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Abstract : Measuring the water quality in water sources or the Monkey Cheeks
Project with opened-closed reservoir. It can be measured by the field measurement,
using the water quality monitoring tools and the water quality models consist of
hydrodynamic model and dispersion model, to calculate the quality of the water.
Hydrodynamic model, using the shallow water equation as a governing equation,
is used to describe the water current, having source of wave maker and bottom
topography as the required data, bringing about the elevation and velocities of
water. Dispersion model, using the advection-diffusion equation as the governing
equation, is used to describe the spread of the pollutant concentration of water,
having pollutant concentration at point source and calculated water velocities from
the first model as the input data, bringing the time-dependent pollutant concen-
tration of water at any point. In this research, the three-dimensional surface fitting
technique is employed, the anisotropic bottom topography data is represented by
a surface function in the hydrodynamic model, in order to have a more realistic
water current and water quality approximations in opened-closed reservoir.
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1 Introduction

There are many methods for detecting the level of pollutants in the water,
mostly conducted by a field measurement and a mathematical simulation. The
shallow water mass transport’s problems are presented in [1], as the method of
characteristics has been reported applied. In [2], [3] and [4], the finite element
method for solving steady and unsteady water pollution measurements are intro-
duced. The various numerical techniques of solving the uniform flow of stream
water quality model are presented in [5], [6] and [7]. The numerical methods
of approximating the solution of the two-dimensional advection-diffusion-reaction
equation are proposed in [5], [8] and [9].

Most non-uniform flow models need the input data concerned with the velocity
of the current at any point and any time in the domain. The hydrodynamic model
provides the velocity field and the elevation of the water. In [10, 5, 8, 9, 6, 7], the
hydrodynamic model and advection-diffusion equation are used to approximate the
velocity of the water current in a bay and a channel. In [9] and [11], the results from
hydrodynamic model are used as data for the non-uniform flow of the advection-
diffusion-reaction equation, which provide the pollutant concentration field. The
term of the friction forces occurred thanks to the drag of sides of the uniform reser-
voir. The theoretical solution of the model was found at the ending point of the
domain and the analytical solution to check the accuracy of our approximate solu-
tion was used. In [9], the Lax-Wendroff method with stability analysis to solve the
two-dimensional hydrodynamic model with a rectangular domain was proposed.
In [12], develop mathematical models and numerical methods for approximating
water flow directions and pollutant concentration level in Rama-nine reservoirs in
opened with two parallel canals and assuming bottom topography of reservoir is
flat. The Lax-Wendroff method is subsequently used in non-dimensional form of
a shallow water equation to approximate the velocity of water and elevation of
water, we use the forward difference in time and backward difference in space of
advection diffusion equation. In [4] and [13], the Lax-Wendroff method for solving
the dimensional form of shallow water equation in rectangular model and spherical
model with Matlab program are proposed, respectively.

In this research, we begin with modifying a mathematical model, combin-
ing two existing mathematical models, a hydrodynamic model which is used to
describe the water current in an opened-closed reservoir and a dispersion model
which is used to describe the diffusion of the pollutant concentration of water in
an opened-closed reservoir. This is to make the proposed model suitable for the
reservoir. The shallow water equation of the hydrodynamic model is assumed by
averaging the equation over the depth with anisotropic bottom topography, and
discarding the term regarding the Coriolis force, surface wind effect and exter-
nal forces, resulting in the calculated velocity used in the dispersion model to
approximate the concentration levels of the pollutants.
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2 Water-Quality Model

In this section, two mathematical models are described. They were used to
simulate time-varying pollutant levels causing by wastewater discharges from ex-
ternal source into an opened-closed reservoir and drain water at the exit gate. The
first model was a hydrodynamic model that determined the velocity and elevation
of the water at any location in the reservoir with anisotropic bottom topography,
while the second model was a pollutant dispersion model that determined the
pollutant level at any point in the reservoir.

2.1 Hydrodynamic model: anisotropic bottom topography

Figure 1: Cross-section of the reservoir.

The two-dimensional unsteady flow of water into and out of the reservoir could
be determined by using the system of shallow water equations as the conservation
of mass and conservation of momentum were taken into account. the equations
of this system could be derived from depth-averaging the Navier-Stokes equations
in the vertical direction, neglecting the diffusion of momentum due to turbulence
and discarding the terms expressing the effects of friction, surface wind, Coriolis
factor and shearing stresses. The continuity equation is then expressed as follows:

∂h

∂t
+
∂(uh)

∂x
+
∂(vh)

∂y
= 0, (2.1)

and the momentum equations are expressed as below:

∂(uh)

∂t
+
∂(u2h+ 1

2gh
2)

∂x
+
∂(uvh)

∂y
= 0, (2.2)

∂(vh)

∂t
+
∂(uvh)

∂x
+
∂(v2h+ 1

2gh
2)

∂y
= 0, (2.3)
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where
h(x, y, t) is the depth measured from the mean surface of water to the reservoir

bed h = H + ξ (m),
ξ(x, y, t) is the elevation of surface of water from the mean water level in

reservoir (sea level) (m),
H(x, y) is the interpolated bottom topography function of the reservoir (m),
u(x, y, t) is velocity in x direction (m/s),
v(x, y, t) is velocity in y direction (m/s),
g is gravitational constant (9.8m/s2).

Such time (t), and two space coordinates, x and y are the independent vari-
ables. Likewise, the conserved quantities are mass, which is proportional to h, and
momentum, which is proportional to (uh) and (vh). As taken with respect to the
same term, the partial derivatives are grouped into vectors (∂x, ∂y.∂t) and later
rewritten as a hyperbolic partial differential equation as follows:

U =

 h
uh
vh

 , F (U) =

 uh
u2h+ 1

2gh
2

uvh

 , G(U) =

 vh
uvh

v2h+ 1
2gh

2

 . (2.4)

The hyperbolic PDE:

∂U

∂t
+
∂

∂t
F (U) +

∂

∂t
G(U) = 0. (2.5)

The initial conditions of reservoir were as follows: the x and y-velocity components

Figure 2: Opened-closed reservoir and observation points A,B,C,D and E

were zero as well as the water elevation: u = 0, v = 0 and ξ = 0, while the boundary
conditions were as follows: (i) ∂u

∂x = 0, ∂v
∂y = 0, ξ = 0 for the horizontal edges of

the rectangular reservoir; (ii) ∂u
∂x = 0, v = 0, ξ = 0 for the vertical edges; and (iii)

ξ = f(x, y) for the water flowing into the entrance gate and ∂u
∂x = u1,

∂v
∂y = 0 for

the velocity of water flow at exit gate as shown in Figure.2.
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2.2 Dispersion model

When applying the distributed pollutant process, including the transportation
and diffusion, the mass transfer equation is satisfied by averaging the equation over
the depth, generating the advection-diffusion equation,

∂C

∂t
+ u

∂C

∂x
+ v

∂C

∂y
= D

(
∂2C

∂x2
+
∂2C

∂y2

)
, (2.6)

where C(x, y, t) (kg/m3) is the concentration averaged in depth at the displace-
ment (x, y) and at time t , D(m2/s) is the diffusion coefficient.

Figure 3: Initial condition and boundary condition of hydrodynamic model
and dispersion model.

The water pollutant was discharged from the entrance gate into the opened-
closed reservoir by assuming the pollutant concentration constant as function c−
and this reservoir had draining water at the exit gate by assuming rate of drain
of water as ∂C

∂x = −c2. Initial pollutant concentration in reservoir was 0.5(kg/m3)
and there was no rate of change of pollutant concentration at the boundary of
reservoir as Figure.3.

3 Numerical Technique

3.1 Numerical method for the hydrodynamic model

We would use the Lax-Wendroff method to compute a numerical approxima-
tion to the solution of hyperbolic PDE (2.5). A regular square finite difference
grid with a vector-valued solution centred in the grid cells. The domain of prob-
lem L×M dimension, l and m were subintervals, such that l∆x = L, m∆y = M
and interval time [0, T ] , k was subintervals, such that k∆t = T ,Un

i,j = U(x, y, t)
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represents a three component vector at each cell i, j with time step n , where
x = i∆x, y = j∆y and t = k∆t.
Step 1: Compute initial vector Un

i,j at centre cells.

Figure 4: At the beginning of a time step, the variables represent the
solution at the centres of the grids.

Step 2: Take Un
i,j to compute vector Fn

i,j and Gn
i,j at centre cells.

(a) (b)

Figure 5: The vector (a) F at centres of grid (b) G at centres of grid.

Step 3: This stage is a half-step; it defines values of U at time step n+ 1
2 and the

midpoints of the edges of the grid.

U
n+

1
2

i+
1
2 ,j

=
1

2
(Un

i+1,j + Un
i,j) −

∆t

2∆x
(Fn

i+1,j − Fn
i,j) (3.1)

U
n+

1
2

i,j+
1
2

=
1

2
(Un

i,j+1 + Un
i,j) −

∆t

2∆y
(Gn

i,j+1 −Gn
i,j) (3.2)
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(a) (b)

Figure 6: The values of vector (a) U represent the solution at the midpoints
of the grids and (b) F,G at the midpoints of the grids.

Step 4: Take values of U from step 3 to compute F,G at time step n+ 1
2 and the

midpoints of the edges of the grid.
Step 5: The last step completes the time step by using the values computed in the
step 1 and step 4 to compute new values at the centres of the cells.

Un+1
i,j = Un

i,j −
∆t

∆x
(F

n+
1
2

i+
1
2 ,j

− F
n+

1
2

i− 1
2 ,j

) − ∆t

∆y
(G

n+
1
2

i,j+
1
2

−G
n+

1
2

i,j− 1
2

) (3.3)

Figure 7: The solution Un+1 at centres of the grids.

We would use the finite difference method to compute a numerical approxima-
tion to the boundary conditions of the reservoir.
For left boundary condition, where i = 0 and 1 6 j 6 m, therefore Un

0,j = Un
1,j ,

substituting the approximate unknown vector nodes Un
0,j of left boundary into
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(3.1), we had

U
n+

1
2

1
2 ,j

=
1

2
(Un

1,j + Un
0,j) −

∆t

2∆x
(Fn

1,j − Fn
0,j) = Un

1,j (3.4)

For right boundary condition, where i = l and 1 6 j 6 m, therefore Un
l+1,j = Un

l,j ,
substituting the approximate unknown vector nodes Un

i+1,j of right boundary into
(3.1), we had

U
n+

1
2

l+
1
2 ,j

=
1

2
(Un

l+1,j + Un
l,j) −

∆t

2∆x
(Fn

l+1,j − Fn
l,j) = Un

l,j (3.5)

For lower boundary condition, where 1 6 i 6 l and j = 0, therefore Un
i,0 = Un

i,1,
substituting the approximate unknown vector nodes Un

i,0 of lower boundary into
(3.2), we had

U
n+

1
2

i,
1
2

=
1

2
(Un

i,1 + Un
i,0) − ∆t

2∆y
(Gn

i,1 −Gn
i,0) = Un

i,1 (3.6)

For upper boundary condition, where 1 6 i 6 l and j = m, therefore Un
i,m+1 =

Un
i,m, substituting the approximate unknown vector nodes Un

i,0 of upper boundary
into (3.2), we had

U
n+

1
2

i,m+
1
2

=
1

2
(Un

i,m+1 + Un
i,m) − ∆t

2∆y
(Gn

i,m+1 −Gn
i,0) = Un

i,m (3.7)

3.2 Numerical method for the dispersion model

We used the forward differences in time and backward difference in space in
advection-diffusion equation. We can approximate Cn

i,j , the value of the approxi-
mation of C(x, y, t) at point x = i∆x, y = j∆y and t = n∆t, where 1 ≤ i ≤ l, 1 ≤
j ≤ m and 0 ≤ n ≤ k.

∂C

∂t
=
Cn+1

i,j − Cn
i,j

∆t
, (3.8)

∂C

∂x
=
Cn

i,j − Cn
i−1,j

∆x
, (3.9)

∂C

∂y
=
Cn

i,j − Cn
i,j−1

∆y
, (3.10)

∂2C

∂x2
=
Cn

i+1,j − 2Cn
i,j + Cn

i−1,j

(∆x)
2 , (3.11)

∂2C

∂y2
=
Cn

i,j+1 − 2Cn
i,j + Cn

i,j−1

(∆y)
2 . (3.12)
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Taking the forward in time and backward in space (2.6), we got the following finite
difference equation,

Cn+1
i,j − Cn

i,j

∆t
+ uni,j

(
Cn

i,j − Cn
i−1,j

∆x

)
+ vni,j

(
Cn

i,j − Cn
i,j−1

∆y

)
=,

D

(
Cn

i+1,j − 2Cn
i,j + Cn

i−1,j

(∆x)
2 +

Cn
i,j+1 − 2Cn

i,j + Cn
i,j−1

(∆y)
2

)
(3.13)

Cn+1
i,j =

∆tD

∆x2
Cn

i+1,j +
∆tD

∆y2
Cn

i,j+1 +

(
∆t

∆x
uni,j +

∆t

∆x2
D

)
Cn

i−1,j+(
∆t

∆y
vni,j +

∆t

∆y2
D

)
Cn

i,j−1 +

(
1 − ∆t

∆x
uni,j −

∆t

∆y
vni,j −

2D∆t

∆x2
− 2D∆t

∆y2

)
Cn

i,j ,

(3.14)
where D was the diffusion coefficient (m2/s).

If Cn
i,j lay at the boundary of the opened-closed reservoir, it was calculated

by applying the backward difference scheme at right boundary and top boundary,
forward difference scheme at left boundary and bottom boundary. For left bound-
ary condition, where i = 1 and 1 ≤ j ≤ m, therefore Cn

0,j = Cn
1,j , substituting the

approximate unknown vector nodes Cn
0,j of left boundary into (3.13), we had

Cn+1
1,j − Cn

1,j

∆t
+ vn1,j

(
Cn

1,j − Cn
1,j−1

∆y

)
=

D

(
Cn

2,j − Cn
1,j

(∆x)
2 +

Cn
1,j+1 − 2Cn

1,j + Cn
1,j−1

(∆y)
2

)
, (3.15)

For right boundary condition, where i = l and 1 ≤ j ≤ m, therefore Cn
i+1,j = Cn

1,j ,
substituting the approximate unknown vector nodes Cn

i+1,j of right boundary into
(3.13), we had

Cn+1
l,j − Cn

l,j

∆t
+ unl,j

(
Cn

l,j − Cn
l−1,j

∆x

)
+ vnl,j

(
Cn

l,j − Cn
l,j−1

∆y

)

= D

(
−Cn

l,j + Cn
l−1,j

(∆x)
2 +

Cn
l,j+1 − 2Cn

l,j + Cn
l,j−1

(∆y)
2

)
, (3.16)

For lower boundary condition, where 1 ≤ i ≤ l and j = 1, therefore Cn
i,0 = Cn

i,1,
substituting the approximate unknown vector nodes Cn

0,j of lower boundary into
(3.13), we had

Cn+1
i,1 − Cn

i,1

∆t
+ uni,1

(
Cn

i,1 − Cn
i−1,1

∆x

)

= D

(
Cn

i+1,1 − 2Cn
i,1 + Cn

i−1,1

(∆x)
2 +

Cn
i,2 − Cn

i,1

(∆y)
2

)
, (3.17)
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For upper boundary condition, where 1 ≤ i ≤ l and j = m, therefore Cn
i,m+1 =

Cn
i,m, substituting the approximate unknown vector nodes Cn

i,m+1 of left boundary
into (3.13), we had

Cn+1
i,m − Cn

i,m

∆t
+ uni,m

(
Cn

i,m − Cn
i−1,m

∆x

)
+ vni,m

(
Cn

i,m − Cn
i,m−1

∆y

)

= D

(
Cn

i+1,m − 2Cn
i,m + Cn

i−1,m

(∆x)
2 +

−Cn
i,m + Cn

i,m−1

(∆y)
2

)
, (3.18)

4 Numerical Experiments

In this section, various results were reported in a table, several surface and
contour plots, and a comparison graph. Hydrodynamic model, calculated the ve-
locities of water and elevation of water in opened-closed reservoir with an empirical
anisotropic bottom topography interpolated function 0.01sin(0.01(x+y)) as shown
in Figure.8, using Lax-Wendroff method, when water flowed into the entrance gate
by using the elevation of water ξ = 1(m) and discarding drain water though the
exit gate, using the rate of change of velocity u at 0.5(m/s2), the results as shown
in Figure.9 and Figure.10 for time 0sec to 50sec. Dispersion model, calculated
the pollutant concentration of water in opened-closed reservoir by using finite dif-
ference method, when wastewater was discharged from the external source into
the reservoir and drain water was released thru the exit gate by using the rate
of change of pollutant concentration with respect to x-coordinate at 0.1(kg/m4)
with initial pollutant concentration in this reservoir at 0.02(kg/m3).

Figure 8: Anisotropic bottom topography surface in the opened-close reser-
voir
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(a) (b)

Figure 9: Time 50 sec, (a) surface plot of elevation of water (b) vector field
of velocities in opened-closed reservoir.

(a) (b)

Figure 10: Time 50 sec, (a) surface plot (b) contour plot of pollutant con-
centration in opened-closed reservoir.

The monitoring points in opened-closed reservoir was used to observe the dis-
persion of pollutant concentration of water. In Figure.11(a) showing the compar-
ison of pollutant concentration at monitoring point A,B and C and Figure.11(b)
showing the comparison of pollutant concentration at monitoring point D and E
for time 0sec to 50sec.
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(a) (b)

Figure 11: The comparison of pollutant concentration at monitoring (a) of
point A, B and C and monitoring (b) of point D and E.

The pollutant concentration of water at monitoring point A,B,C,D and E in
the opened-closed reservoir was observed in every 25sec for time 0sec to 200sec
with wastewater discharging from the external source every 36sec into reservoir
and drain water releasing though the exit gate every 36sec in Table.1, wastewater
discharging from the external source every 36sec into reservoir and drain water
releasing though the exit gate every 72sec in Table.2 and wastewater discharging
from external source every 72sec into reservoir and drain water releasing though
the exit gate every 36sec in Table.3.

Table 1: Pollutant Concentration (kg/m3) at observation points in reservoir
case 1.

Point\Time (sec) 25 50 75 100 125 150 175 200
A 0.4988 0.4794 0.4967 0.4973 0.5122 0.5187 0.4577 0.5291
B 0.4988 0.5148 0.5053 0.5177 0.4741 0.5029 0.4824 0.5098
C 0.5095 0.5106 0.4924 0.5015 0.4937 0.5508 0.4635 0.4929
D 0.5055 0.5032 0.4913 0.5083 0.5205 0.4926 0.5158 0.5115
E 0.5089 0.4953 0.5021 0.4628 0.5040 0.5078 0.5608 0.4713

Table 2: Pollutant Concentration (kg/m3) at observation points in reservoir
case 2.

Point\Time (sec) 25 50 75 100 125 150 175 200
A 0.4988 0.4796 0.4969 0.4976 0.5126 0.5191 0.4581 0.5298
B 0.4988 0.5150 0.5055 0.5179 0.4745 0.5034 0.4828 0.5106
C 0.5095 0.5107 0.4926 0.5017 0.4940 0.5513 0.4640 0.4936
D 0.5055 0.5032 0.4915 0.5085 0.5208 0.4930 0.5163 0.5121
E 0.5089 0.4957 0.5024 0.4630 0.5047 0.5084 0.5613 0.4721
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Table 3: Pollutant Concentration (kg/m3) at observation points in reservoir
case 3.

Point\Time (sec) 25 50 75 100 125 150 175 200
A 0.4988 0.4855 0.4979 0.4982 0.5062 0.5150 0.4863 0.4968
B 0.4988 0.5084 0.4889 0.5196 0.4785 0.5247 0.4690 0.5296
C 0.5095 0.4953 0.4882 0.5073 0.4932 0.5377 0.4628 0.5097
D 0.5055 0.4911 0.4913 0.5189 0.5238 0.4882 0.5013 0.5221
E 0.5089 0.5067 0.5143 0.4597 0.4947 0.4921 0.5434 0.4835

5 Discussion and Conclusion

In this research, a mathematical model to calculate the elevation of water, wa-
ter current and pollutant concentration of water in opened-closed reservoir with
anisotropic bottom topography at any point and any time, anisotropic bottom
topography function could be interpolated from data of reservoir bed coordinate,
using cubic spline interpolate technique. When compared to other points, moni-
toring point B at the center of opened-closed reservoir mostly had a high pollu-
tant concentration, monitoring point D, near the entrance gate of reservoir, has a
mostly lower pollutant concentration as shown in Figure.11.

To conclude the numerical simulation for water-quality measurement model
in an opened-closed reservoir with an empirical anisotropic bottom topography
was proposed and thus the mathematical models could calculate the elevation, the
velocities and the pollutant concentration of water. The very models could adjust
the bottom topography according to the varying reservoir bed, simulate the wave
maker function at the entrance gate of reservoir from field data by using the data
interpolation in order to have a more realistic water current and water quality
approximations in opened-closed reservoir with anisotropic bottom topography.
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