and (3.12),
we have

‖yn − p‖2

≤
∥∥∥∥(1− αn)

[(
xn −

λn
1− αn

Axn

)
−
(
p− λn

1− αn
Ap

)]
+ αn(un − p)

∥∥∥∥2

≤ (1− αn)

∥∥∥∥(xn − λn
1− αn

Axn

)
−
(
p− λn

1− αn
Ap

)∥∥∥∥2

+ αn‖un − p‖2

= (1− αn)

∥∥∥∥(xn − p)−
λn

1− αn
(Axn −Ap)

∥∥∥∥2

+ αn‖un − p‖2

= (1− αn)

[
‖xn − p‖2 −

2λn
1− αn

〈Axn −Ap, xn − p〉+
λ2
n

(1− αn)2
‖Axn −Ap‖2

]
+ αn‖un − p‖2

≤ (1− αn)

[
‖xn − p‖2 −

2λnα

1− αn
‖Axn −Ap‖2 +

λ2
n

(1− αn)2
‖Axn −Ap‖2

]
+ αn‖un − p‖2

= (1− αn)

[
‖xn − p‖2 +

λn
(1− αn)2

(
λn − 2(1− αn)α

)
‖Axn −Ap‖2

]
+ αn‖un − p‖2

≤ ‖xn − p‖2 +
λn

1− αn

(
λn − 2(1− αn)α

)
+ αn‖un − p‖2. (3.15)

Then, it follows from (3.15) that

‖xn+1 − p‖2

≤ βn‖xn − p‖2 + (1− βn)‖Syn − p‖2

≤ βn‖xn − p‖2 + (1− βn)‖yn − p‖2

≤ βn‖xn − p‖2 + (1− βn)

[
‖xn − p‖2 +

λn
1− αn

(
λn − 2(1− αn)α

)
‖Axn −Ap‖2 + αn‖un − p‖2

]
= ‖xn − p‖2 + (1− βn)αn‖un − p‖2 + λn(1− βn)

(
λn

1− αn
− 2α

)
‖Axn −Ap‖2,

which implies by (C2) and (C3) that

b′(1− b)(2α− b′′)‖Axn −Ap‖2

≤ ‖xn − p‖2 − ‖xn+1 − p‖2 − (1− βn)αn‖xn − p‖2 + (1− βn)αn‖un − p‖2

≤
(
‖xn − p‖ − ‖xn+1 − p‖

)
‖xn+1 − xn‖+ (1− βn)αn

[
‖un − p‖2 − ‖xn − p‖2

]
.



14 P. Sunthrayuth and P. Kumam

From (C1)− (C3) and (3.14), we obtain that

lim
n→∞

‖Axn −Ap‖ = 0. (3.16)

On the other hand, by firmly nonexpansivity of JBλn
, we have

‖yn − p‖2

= ‖JBλn
(αnun + (1− αn)xn − λnAxn)− JBλn

(p− λnAp)‖2

≤ 〈αnun + (1− αn)xn − λnAxn − (p− λnAp), yn − p〉

=
1

2

[
‖αnun + (1− αn)xn − λnAxn − (p− λnAp)‖2 + ‖yn − p‖2

−‖αnun + (1− αn)xn − λn(Axn −Ap)− yn‖2
]
,

which implies that

‖yn − p‖2

≤ ‖αnun + (1− αn)xn − λnAxn − (p− λnAp)‖2 − ‖αnun + (1− αn)xn − λn(Axn −Ap)− yn‖2

≤ αn‖un − p‖2 + (1− αn)‖xn − p‖2 − ‖αnun + (1− αn)xn − λn(Axn −Ap)− yn‖2.

Then, it follows that

‖xn+1 − p‖2

≤ βn‖xn − p‖2 + (1 + βn)‖yn − p‖2

≤ βn‖xn − p‖2 + (1 + βn)

[
αn‖un − p‖2 + (1− αn)‖xn − p‖2 − ‖αnun + (1− αn)xn − λn(Axn −Ap)− yn‖2

]
=

(
1− (1− βn)αn

)
‖xn − p‖2 + (1− βn)αn‖un − p‖2 − (1− βn)‖αnun + (1− αn)xn − λn(Axn −Ap)− yn‖2,

which implies by (C2) that

(1− b)‖αnun + (1− αn)xn − λn(Axn −Ap)− yn‖2

≤ ‖xn − p‖2 − ‖xn+1 − p‖2 − (1− βn)αn‖un − p‖2 + (1− βn)αn‖un − p‖2

≤
(
‖xn − p‖ − ‖xn+1 − p‖

)
‖xn+1 − xn‖ − (1− βn)αn‖un − p‖2 + (1− βn)αn‖un − p‖2.

Then, by (C1), (C2) and (3.13), we have

lim
n→∞

‖xn − yn‖ = 0. (3.17)

Consequently,

‖xn − Sxn‖ ≤ ‖xn − Syn‖+ ‖Syn − Sxn‖
≤ ‖xn − Syn‖+ ‖yn − xn‖ → 0 as n→∞. (3.18)

Next, we show that

lim sup
n→∞

〈u′ − x∗, yn − x∗〉 ≤ 0,
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where x∗ is the same as in Theorem 3.1. Since {yn} is bounded, there exists a
subsequence {yni

} of {yn} such that

lim sup
n→∞

〈u′ − x∗, yn − x∗〉 = lim
i→∞
〈u′ − x∗, yni − x∗〉.

By the boundedness of {yn}, without loss of generality, we assume that yni
⇀ z ∈

C as i → ∞. From (3.17) and (3.18), we also have yn − Syn → 0. Then from
Lemma 2.7, we get that z ∈ F (S). Further, by the similar method in the proof of
Theorem 3.1, we can show that z ∈ Ω. Then, we obtain

lim sup
n→∞

〈u′ − x∗, yn − x∗〉 = 〈u′ − x∗, z − x∗〉 ≤ 0. (3.19)

Finally, we show that xn → x∗. From (3.12) and Lemma 2.9, we have

‖Syn − x∗‖2 ≤ ‖yn − x∗‖2

=

∥∥∥∥(1− αn)

[(
I − λn

1− αn
A

)
xn −

(
I − λn

1− αn
A

)
x∗
]

+ αn(un − x∗)
∥∥∥∥2

≤ (1− αn)2

∥∥∥∥(I − λn
1− αn

A

)
xn −

(
I − λn

1− αn
A

)
x∗
∥∥∥∥2

+ 2αn〈un − x∗, yn − x∗〉

≤ (1− αn)2‖xn − x∗‖2 + 2αn〈un − x∗, yn − x∗〉.

Then, it follows that

‖xn+1 − x∗‖2

≤ βn‖xn − x∗‖2 + (1− βn)‖Syn − x∗‖2

≤ βn‖xn − x∗‖2 + (1− βn)

[
(1− αn)2‖xn − x∗‖2 + 2αn〈un − x∗, yn − x∗〉

]
=

(
βn + (1− βn)(1− αn)2

)
‖xn − x∗‖2 + 2αn(1− βn)〈un − x∗, yn − x∗〉

≤
(
1− αn(1− βn)

)
‖xn − x∗‖2 + 2αn(1− βn)〈un − u′, yn − x∗〉+ 2αn(1− βn)〈u′ − x∗, yn − x∗〉

≤
(
1− αn(1− βn)

)
‖xn − x∗‖2 + 2αn(1− βn)‖un − u′‖‖yn − x∗‖+ 2αn(1− βn)〈u′ − x∗, yn − x∗〉

= (1− γn)‖xn − x∗‖2 + γnδn,

where γn = αn(1− βn) and δn = 2‖un − u′‖‖yn − x∗‖+ 2〈u′ − x∗, yn − x∗〉. From
(C1), (C4) and (3.18), it is easily seen that

∑∞
n=1 γn =∞ and lim supn→∞ δn ≤ 0.

Therefore, by Lemma 2.8, we conclude that xn → x∗. This completes the proof.2

4 Some applications

4.1 Application to variational inequalities

Let H be a real Hilbert space and g : H → (−∞,+∞] be a proper convex lower
semi-continuous function. Then the subdifferential ∂g of g is defined as follows:

∂g(x) = {y ∈ H : g(z) ≥ g(x) + 〈z − x, y〉, ∀z ∈ H}, ∀x ∈ H.
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From [34], we know that ∂g is maximal monotone. Let C be a closed and convex
subset of H and let δC be the indicator function of C, i.e.,

δC(x) =

{
0, x ∈ C,
+∞, x /∈ C. (4.1)

Since δC is a proper lower semicontinuous convex function on H, the subdifferential
∂δC of δC is a maximal monotone operator. So, we can define the resolvent of ∂δC
by

J∂δCλ x = (I + λ∂δC)−1x, ∀x ∈ H.

Lemma 4.1. ([33]) Let C be a nonempty, closed and convex subset of a real Hilbert
space H, PC be the metric projection from H onto C and ∂δC be the subdifferential
of δC , where δC is as defined in (4.5) and J∂δCλ = (I + r∂δC)−1. Then

y = J∂δCλ x⇐⇒ y = PCx, ∀x ∈ H, y ∈ C.

Using Theorems 3.1, 3.2 and Lemma 4.1, we obtain the following results.

Theorem 4.2. Let C be a nonempty, closed and convex subset of a real Hilbert
space H and let A : C → H be an α-inverse strongly monotone mapping. Let
S : C → C be a nonexpansive mapping such that Ω := F (S)∩V I(C,A) 6= ∅. Let λ
be a positive constant such that λ ∈ [a, b] ⊂ (0, 2α) and {ut} ⊂ H be a perturbation
satisfy limt→0+ ut = u′ ∈ H. For each t ∈

(
0, 1− λ

2α

)
, the net sequence {xt} define

by

xt = SPC(tut + (1− t)xt − λAxt), (4.2)

converges strongly to a point x∗ ∈ Ω. As a special case, if we take ut = 0, then the
sequence {xt} converges strongly to the minimum-norm common element of Ω.

Theorem 4.3. Let C be a nonempty, closed and convex subset of a real Hilbert
space H and let A : C → H be an α-inverse strongly monotone mapping. Let
S : C → C be a nonexpansive mapping such that Ω := F (S) ∩ V I(C,A) 6= ∅. For
initial guess x1 ∈ C, then the sequence {xn} define by{

yn = PC(αnun + (1− αn)xn − λnAxn),

xn+1 = βnxn + (1− βn)Syn, ∀n ≥ 1,
(4.3)

where {λn} ⊂
(
0, 2α

)
, {αn} ⊂ (0, 1), {βn} ⊂ (0, 1) and {un} ⊂ H is a perturbation

for the n-step iteration, which satisfy the conditions (C1) − (C4). Then {xn}
defined by (4.3) converges strongly to a point x∗ ∈ Ω. As a special case, if we take
un = 0, then the sequence {xn} converges strongly to the minimum-norm common
element of Ω.
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4.2 Application to equilibrium problems

Let C be a nonempty, closed convex subset of a real Hilbert space H and Θ :
C×C → R be a bifunction, where R is the set of all real numbers. The equilibrium
problem is to find x ∈ C such that

Θ(x, y) ≥ 0, ∀y ∈ C. (4.4)

The set of solutions of the equilibrium problem (4.4) is denoted by EP (Θ).
In the real world, many problems have reformulations which reduces to find a

solution of the equilibrium problem (4.4) for instance, optimization and economics
(see, e.g., [35] and [36]).

For solving the equilibrium problem, let us assume that a bifunction Θ : C ×
C → R satisfies the following conditions:

(A1) Θ(x, x) = 0 for all x ∈ C;

(A2) Θ is monotone, i.e., Θ(x, y) + Θ(y, x) ≤ 0 for each x, y ∈ C;

(A3) Θ is upper-semicontinuous, i.e., for each x, y, z ∈ C,

lim supt→0+ Θ(tz + (1− t)x, y) ≤ Θ(x, y);

(A4) Θ(x, ·) is convex and weakly lower semicontinuous for each x ∈ C.

Lemma 4.4. ([35]) Let C be a nonempty, closed and convex subset of H and let
Θ : C×C → R satisfying the conditions (A1)− (A4). Let λ > 0 and x ∈ H. Then
there exists z ∈ C such that

Θ(z, y) + 1
λ 〈y − z, z − x〉 ≥ 0, ∀y ∈ C.

Lemma 4.5. ([36]) Assume that Θ : C × C → R satisfies the conditions (A1) −
(A4). For λ > 0 and x ∈ H, define a mapping Tλ : H → C as follows:

Tλ(x) =
{
z ∈ C : Θ(z, y) + 1

λ 〈y − z, z − x〉 ≥ 0, ∀y ∈ C
}
, ∀x ∈ H.

Then the following hold:

(1) Tλ is single-valued.

(2) Tλ is firmly nonexpansive, i.e., for each x, y ∈ H,

‖Tλx− Tλy‖2 ≤ 〈Tλx− Tλy, x− y〉.

(3) Fix(Tλ) = EP (Θ).

(4) EP (Θ) is closed and convex.

We call such Tλ the resolvent of Θ for λ > 0. The following Lemma can be
found in [33].
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Lemma 4.6. ([33]) Let C be a nonempty, closed and convex subset of a real Hilbert
space H. Let Θ : C × C → R be a bifunction satisfying (A1)-(A4). Let AΘ be a
multivalued mapping of H into itself defined by

AΘx =

{
{z ∈ H : Θ(x, y) ≥ 〈y − x, z〉,∀y ∈ C}, x ∈ C,
∅, x /∈ C. (4.5)

Then, EP (Θ) = A−1
Θ 0 and AΘ is a maximal monotone operator with dom(AΘ) ⊂

C. Further, for any x ∈ H and λ > 0, the resolvent Tλ of Θ coincides with the
resolvent of AΘ; i.e., Tλx = (I + λAΘ)−1x.

Using Theorems 3.1, 3.2, Lemmas 4.6 and 4.5 we obtain the following results.

Theorem 4.7. Let C be a nonempty, closed and convex subset of a real Hilbert
space H and let A : C → H be an α-inverse strongly monotone mapping. Let
Θ : C × C → R be a bifunction satisfying (A1)-(A4) and let Tλ be the resolvent
of Θ for λ > 0 with λ ∈ [a, b] ⊂ (0, 2α). Let S : C → C be a nonexpansive
mapping such that Ω := F (S) ∩ EP (Θ) 6= ∅. Let {ut} ⊂ H be a perturbation
satisfy limt→0+ ut = u′ ∈ H. For each t ∈

(
0, 1− λ

2α

)
, the net sequence {xt} define

by

xt = STλ(tut + (1− t)xt − λAxt). (4.6)

converges strongly to a point x∗ ∈ Ω. As a special case, if we take ut = 0, then the
sequence {xt} converges strongly to the minimum-norm common element of Ω.

Theorem 4.8. Let C be a nonempty, closed and convex subset of a real Hilbert
space H and let A : C → H be an α-inverse strongly monotone mapping. Let
Θ : C × C → R be a bifunction satisfying (A1)-(A4) and let Tλ be the resolvent
of Θ for λ > 0. Let S : C → C be a nonexpansive mapping such that Ω :=
F (S) ∩ EP (Θ) 6= ∅. For an initial guess x1 ∈ C, define the sequence {xn} by{

yn = Tλn
(αnun + (1− αn)xn − λnAxn),

xn+1 = βnxn + (1− βn)Syn
(4.7)

where {λn} ⊂
(
0, 2α

)
, {αn} ⊂ (0, 1), {βn} ⊂ (0, 1) and {un} ⊂ H is a perturbation

for the n-step iteration, which satisfy the conditions (C1)−(C4) Then {xn} defined
by (4.7) converges strongly to a point x∗ ∈ Ω. As a special case, if we take un = 0,
then the sequence {xn} converges strongly to the minimum-norm common element
of Ω.
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[11] G.Lóopez, V.Mart́ın-Márquez, F.H.Wang and H.K.Xu, Forward-Backward
splitting methods for accretive operators in Banach spaces, Abstract and
Applied Analysis 2012 (2012) Article ID 109236, 25 pages.

[12] Y.–C. Liou, Iterative Methods for the Sum of Two Monotone Operators,
Journal of Applied Mathematics Volume 2012, Article ID 638632, 11 pages.

[13] R.T. Rockafellar, On the maximal monotonicity of subdifferential mappings.
Pacific Journal of Mathematics, vol 33, pp. 209–216, 1970.

[14] W. Takahashi, N.–C. Wong and J.–C. Yao, Two generalized strong conver-
gence theorems of Halpern’s type in Hilbert spaces and applications, TAI-
WANESE JOURNAL OF MATHEMATICS Vol. 16, No. 3, pp. 1151–1172,
June 2012.



20 P. Sunthrayuth and P. Kumam

[15] S. S. Zhang, J. H. W. Lee, and C. K. Chan, Algorithms of common solutions
to quasi variational inclusion and fixed point problems, Applied Mathematics
and Mechanics, vol. 29, no. 5, pp. 571–581, 2008.

[16] A.N. Abdou, B.A. Alamri, Y.J. Cho, Y.Yao and L.J. Zhu, Parallel algorithms
for variational inclusions and fixed points with applications, Fixed Point The-
ory and Applications 2014, 2014:174.

[17] W. Li, A new iterative algorithm with errors for maximal monotone operators
and its applications, Machine Learning and Cybernetics, 2005, Proceedings
of 2005 International (Volume:2)

[18] D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequal-
ities and Their Applications. Academic Press, New York (1980)

[19] F. Facchinei and J.S. Pang, Finite-Dimensional Variational Inequalities and
Complementarity Problems. Springer, New York (2003)

[20] C. Byrne, A unified treatment of some iterative algorithms in signal processing
and image reconstruction, Inverse Problems, vol. 20, no. 1, pp. 103–120, 2004.

[21] P. L. Combettes, The convex feasibility problem in image recovery, in Ad-
vances in Imaging and Electron Physics, P. Hawkes, Ed., vol. 95, pp. 155–270,
Academic Press, New York, NY, USA, 1996.

[22] O. Guler, On the convergence of the proximal point algorithm for convex
minimization, SIAM J. Control Optim. 29 (1991) 403–419.

[23] G.B. Passty, Ergodic convergence to a zero of the sum of monotone operators
in Hilbert space, J. Math. Anal. Appl. 72 (1979) 383–390.

[24] M.V. Solodov and B.F. Svaiter, Forcing strong convergence of proximal point
iterations in a Hilbert space, Math. Program 87 (2000) 189–202.

[25] W. Takahashi, Nonlinear Functional Analysis, Yokohama Publishers, Yoko-
hama, 2000.

[26] H.Manaka and W.Takahashi, Weak convergence theorems for maximal mono-
tone operators with nonspreading mappings in a Hilbert space, CUBO 13
(2011) 11–24.

[27] K. Aoyama, H. Iiduka and W. Takahashi, WEAK CONVERGENCE OF
AN ITERATIVE SEQUENCE FOR ACCRETIVE OPERATORS IN BA-
NACH SPACES, Fixed Point Theory and Applications Volume 2006, Article
ID 35390, Pages 1–13.

[28] K. Deimling, Nonlinear Functional Analysis, Springer, Berlin, Germany, 1985.

[29] H.K. Xu, Iterative algorithms for nonlinear operators, Journal London Math-
ematical Society, vol. 66, no. 1, pp. 240–256, 2002.



The resolvent operator techniques with perturbations for finding zeros of maximal monotone 21

[30] T. Suzuki, Strong convergence of Krasnoselskii and Mann’s type sequence for
one–parameter nonexpansive semigroup without Bochner integrals, Journal
of Mathematical Analysis and Applications, vol. 305, pp. 227–239, 2005.

[31] V. Barbu, Nonlinear Semigroups and Differential Equations in Banach spaces,
Noordhoff Leiden, 1976.

[32] K.A. Gobel and W.A. Kirk, Topics in metric fixrd point theory, Cambridge
Studied in Advanved Mathematics, vol. 28, Cambridge University Press, 1990.

[33] S. Takahashi, W. Takahashi and M. Toyoda, Strong convergence theorems
for maximal monotone operators with nonlinear mappings in Hilbert spaces,
Journal of Optimization Theory and Applications, vol. 147, no. 1, pp. 27–41,
2010.

[34] R.T. Rockafellar, On the maximal monotonicity of subdifferential mappings.
Pacific Journal of Mathematics, vol 33, pp. 209–216, 1970.

[35] E. Blum, W. Oettli, From optimization and variational inequalities to equi-
librium problems, Math. Student 63 (1994), pp. 123–145.

[36] P.L. Combettes, S.A. Hirstoaga, Equilibrium programming in Hilbert spaces,
J. Nonlinear Convex Anal. 6 (2005), pp. 117–136.

(Received 27 May 2016)
(Accepted 9 September 2016)

Thai J. Math. Online @ http://thaijmath.in.cmu.ac.th

http://thaijmath.in.cmu.ac.th

	Introduction
	Preliminaries
	Main Results
	An implicit iteration scheme
	An explicit iteration scheme

	Some applications
	Application to variational inequalities
	Application to equilibrium problems


