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1 Introduction

Let X be a normed space over a scalar field K, let I be an open interval, and
let a0, a1, . . . , an−1 be fixed elements of K. Consider the differential equation

y(n)(t) + an−1y
(n−1)(t) + · · ·+ a1y

′(t) + a0y(t) + g(t) = 0, ∀t ∈ I, (1.1)

where the continuous function g : I → X is given and the n times continuously
differentiable function y : I → X is unknown. As usual, equation (1.1) is said
to be Hyers-Ulam stable if for any n times continuously differentiable function
ỹ : I → X satisfying the inequality

‖ỹ(n)(t) + an−1ỹ
(n−1)(t) + · · ·+ a1ỹ

′(t) + a0ỹ(t) + g(t)‖ ≤ ε, ∀t ∈ I,

for some constant ε > 0, there is a solution y0 : I → X of equation (1.1) such that

‖y(t)− y0(t)‖ ≤ K(ε), ∀t ∈ I,

where K(ε) is a function of ε satisfying limε→0 K(ε) = 0. For more detailed
definition of the Hyers-Ulam stability, we may refer to [1, 2, 3, 4, 5, 6, 7, 8].

Applications of Hyers-Ulam stability to certain types of ordinary differential
equations were firstly investigated by Alsina and Ger [9]. They proved that if
a differentiable function f : I → R is a solution of the differential inequality
|y′(t) − y(t)| ≤ ε for all t ∈ I, then there exists a solution f0 : I → R of the
differential equation y′(t) = y(t) such that |f(t)− f0(t)| ≤ 3ε. Using the methods
given in [9], Miura [10], Miura et al. [11], Miura et al. [12] and Takahasi et al.
[13] proved that the differential equation y′(t) = λy(t) is Hyers-Ulam stable. In
2004, Jung [14] proved a similar result for the differential equation ϕ(t)y′(t) = y(t).
Further results for the nonhomogeneous linear differential equation of first order
in the form of

y′ + p(t)y + q(t) = 0.

have been investigated by Miura, Takahasi and Jung [15, 16, 17, 18]. In 2006,
using matrix method, Jung [19] proved the Hyers-Ulam stability of first order
linear differential equations with constant coefficients in the form of

−→y ′(t) = A−→y (t) +
−→
b (t), (1.2)

where

−→y (t) =




y1(t)
y2(t)
...

yn(t)


 , A =




a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann


 ,

−→
b (t) =




b1(t)
b2(t)
...

bn(t)


 .

By adopting the idea of [19], Jung et al. [20] proved the Hyers-Ulam stability of
Euler differential equations of first order in the form of

t−→y ′(t) = A−→y (t) +
−→
b (t). (1.3)
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In this paper we generally consider generalized Euler differential equations of
first order with variable coefficients in the form of

t−→y ′(t) = A(t)−→y (t) +
−→
b (t), (1.4)

where

−→y (t) =











y1(t)
y2(t)
...

yn(t)











, A(t) =











a11(t) a12(t) · · · a1n(t)
a21(t) a22(t) · · · a2n(t)

...
...

. . .
...

an1(t) an2(t) · · · ann(t)











,
−→
b (t) =











b1(t)
b2(t)
...

bn(t)











A(t) = (ajk(t))n×n and ajk(t) : R+ → Cn are continuous and uniformly
bounded functions for all j, k = 1, ..., n. Following the idea of [20, 21] we prove the
Hyers-Ulam stability of equation (1.4). Furthermore, our results can be applied
to equation (1.3) so that the related results by Jung et al. [20] are generalized.

2 Main Results

Throughout this paper, let (Cn, ‖·‖) be a complex normed space and let Cn×n

be a vector space consisting of all (n × n) complex matrices. Define the vector
norm ‖ · ‖ as ‖−→x ‖ = max{|x1|, |x2|, · · · , |xn|} for all −→x ∈ Cn. Then it is easy to
see that (Cn, ‖ · ‖) is a Banach space and the matrix norm being subject to the
vector norm ‖ · ‖ can be obtained as

‖A‖ = sup
‖−→x ‖=1

‖A−→x ‖ = max
1≤j≤n

n∑

k=1

|ajk|, ∀A := (ajk)n×n ∈ C
n×n.

Definition 2.1 (cf. [22]). Let A(t) be a piecewise continuous n×n matrix valued
function defined on an interval J = (−∞,∞). The linear differential equation

−→y ′(t) = A(t)−→y (t) (2.1)

is said to have an exponential dichotomy on J if there are projections p(t), for all
t ∈ J , and positive constants K1, K2, α1, α2 such that

Y (t)Y −1(s)P (s) = P (t)Y (t)Y −1(s), ∀t, s ∈ J, (2.2)

‖Y (t)Y −1(s)P (s)‖ ≤ K1e
−α1(t−s), ∀t, s ∈ J, t ≥ s, (2.3)

and

‖Y (t)Y −1(s)(I − P (s))‖ ≤ K2e
−α2(s−t), ∀t, s ∈ J, t ≤ s. (2.4)

Here Y (t) is any fundamental matrix for equation (2.1). Note that K1, K2 are
called constants and α1, α2 exponents associated with the dichotomy.
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Now, we give our main result as follows:

Theorem 2.1. Suppose that the linear differential equation −→y ′(τ) = A(eτ )−→y (τ)

has an exponential dichotomy on J with projections p̃(s), constants K̃1, K̃2 and ex-
ponents α̃1, α̃2. If −→y (t) : R+ → Cn is a continuously differentiable vector function
satisfying the differential inequality

‖t−→y ′(t)−A(t)−→y (t)−
−→
b (t)‖ ≤ ε, (2.5)

for all t ∈ R+, for some ε > 0, where
−→
b (t) : R+ → Cn is a continuous vector

function, A(t) = (ajk(t))n×n, ajk(t) : R+ → C
n are continuous and uniformly

bounded functions, then there exists a unique solution −→y0(t) : R+ → Cn of (1.4)

and a positive constant L̃ such that

‖−→y (t)−−→y0(t)‖ ≤ L̃ε, (2.6)

for all t ∈ R
+, where L̃ = K̃1α̃

−1
1 + K̃2α̃

−1
2 .

Before providing the proof of this theorem, we first present the following
Lemma 2.2 (for a proof see [21]).

Lemma 2.2 (cf. [21]). Suppose that the linear differential equation (2.1) has an
exponential dichotomy on J with projections P (t), constants K1,K2 and exponents
α1, α2. If

−→y (t) : R → C
n is a continuously differentiable vector function satisfying

the differential inequality

‖−→y ′(t)−A(t)−→y (t)−
−→
b (t)‖ ≤ ε, (2.7)

for all t ∈ R and for some ε > 0, where
−→
b (t) : R → C

n is a continuous vector
function, A(t) = (ajk(t))n×n, ajk(t) : R → Cn are continuous and uniformly
bounded functions, then there exists a unique solution −→y0(t) : R → Cn of the linear

differential equation −→y ′(t) = A(t)−→y (t)+
−→
b (t) and a positive constant L such that

‖−→y (t)−−→y0(t)‖ ≤ Lε, (2.8)

where L = K1α
−1
1 +K2α

−1
2 .

Proof. (Proof of the Theorem 2.1). Let t = eτ and −→z : R → Cn be given by
−→z (τ) = −→y (eτ ). Then

−→z ′(τ) =
d−→z (τ)

dτ
= eτ

d−→y

dt
(eτ ) = t−→y ′(t)

and

−→z ′(τ) −A(eτ )−→z (τ) −
−→
b (eτ ) = t−→y ′(t)−A(t)−→y (t)−

−→
b (t).
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From the assumption (2.5), we obtain

‖−→z ′(τ) −A(eτ )−→z (τ) −
−→
b (eτ )‖ ≤ ε,

for all τ ∈ R and for some ε > 0.
By the assumption of the Lemma 2.2 and this theorem, there exists a differ-

ential vector function −→z0(t) : R → Cn such that

−→z ′(τ) = A(eτ )−→z (τ) +
−→
b (eτ ),

and

‖−→z (τ) −−→z0(τ)‖ ≤ L̃ε, ∀τ ∈ R.

Then the function −→y0(t) =
−→z0(ln t) satisfies

−→y0
′(t) =

1

t

d−→z0
dτ

(ln t) =
1

t
[A(eln t)−→z0(ln t) +

−→
b (eln t)]

=
1

t
[A(t)−→y0(ln t) +

−→
b (t)],

i.e.,

t−→y0
′(t) = A(t)−→y0(t) +

−→
b (t)

with

‖−→y (t)−−→y0(t)‖ = ‖−→z (ln t)−−→z0(ln t)‖ ≤ L̃ε

for all t ∈ R
+. This completes the proof of the Theorem.

To give a corollary of Theorem 2.1, we need the following Lemmas 2.3 and 2.4,
which were proved in [21]:

Lemma 2.3 (cf. [21]). Suppose that A ∈ Cn×n is a nonsingular matrix whose
eigenvalues have nonzero real parts. Then the homogeneous differential equation
−→y ′(t) = A−→y (t) has an exponential dichotomy on J .

Proof. This Lemma was proved in [21], however we prove it again for completeness
and convenience. Assume that A has d distinct eigenvalues λµ with algebraic
multiplicity nµ and geometric multiplicity mµ, where µ ∈ {1, 2, · · · , d} and denote
by Re(λµ) their real part. Choose a nonsingular matrix N ∈ C

n×n such that
J = N−1AN , where J is the Jordan form matrix of the form

J =




J11
. . . O

Jµν

O
. . .

Jdmµ




, Jµν =




λµ 1 0 · · · 0
0 λµ 1 · · · 0
...

...
. . .

. . .
...

0 0 0
. . . 1

0 0 0 . . . λµ




,
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and the Jordan block Jµν is an ν × ν matrix for each µ ∈ {1, 2, · · · , d} and ν ∈
{1, 2, · · · ,mµ}, and

∑mµ

ν=1 ν = nµ for any µ ∈ {1, 2, · · · , d}.

Note that eA = I +A+ A2

2! + · · ·+ An

n! + · · · , where I denotes the unite matrix
in Cn×n. Then the fundamental matrix solution X(t) for the differential equation
−→y ′(t) = A−→y (t) can be expressed in the form

X(t) = eAt = NeJtN−1. (2.9)

If we set

eJt =



















eJ11t

. . . O

eJµν t

O
. . .

e
Jdmµ

t



















, eJµν t = eλµt



















1 t t2

2!
· · · tν−1

(ν−1)!

0 1 t · · · tν−2

(ν−2)!

...
...

...
. . .

...
0 0 0 · · · t

0 0 0 · · · 1



















.

Choose a diagonal matrix P = diag(P11, · · · , Pµν , · · · , Pdmµ
), where the

Jordan block Pµν is an ν × ν zero matrix or unite matrix corresponding
with Re(λµ) < 0 or Re(λµ) > 0 for for each µ ∈ {1, 2, · · · , d} and ν ∈
{1, 2, · · · ,mµ}.

Let Q := NPN−1, then

QX(t)X−1(s) = QNeJ(t−s)N−1 = NPN−1NeJ(t−s)N−1

= NeJ(t−s)PN−1 = NeJ(t−s)N−1NPN−1

= X(t)X−1(s)Q, ∀t, s ∈ J, (2.10)

and for all t ≥ s, it follows that

‖X(t)X−1(s)Q‖ = ‖Ne
J(t−s)

N
−1

NPN
−1‖

= ‖Ne
J(t−s)

PN
−1‖

≤ ‖N‖‖N−1‖‖eJ(t−s)
P‖

≤ ‖N‖‖N−1‖ max
Re(λµ)<0

e
λµ(t−s) max

Re(λµ)<0

mµ
∑

i=0

(t− s)i

i!
. (2.11)

For a sufficiently small nonnegative number δ, we know that

M1 := e−δ(t−s) max
Re(λµ)<0

mµ∑

i=0

(t− s)i

i!

is bounded for all t ≥ s. Let λ− := maxRe(λµ)<0{λµ} + δ, then by (2.11),
we have

‖X(t)X−1(s)Q‖ ≤ ‖N‖‖N−1‖M1e
(t−s)λ−

, t ≥ s. (2.12)
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Similarly for all t ≤ s and δ > 0, we have

‖X(t)X−1(s)(I −Q)‖ = ‖NeJ(t−s)N−1(I −NPN−1)‖

= ‖NeJ(t−s)(I − P )N−1‖

≤ ‖N‖‖N−1‖M2e
(t−s)λ+

, (2.13)

where

M2 := e−δ(s−t) max
Re(λµ)>0

mµ∑

i=0

(s− t)i

i!
and λ+ := max

Re(λµ)>0
{λµ} − δ.

Thus, by (2.10), (2.11), (2.12) and (2.13), we know that −→y ′(t) = A−→y (t)
has an exponential dichotomy on J with projections P (t) ≡ Q, constants
K̂1 = ‖N‖‖N−1‖M1, K̂2 = ‖N‖‖N−1‖M2 and exponents α̂1 = −λ−, α̂2 =
λ+. This completes the proof of the Lemma.

Lemma 2.4 (cf. [21]). Suppose that A ∈ Cn×n is a nonsingular matrix whose
eigenvalues have nonzero real parts. If −→y (t) : R → Cn is a continuously differen-
tiable vector function satisfying the differential inequality

‖−→y ′(t)−A−→y (t)−
−→
b (t)‖ ≤ ε, (2.14)

for all t ∈ R, for some ε > 0, where
−→
b (t) : R → Cn is a continuous vector function,

then there exists a unique solution −→y0(t) : R → Cn of (1.2) and a positive constant
M such that

‖−→y (t)−−→y0(t)‖ ≤ Mε, (2.15)

for all t ∈ R.

Corollary 2.5. Suppose that A ∈ Cn×n is a nonsingular matrix whose eigenvalues
have nonzero real parts. If −→y (t) : R+ → Cn is a continuously differentiable vector
function satisfying the differential inequality

‖t−→y ′(t)−A−→y (t)−
−→
b (t)‖ ≤ ε, (2.16)

for all t ∈ R+, for some ε > 0, where
−→
b (t) : R+ → Cn is a continuous vector

function, then there exists a unique solution −→y0(t) : R+ → Cn of (1.3) and a

positive constant M̃ such that

‖−→y (t)−−→y0(t)‖ ≤ M̃ε, (2.17)

for all t ∈ R+.

Proof. The proof of Corollary 2.5 is similar to the proof of Theorem 2.1, and by
Lemmas 2.3 and 2.4, the differential equation (1.3) has the Hyers-Ulam stability

with M̃ = ‖N‖‖N−1‖(M1

λ−
+ M2

λ+ ). This completes the proof of the corollary.
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3 Some Examples

Example 3.1. Consider a system of generalized Euler differential equations of
first order with variable coefficients in the following form

t−→y ′(t) = A(t)−→y (t) +
−→
b (t), (3.1)

where

−→y (t) =

(
y1(t)
y2(t)

)
, A(t) =

(
2 + cos ln t 4

0 −2 + cos ln t

)
,

−→
b (t) =

(
b1(t)
b2(t)

)
.

By Theorem 2.1, putting t = eτ , we obtain

A(eτ ) =

(
2 + cos τ 4

0 −2 + cos τ

)
.

Following some computation, we have

Y (τ) =

(
e2τ+sin τ e−2τ+sin τ − e2τ+sin τ

0 e−2τ+sin τ

)
,

and

Y (τ)Y −1(s) =

(
e2(τ−s)+sin τ−sin s e−2(τ−s)+sin τ−sin s − e2(τ−s)+sin τ−sin s

0 e−2(τ−s)+sin τ−sin s

)
.

Choosing P (τ) ≡

(
0 1
0 1

)
, we can verify that

P (τ)Y (τ)Y −1(s) = Y (τ)Y −1(s)P (s) =

(
0 e−2(τ−s)+sin τ−sin s

0 e−2(τ−s)+sin τ−sin s

)
,

and

‖Y (τ)Y −1(s)P (s)‖ ≤ e2e−2(τ−s), τ ≥ s,

‖Y (τ)Y −1(s)(I − P (s))‖ ≤ 2e2e2(τ−s), τ ≤ s.

Thus the differential equation −→y ′(τ) = A(eτ )−→y (τ) has an exponential dichotomy

on J with K̃1 = e2, K̃2 = 2e2, α̃−1
1 = α̃−1

2 = 2. By Theorem 2.1, equation (3.1)

satisfies the Hyers-Ulam stability with L̃ = K̃1α̃
−1
1 + K̃2α̃

−1
2 = 3

2e
2.

Example 3.2. Consider a system of Euler differential equations of first order in
the following form

t−→y ′(t) = A−→y (t) +
−→
b (t), (3.2)
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where

−→y (t) =




y1(t)
y2(t)
y3(t)


 , A =




−3 −4 2
−3 −5 3
−7 −10 6


 ,

−→
b (t) =




b1(t)
b2(t)
b3(t)


 .

Since the matrix A has three eigenvalues −1, 1, and −2, there exist nonsingular
matrices

N =




1 0 2
0 1 1
1 2 3


 , N−1 =




−1 −4 2
−1 −1 1
1 2 −1


 , J =




−1 0 0
0 1 0
0 0 −2


 ,

such that J = N−1AN . According to Corollary 2.5, equation (3.2) satisfies the
Hyers-Ulam stability with ‖N‖‖N−1‖(M1

λ−
+ M2

λ+ ) = 84.
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