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1 Introduction

Let H be a real Hilbert space with inner product (-,-) and norm || - ||. Let C
be a nonempty closed convex subset of H. Recall that a mapping T : C — C'is
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called nonexpansive if ||Tx — Ty| < ||z — y|| for all z,y € C, and p— Lipschitzian
mapping if there exists a constant p > 0 such that ||Tz — Ty|| < pllz — y| for
all z,y € C, and a mapping f : H — H is called a contraction if there exists a
constant « € (0,1) such that ||f(z) — f(y)|| < a|lz — y|| for all z,y € H. Denote
the set of fixed point of T by Fix(T), i.e., Fiz(T) ={x € C : Tx = x}. It is well
known that if C' is a nonempty closed bounded convex subset of H and T : C' — C
is nonexpansive, then Fiz(T) # (. Recall also that a mapping A : C' — H is called

(i) monotone if (Ax — Ay,x —y) >0 for all z,y € C ,

(ii) n—strongly monotone if there exists a constant n > 0 such that (Az— Ay, z—
y) >z —yl||? for all 2,y € C,

(iii) d—inverse strongly monotone if there exists a positive real number ¢ such

that (Az — Ay, —y) > 6||Az — Ayl|? for all 2,y € C.

We can see that if A is —inverse strongly monotone, then A is monotone mapping.
In 2008, Peng and Yao [I] considered the following generalized mixed equilib-
rium problem of finding z* € C such that

(GMEP) : D(z",y)+ ply) —p(z*) + (Az*,y —2*) >0, VyeC. (1.1)

Where A : C — H is a nonlinear mapping, and ¢ : C' — R be a real value function
and ® : C' x C — R be a bifunction, i.e., ®(z,z) = 0 for each x € C. The set of
solutions for problem () is denoted by €.

In the case of A =0, problem (LI]) reduces to the classical mixed equilibrum
problem (for short, MEP) of finding z* € C such that

O(z",y) +o(y) —p(@*) >0, Vyed, (1.2)

which was considered by Ceng and Yao [2]. 2 is denoted by M EP(®, p).
In the case of ¢ = 0, problem (IT]) reduces to the generalized equilibrium
problem (for short, GEP) of finding z* € C such that

O(z*,y) + (Az*,y — ") >0, VyeC, (1.3)

which was studied by Takahashi and Takahashi [3] and many other for instance,
([1,I50,[6]). The set of solution (I3]) is denoted by EP.

In the case of ¢ = 0 and A = 0, problem () reduces to the classical
equilibrium problem (for short, EP) of finding z* € C such that

O(z*,y) >0, VyeCl. (1.4)

The set of solution (L4) is denoted by EP(®). Given a mapping T': C' — H, let
O(z,y) = (Tz,y—xz) for all 2,y € C. Then z € EP(®) if and only if (Tz,y—2z) >0
for all y € C.

In the case of ® = 0 and ¢ = 0, problem ([I)) reduces to the classical
variational inequality of finding z* € C' such that

(Az*,y — 2"y >0, VyeC. (1.5)
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The set of solution (3] is denoted by VI(A4, C).

The generalized mixed equilibrium problems includes, optimization problems,
variational inequalities, the Nash equilibrium problem in noncooperative games
and others; see, for example ([2],[3],[7]). Peng and Yao [I] obtained some strong
convergence theorems for iterative schemes based on the hybrid method and the
extragradient method for finding a common element of the set of solutions of
problem (L)), the set of fixed points of a nonexpansive mapping and the set of
solutions of the variational inequality.

Let F': H — H be a k—Lipschitzian and n—strongly monotone operator with
constants k,n > 0, and let T : H — H be nonexpansive such that Fix(T) # 0.
In 2001, Yamoda [§] studied the variational inequality problem and proposed a
hybrid steepest - descent algorithm :

Tnt1 = (I — pA F)Txy, (1.6)

and proved the strong convergence, where 0 < p < i—;’ and the sequence {\,} in
(0,1).

Recently, Ceng et al. [9] introduced and considered the following a hybrid
iterative schemes below for finding a common element of the set of solution (L)
and the set of fixed points of a finite family of nonexpansive mapping in a real
Hilbert space:

P (un,y) + 0(y) — e(un) + (Azn,y — un) + %<y —Up,Un —Tp) 20, Vyel
Tnt1 = Y[ () + Bnxn + (1 — Bp) — anpuF )Wy, Vn > 1,
(1.7)
where W, is the W —mapping generated by 11,75, ...,Ty and A\,.1, An2, ..., A, N.
The concept of W—mapping was introduced in Alsushiba and Takahashi [I0].

Very recently, Jeong [I1] considered the generalized equilibrium problem (Z, §) €
C x C such that

{Gl(z, z) + (g, x —T) + (1.8)

where G1,Gs : C' x C' — R are two bifunctions, F, F5 : C'— H are two nonlinear
and p; > 0 and pe > 0 are two constants.

In this paper, we introduce a hybrid iterative scheme by the general itera-
tive method (B]) for finding an element of the set of solutions of the generalized
mixed equilibrium problem (I]), the set of solutions of the generalized equilibrium
problem (L&) and the set of common fixed points of finitely many nonexpansive
mappings in real Hilbert space, whereA, Fy, F5 : C — H be n—inverse strongly
monotone, (;—inverse strongly monotone and (;—inverse strongly monotone, re-
spectively, and F : C' — H is a k—Lipschitzian and n—strongly monotone and
then obtain a strong convergence theorem.
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2 Preliminaries

Let H be a real Hilbert space with inner product (-,-) and norm || - ||. Let
symbols — and — denote weak and strong convergence, respectively. Let C' be a
nonempty closed convex subset of H. Then, for any = € H, there exists a unique
nearest point in C, denoted by Pc(x) such that ||z — Po(2)| < ||z — vy, Yy € C.
The mapping Pc : © — Po(x) is called the metric projection of H onto C. We
know that Po is nonexpansive.

The following characterizes the projection Pc.

Lemma 2.1 ([12]). Given x € H and y € C. Then Pc(x) =y if and only if there
holds the inequality
(x —y,y—2) >0, VzeC.

The following lemmas will be useful for proving our main results.
Lemma 2.2 ([12]). For all x,y € H, there holds the inequality
lz + yll* < llll* + 20y, = + v).
Lemma 2.3 ([12]). In a strictly convex Banach space E, if
]l = llyll = 1Az + (1 = Myll,
forallz,y € E and A € (0,1), then z = y.

Lemma 2.4 ([13]). Let {an} be a sequence of nonnegative real numbers satisfying
ant1 = (1 — an)an + anBn, Yn >0 where {a,}, {Bn} satisfy the conditions

(i) {an} € [0,1], i::lan = 00;

(i) limsup B, < 0.

n—oo

Then lim a, = 0.
n—o0

Lemma 2.5 ([I4]). Let {x,} and {yn} be bounded sequences in a Banach space X
and let {B,} be a sequence in [0,1] with 0 < liminf 8, < limsup B, < 1. Suppose
n—r oo

n—00
Tp41 = ann + (1 - ﬁn)yna

for all integer n > 0 and

lim sup({|yn+1 = ynll = [[#nt1 = 2nl)) < 0.

n—00

Then, lim |y, — z,] = 0.
n—oo
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Lemma 2.6 (]2]). Let C be a nonempty closed conver subset of H , ¢ : C — R
be a lower semicontinuous and convez function and let ® be a bifunction of C' x C
in to R satisfy

(A1) ®(z,x) =0 for all z € C;

(A2) ® is monotone, i.e., ®(x,y)+ P(y,x2) <0, Va,yeC;

(A3) for all x,y,z € C;, limy_oP(tz + (1 —t)x,y) < D(z,y);

(A4) for allz € C, yw ®(x,y) is conver and lower semicontinuous;

(B1) for each xz € H andr > 0, there exists a bounded subset D, C C' and y, € C
such that for any z € C\ Dy,

Bz, 4e) + 9(ya) + (e — 2,7 — ) < p(2),

15 bounded set.
B2) C is bounded
Assume that either (B1) or (B2) holds. For x € C and r > 0, define a mapping
Tr(dma) : H — C as follows.
1
T (z) = {2 € C: @(2,9) + o) + —(y — 2,2 = 7) > p(2), VyeC}

for all x € H. Then , the following conditions hold:

(i) For each x € H,T\"? (z) # 0;

(i1) T\ s single-valued;

) T\ s firmly nonexpansive, i.e.,

TSPz — T Oy||2 < (TP = Ty, —y), Va,y € H;
(iv) Fiz(T\*¥)) = MEP(®,¢) ;
(v) MEP(®,p) is closed and convez.

Remark 2.7. If o =0 then TT({)’“O) is rewritten as T .

Lemma 2.8 ([I1]). Let C be a nonempty closed convex subset of H. let Gy, G :
C x C — R be two a bifunctions satisfying conditions (A1)-(A4) and let the
mapping F1,F» : C — H be (1— inverse strongly monotone and (a— inverse
strongly monotone, respectively. Then, for giwven T,y € C, (T,Y) is a solution
(LX) if and only if T is a fized point of the mapping I' : C — C' defined by

I(z) = Tlﬁl (Tf; (x — polFoz) — ulFle;(x — pe b)), Vo el

where § = TE; (T — poFoT).
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The set of fixed points of the mapping I' is denoted by O.

Proposition 2.9 ([3]). Let C,H,®,¢ and T\*%) be as in LemmalZ@ Then the
following holds:

—t
T @)z — T g)|? < Z=UT @)y — TP, T2 — a)
S
or all s,t >0 and z € H.
[

Lemma 2.10 ([15]). Assume that T is a nonexpansive self-mapping of a nonempty
closed convex subset C' of H. If T has a fized point, then I —T s demi-closed, that
is, when {x,} is a sequence in C' converging weakly to some x € C and the sequence
{(I =T)xn} converges strongly to some y, it follows that (I —T)x = y.

Let H be a real Hilbert space and C a nonempty closed convex subset of H. For
a finite family of nonexpansive mappings T1,T5, ..., Tn and sequence {\, ;} Y in
[0, 1], Kangtunyakarn and Suantai [4] defined the mapping K, : C — C' as follows:

Uni =111+ (1= A1),
Un2 = A 2ToUpn i + (1 — A\ 2)Un 1,
Uns =M 3T3Un 2 + (1 — A 3)Un 2,

UnNo1 = NaTN-1Up N2+ (1 = Ay N—1)Un n_2,
K,=Uy,N=MmnNINUpn-1+ (1 =X, N)Un,Nn-1 (2.1)

Such a mapping K, is called the K —mapping generated by 73,75,...,Tn and
)\n,lv )\n,Q; R A’n,,]\f-

Definition 2.11 ([4]). Let C be a nonempty convex subset of a real Banach space.
Let {T;}¥; be a finite family of nonexpansive mapping of C into itself, and let
A1, ..., An be real numbers such that 0 < \; < 1 for every i = 1,...,N. They
define a mapping K : C — C' as follows:

Uy =M1+ (1 — /\1)[,
Us = MToU;r + (1 — Xo)Un,
Us = A3T5U2 + (1 — A3)Us,

Un—1=Anv-1InN-1Un—2+ (1 —An-1)Un—2,
K = Uy = AWTNUn—1 + (1 — Ax)Un—1.

Such a mapping K is called the K —mapping generated by 11, ..., Ty and Ay, ..., AnN.
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Lemma 2.12 ([4]). Let C be a nonempty closed convex subset of a strictly convex
Banach space. Let {T;}N.; be a finite family of nonexpansive mappings of C into
itself with NI, Fiz(T;) # 0 and let My, ..., An be real numbers such that 0 < \; < 1
foreveryi=1,...,N —1 and 0 < Ay < 1. Let K be the K—mapping generated
by T1,..., Ty and A1, ..., An. Then Fiz(K) = NX, Fiz(T;).

Lemma 2.13 ([4]). Let C be a nonempty closed convex subset of a Banach space.
Let {T;}N., be a finite family of nonexpansive mappings of C into itself and
{Mni} Y, sequences in [0,1] such that N\,; — X\i, asn — oo (i = 1,2,...,N).
Moreover, for every n € N, let K and K, be the K—mappings generated by
Tl,TQ, SN ,TN and )\1, /\27 ceey /\N and Tl,TQ, BN 7TN and )\n,la /\71727 NN 7>\n,N; re-
spectively. Then, for every x € C,

lim ||K,x — Kz| = 0.
n—r oo

Lemma 2.14 ([16]). Let {z,} be a bounded sequence in a Hilbert space H. Then
there exits L > 0 such that

N
HKn—i-l:En-l-l - Knan < Hxn—i-l - xn” + LZ |)\n+1,i - )\n,ila vn > 0. (22)
i=1

Lemma 2.15 ([I7]). Let A be a number in (0,1] and let p > 0. Let F : H - H
be an operator on H such that, for some constants k,m > 0, F' is k— Lipschitzain
and n—strongly monotone. Associating with a nonexpansive mapping T : H — H,
define the mapping T : H — H by

Tz := Te — M\uF(Tx), Va € H.
Then T? is a contraction provided p < %, that is,
1Tz = T*y| < (1= A7)z —yll, Vz.ye€H,

where 7 =1 — /1 — u(2n — px?) € (0,1].

3 Main Results

We are now in a position to prove the main result of this paper.

Theorem 3.1. Let H be a real Hilbert space, C a closed conver nonempty subset of
H. Let ®,G1,G3 : CxC — R be three bifunctions which satisfying (A1)-(A4) and
v : C = R a lower semicontinuous and convex function with assumption (B1) or
(B2). Let A, Fy,Fy : C — H be d—inverse strongly monotone, (1—inverse strongly
monotone and (a—inverse strongly monotone, respectively. Let {T;}Y.| be a finite
family of nonexpansive mappings of C into H such that A = NN, Fiz(T;) N QN
O #0. Let F : C — H be a k—Lipschitzian and n—strongly monotone operator
with constants k,m > 0 and f : C — C a p—Lipschitzian mapping with constant
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p >0 Let 0 < p < % and 0 < yp < 7, where 7 = 1 — /1 — p(2n — uk?).
Suppose {an} and {Bn} are two sequences in (0,1), {r,} is a sequence in (0,24],
w1 € (0,2¢1), 2 € (0,2¢2) and {\,:}Y, is a sequence in [a,b] with 0 < a <
b < 1. For every n > 1, let K,, be a K—mapping generated by T1,T5,...,Tn and
A1y An2s -5 AN Let ©1 € C arbitrarily. Suppose the sequences {x,} and {u,}
are generated iteratively by

Uy = TT(S’w)(xn —rpAxy),
Yn = Tﬁl [Tff (un — p2Fouy) — NlFngQ (un — p2Foun)], (3.1)
Tpt1 = @Y (@n) + Brnn + (1 = Bu)I — anuF)Kpyn,¥n > 1,

where the sequences {an},{Bn} , {rn} and {\,i}Y, satisfy the following condi-
tions:

(i) lim o, =0 and > a, = o0;
n—r oo n=0
(i) 0 <liminf 3, <limsup 3, < 1;
n—oo

n—r oo

(ii) 0 < liminfr, <limsupr, < 2§ and lim (r,41 —r,) =0;
n—oo n—oo n—oo

(i) lm |Apt1,:— Anil =0 for every i € {1,2,...,N}.
n—r oo

Then both {x,} and {un} converges strongly to ©* = Pa(I — uF + ~vf)x* which
solves the following variational inequality

(WF —~f)z",z* —x) <0, VzeA. (3.2)
and (z*,y*) is a solution of problem (LB) where y* = T2 (x* — poFox*).

Proof. Let x,y € C. Since A is d—inverse strongly monotone and r,, € (0,26) ,Vn €
N, we have

I(I = rpA)e — (I = A)y|* = ||z — y — ra(Az — Ay)||?
= |l —yl? = 2ru(z — y, Az — Ay) + r} || Az — Ay||?
< o = yl* = 2rp0]| Az — Ay|]* + 1} || Az — Ayl|?
= |z — y||2 + o (rn — 20)|| Az — Ay||2
< flz - yl%,
then the mapping I — r, A is a nonexpansive mapping, and so are I — p; F; and
I — poFy, provided py € (0,2¢1) and ps € (0,2¢2), respectively.

Since F' : C' — H is a xk—Lipschitzian and n—strongly monotone operator and
f:C — C is a p—Lipschitzian mapping, we have

(I = pF)z — (I = pF)y|? = ||z = y||* = 2ulz — y, Fx — Fy) + p°||Fx — Fy?
<z —yl? = 2pmllz — ylI* + p*&* ||z — y|®
= (1 =2un+ p?k?)||z —y|?
= (1 —=7)%lz -yl
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where 7 =1 — /1 — pu(2n — pk?), and hence

[PA(I = pF +~f)(x) = Pa(l = pF' +7f) (W)l

ST = pF +7f)(x) = (I = pF +f) ()]l

< = pF)z = (I = pF)yll +71f(x) = fF)ll

<A =7)llz =yl +pllz =yl

== (r=))llz =yl
for all z,y € C. Since 0 < yp <7 < 1,1 — (7 —vp) € [0,1). Therefore Pa(I —
uF +~f) is a contraction of H into itself, which implies that there exists a unique
element z* € H such that * = Pa(I — uF' + v f)z*.

We shall divide the proof into several steps.
step 1. We shall show that the sequences {z,} and {u,} are bounded.

Let p € A = NI, Fiz(T;) N QN O, arbitrarily. Since p = Tr(f”‘p)(p — r,Ap) and
Tr(f #) and (I — r, A) are nonexpansive, we obtain that for any n > 1,

”un - pH = HTr(f’@)(xn - rnAwn) - TT(:LD’“")(p - T‘nAp)H

< |(zn — rnAzn) — (p — ra Ap) ||
< [len —pl. (3.3)

Putting z, = TE; (upn, — poFouy,) and z = TE; (p — p2Fop), we have
20 = 2| = T2 (un — poFoun) = T2 (p — pa Fop)|
< |[(un — p2Foun) — (p — p2Fop)||
< llun — 7l (3.4)
And since p = Tucl1 (z — p1 F12), we know that for any n > 1,
[y — pll = ITSH (20 — pa Frz) — T (2 — paFr2) |
< (zn = p1Frzn) = (2 — prFiz)||
< lzn — 2|l
< llun = pl- (3.5)
Furthermore, from @I), B3) and B.5) we have

lZnt1 = pll = (v f(2n) + Buzn + (1 = Ba)I — anpuF) Knyn) — pl|
= llan(vf(xn) = pFp) + Bul(wn — p) + (1 = Bu)I — anpu ) Knyn — (1 — Bn)I

— an ) Knp||

< anllyf (@n) = pFpl + Bullan =l + (1= BT = 0upF) K — (1= )1
- an/LF)Knp”

= anll3f(@n) = wEpll + Bullen = pll + (U= BT = 1= 1F) Ky

Qp
- (I_ 1_[3 /J'F)Kan
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< (1= Bn)(1 = 7=l = pll + Bullen = pll 4+ anl1f () =
< (1= B — an7)ltn — pll + Bulltn — pll + anllvf(@a) — uFp]
< (1= ann)|2n = pll + @y f(@a) = F@) + anllnf () — pFp]
< (1 = an?)llzn = pll + anypllen = pll + anllvf(p) — nFp|
= (1~ (7 = yp)an) |1z — pll + a7 S (p) — piFpl|
— uF
— (1= (= vp)anllen — 5l + (7 = p)a, DL =12 (36)

It follows from (B.6) induction that
zn —pll <M, Vn=>1

where M = max{||zo — p||, W} Hence {z,} is bounded. We also obtain
that {un}, {yn}, {Azn}, {Knyn} and {f(z,)} are all bounded.
Step 2. We claim that lim ||z,411 — 2,] = 0.

n—00
Set Tpi1 = Bnxn + (1 — Bn)Vy for all n > 1. Then from the definition of V;,, we
obtain

”Vn-i-l - Vn”
_ H$n+2 — Bny1®ns1  Tnt1 — Badn i
1- ﬁn—i—l 1- ﬁn
| W17 f (@ns1) + (1= Bni1)] — ang 1 F) Kny1Ynia
1- Bn-{-l
_ anYf(zn) + (1 = Bu)l — anpuF ) Knyn I
1- Bn
Qp41
= HiJrﬁYf(xnnLl) Vf(@n) + Knt1Ynt1 — Knyn
1- ﬁn-i—l Bn
FEKpyn — "7“ FEKpi1yn
1 — Bnﬂ Y 1— ﬁn-ﬁ-l‘u +1Yntl
Q41
< |‘7+(’7f(xn+l) - MFKn-l-lyn-l-l) (MFKnyn Vf(xn))H
1- ﬁnJrl 1- ﬂn
+ ||Kn+1yn+1 - Knl/n”
(07705 (07
< 7”’7][(5571-{-1) - MFKn-i-lyn-i-l” + 1-3 H/J'FKnyn - Vf(xn)H

T 1- ﬁnJrl
+ ”Kn-l-lyn-i-l - Knyn”

On41
< ﬁ(vllf(xnﬂ)ll + pl[F Ky 1yn4al])
- Mn+1
an
15 (I FEnynll + Y f @o)ll) + 1 Kns1yns1 — Knynl- (3.7)
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From Lemma [2.14] there exist L > 0 such that

||Vn+1 - Vn”
Oén_;,_l [67%%
S1-5.5 1= 5, O @)l + pl F Ry ) + 17— = (el F Ryl + 711 () )
N
+ 1Ynt1 — ynll + LZ [Ant1,i = Anil- (3.8)
i=1

Notice that

[

= T8 (zna1 — mFrzng1) — T (zn — i Fizn)||?

<l (Zn41 = 2n) — pa(Fizni1 — Frza)|

= ll2nt1 — 2nll* = 261 (2ns1 — Zns Fizns1 — Fiza) + pi | Fiznsr — Fiza|?
<lznt1 = 2all® = 2 Gl Frzng1 — Frzall® + g3 | Frzn1 — Fiza|?

= ||zn41 — 2zall® + w1 (p1 — 26) | Frzns1 — Fiza?

< ||Zn+1 - Zn||2

= 1T (uny1 — paFotngr) — T2 (un — po Foun ) |?

< (tng1 — tn) — po(Fatin g1 — Faup)|?

= [[tns1 — unl]* = 202 (i1 — Un, Foting1 — Foup) + (3| Fotin 41 — Fouy|?
< tngr = un|® = 2u2Ge|| Fottnt1 — Founl|® + 13| Fatngr — Faun|?

= |Junt1 — unl® + p2(p2 — 20) | Foaung1 — Foug|?

< ungr — unll. (3.9)
And
[uns1 — un|
= HTr:if)(fEnJrl — 1 ATn 1) — T({)*“’)(:p — Az,
< HTr:if) (‘Tn+1 — Tn+41 Awn-i—l) T,Sif)( — TnAJ:n)H

P, D,
F TS (@0 — 1 Azy) — TS (2 — ro Az )|
<W@ngr = rnr1Azngr) — (2n — rAxy) ||
+ IIT“P’“’ (@0 — rAan) — T (2 — Ay |

- Hxn+1 - - Tn+1A$n+1 + TnJrlA:En - Tn+1AIn + TnAxn”
+ ||quf+"f (xn —rpAzy,) — quf"")(xn —rpAxy)||

< H(33n+1 - Tn+1AIn+1) - (xn - Tn+1AIn)H + ”TnAfEn - Tn+1Axn||
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+ ||Trf+“f)( —rpAzy,) — (q) O — rpAzy)||

< zns1r — znll + [rpgr — rall[ Az, ||
+ |7 ® ) (2, — 7 Ay, — TT(;I)’“")(:E" — rpAxy)||. (3.10)

Tn4+1

It follows from ([B9) and B.I0) that

1Yn+1 — Ynll < lUnt1 — unl|
<znt1 — @all + [rosr — roll| Az |
+ ||T (@ S")(;10,1 — rpAzy,) — T,Sf"p)(;vn —rpAxy)||. (3.11)

Without loss of generality, let us assume that there exists a real number k& such
that r, > k > 0 for all n. Utilizing Proposition 2.9 we have

|| T%:%) (Tn —rpAzy,) — Tﬁfyw)(xn - 7“nA;En)H

Tn+41

< MHT(‘I’»‘P I = ra Az

Tn+1 Tn+1
|r7l+1 - Tnl
< T (T = e Az (3.12)

By @BII) and (BI2) , we have

|Tn+1 Tn|
||yn+1 - yn” < ||$n+1 _xn” + |Tn+1 _Tn|||Axn|| + T||Trf+f)( - TnA)an-
(3.13)
Using (B8) and BI3), we get

||Vn+1 - Vn”
Q41

T 1= Bun

Qn
Vf @nr D)l + LIE K aynsal) + 7 B (Wl E K nynll + 11 (@n)l)
N
+ LZ [Ant1,i = Angl + (1Znt1 — @all + [Tngr — rol[| A2y |

+ MHT(‘I’»‘P (I = raA)za ).

k Tn+41

Therefore

Va1 = Vall = [[Tn+1 — 24|
Qp41
— (Y f (@ntr) + I F K psryna |]) +
1= Bnt1
N
F U@ )+ LD Patri = A + [rnga — o[ Az|
=1

gl =Tl g, g, (3.14)

< (Ll E Kyl

On
1_671
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Applying the conditions (i), (iii) and (iv) and taking the superior limit as n — oo

to (BI4), we have

limsup(||Va41 = Vol = [2n41 — zal]) < 0.
n—oo
Hence, by Lemma [Z5] we have lim ||V,, — z,|| = 0. This implies that
n—oo
nlggo [#n41 — 2 = nlggo(l = B[V — an| = 0. (3.15)

From @I0), (3I12), BI3) and condition(iii), we have

nhﬁngo [tnt1 — unl =0 (3.16)

Step 3. We will show that lim ||@, —u,|| =0, lim |uy, —yn| =0,
n— o0 n— o0

lim ||z, —yn|| =0 and lim ||K,y, — yn| = 0.

n— o0 n— o0

Since zp+1 = anyf(zn) + Bntn + (1 = Bp)I — anpF) K, y,, we obtain

|zn — Knynll < |70 — Tpga || + (21 — Knynll
S an = gl + anllvf(2n) = pFKnynl|l + Bullzn — Knynll,

and hence

Qp
lzn — g1l + ——ll7f(xn) — pFKnynl|- (3.17)

1
& = Knyall < 1= i

B

Form (BIH) and condition (i), we obtain
nhﬁngo |z — Knyn]| = 0. (3.18)

On the other hand, from B3] and @.0) we get

(1741 —P||2

= llanyf(@n) + Bnzn + (1 = Bu)] = anpF) Knyn — p||®

= l(anyf(®n) — anptF'p) + (Batn — Bup) + (1 — Bu)] — anpF) Knyn
— (1 = Bn)I — anpF) Knpl|?

Qn

< llanyf(@n) = anppll + fallen = pll + (1 = Ba) I = 1= i 1) Knyn
(1= =) K
< (anllvf(@n) = pFpll + Bollzn —pll + (1 = Ba)(1 — f_";n )lyn — plI)*

Qn
< vf(en) = wFpI* + Ballzn = pl” + (1 = Bn = an7)llyn — pl|”
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Qn
= f (@n) = pFpl + Ballzn = plI* + (1 = B — ant)|TT (2n — pa Fazn)
— T (2 = Fr2) |
Qn
Zf(@n) = nFpl® + Bullen = pl* + (1= Ba = an)| (20 = 2) = 1 (Frzn — Fi2)|?

IN

IN

Qn
v f (@) = pFp|* + Bullzn = pl* + (1 = B — an7)[l|zn — 2|

= 2pu1(zn — 2, Frzn — F12) + || Frzn — Fiz||°]

IN

%va(xn) — pFp|* + Bullzn — plI* + (1 = B — an”)[|2n — 2|
— 2G| Fizn — Fiz| + i3 || Frza — Fiz|]
= 22y f(2n) = EPIP + Bullwn = pl* + (1 = Bu = anr)|zn — I
+ (= 2G) || Frze — Fiz|’]
= %va(xn) — pFp|* + Ballzn — plI* + (1 = B — an ) 1T/ (un — p2Foun)
— T2 (p — 2 Fop)|I” + pa (1 — 2G1) || Frzn — Frz||’)
%va(xn) — 1Fp|* + Bullzn — plI* + (1 = Ba — an)[|lun — pl|?
+ 2 (p2 — 262) | Faun — Fop||® + pa (1 — 2G1) || Frzn — Fiz||’]
= %va(mn) — pFp|* + Ballzn — plI* + (1 = B — an) [T (@ — rn Azn)
— TP (p = ra AD)|I + pa2 (2 — 22| Foun — Fop|® + pa (1 = 260)[| Fiza — Frz|?]
%va(xn) — uFp| + Bullzn — plI* + (1 = Bo — an?)[l[zn — plI* + ra(rn — 20)
X || Az — Ap|® + pa(p2 — 2G2) || Foun — Fopl|® + m (i — 261|120 — Frz|?]
= %va(mn) — pFp|* + Ballzn — pl* + (1 = B — ant) |20 — pl|?
+ (1= Bn — anT)rn X (rn = 26)||Azn — Ap||* + (1 = B — anT)p2(p2 — 2C2) || Foun — Fapl|®
+ (1= Bn — an7) X 1 (pa — 2G1)||Frzn — Fi2|?
= %va(xn) — uFp|* + (1 = ant)||@n — p||° + (1 = Bn — anT)rn (1 — 26)|| Az, — Ap]|?
+ (1= Bn — anT)p2(p2 — 262) || Foun — Fap||> + (1 — Bn — anT)pa (1 — 261)
X || Fizn — F;le2

IN

IN

< lwn —pl* + %Hﬁ(xn) — WFp|* + (1 = Bn — anT)ra(rn — 26)|| Azn — Apl|?
+ (1= Bn — anT)p2(piz — 2G2) || Fatn — Fap||® + (1 = Bn — an)pa (1 — 261)
X || Fizn — F12|)?

and hence

(26 —7n) (1 = Bn — anT)||Azn — Ap|® + (1 — Bn — anT)p2(2C2 — p2)|| Foun — Fopl|®
+ (1= Bn — anT)p1 (261 — 1) |Frzn — Fiz|? < [lzn — plI* = |#n41 — pl|
Qn
+ |7 f (@n) = nFpl?

«
= (lwn = pll + lons1 = piDllzn = znsa | + 17 f (@n) — nFp].
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From conditions (i), (ii), (iii) and (B.IH]), we have

lim ||Az,—Ap| =0, lim ||Fiz,—Fiz|| =0 and lim |Fyu,—Fop|| =0 (3.19)
n—oo n—00 n—00

Indeed, from 3], B4) and Lemma [2.6] we have

12n — 21I2

and

[y — pl|?

= | TS2 (un — p2Foun) — T2 (p — paFop) |1?
< <T,?22 (up — p2Foun) — T,?; (p — pathp), (un — p2Foun) — (p — p2fap))
= <(u7l - /1’2F2u71) - (p - /1*2F2p)7 Zn — Z>

1
= S (I(un = p2Foun) = (p — p2Fop) > + |z — 2|

2

— (un — p2Foun) = (p — p2Fop) — (20 — 2)|%)
< %(Ilun —pl? + 20 = 2112 = [[(un = 2) = p2(Foun — Fap) — (p = 2)|1?)
< %(len —pl* + llzn = 212 = [ (un = 20) = (0 = 2)|1?

+ 2p2((un = 20) = (p = 2), Foun — Fop) — pi5 || Foun, — Fopl|?),
=TS (20— Frzn) = TS (2 — pa Fr2) |
<A(TE (2 — puFrzn) — TG (2 — paF2), (20 — paFizn) — (2 — pa Fi2))
= ((zn — 1 F1zn) — (2 — 1 F12), Y — p)
= 2~ mFrza) = (2 = mF2)|2 + g~ ol

— (20 — 1 Frzn) = (2 = i Fr2) = (yn — p)II?)
< %(Ilzn — 2%+ lyn = 2I? = (20 — ) + (0 = 2)|I

+ 201 (20 — yn) + (p — 2), Frzn — F12) — pi||Frzn — Fiz|*)
< lmn =l + o~ pl> = zn — 9) + (0 = 2) P

+ 2/L1<(zn - yn) + (p - Z)vFlzn - F12’>,

which implies that

l2n =211 < o —pl1* = [l (un = 2n) = (p—2)II* +2p12| (un — 20.) = (= 2) || Foreer — Fp|

and

(3.20)

lym=pl* < llwn =Pl =1 (20 =) + (= 2)1*+ 21 | Frzn — Fr 2| (20— yn) + (p—2)|.

(3.21)
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It follows from (B21)) that
l|lzn+1 —P||2
= llan(vf(n) = pFP) + Bu(wn — Knyn) + (I — anppF) Knyn — (I — anpuF)Knpl®
< (I = anpF) Knyn — (I = anptF) Knp + B (@ — Knyn)||” + 200 (vf (¥n) — nFp, Tpi1 — p)
< = anptF) Knyn — (I = anptF)Knp + Bu(@n — Knyn)||* + 2anllyf (n) — pFpll|[2ns1 — pll
<[ = an?)llyn = pll + Bullzn — Knynlll* + 2an|[vf (zn) — uFpl[€ns1 — pl|
< (lyn = pll + |20 = Knynl)* + 20|17 f (zn) = pFpl|za+1 — pl|
=y = pI* + llzn = Knyall* + 2llyn — pllllen — Knynll + 20n]lvf (2n) — uFp||[€n+1 — pl|
<lwn = pl* = 1(zn = ya) + (= 2 + 21| Frz — Frzl|[| (20 — ya) + (0 = 2)|
+ @0 = Knynll® + 20y — plllzn — Knynll + 200 [ f (@) = pFpl||@ns1 — pll-
Then we have
[(zn = yn) + (0 = 2)|1?
<wn = plI* = l2ntr = plI? + 201 [ Frzn — Fiz||[|(z0 = ya) + (0 = 2)|
+ [|on — Knyn||2 +2[lyn — plllzn — Knynll + 20017 f(2n) — nFpl||| 2041 — pll
< (lzn = pll + llznt1 = pDllzn — 2pga | + 20| Frzn — Fiz|[|(zn — yn) + (p = 2) ||
+ 20 = Knynll? + 2llyn = pllll2n = Knyall + 2anl[vf (20) = pFplll|2a41 = pl|

(3.22)

Since ay, = 0, ||zn — Tny1ll = 0, |F12n — F12]| = 0 and ||z, — Knyn|| — 0 as
n — 0o, we have

T [z =) + (0= )] =0 (3.29

Also, from (@4 and (B20) , we obtain that
|Zn+1 —P||2
< llyn = plI* + llzn = Knynll* + 2llyn = plll|lzn — Knynll + 2an|vf (zn) = wFpll|zn41 = p|
<llzn = 2017 = (2o = yn) + (0 = 2)II° + 212 ]| (20 = yu) + (0 = 2)[[| Frzn — Fa2]]]
+ 120 = Kuyal® + 2llyn — pllllen — Kayall + 2]y f(@n) — pFp||€asr — pl|
< (2 = plI* = [[(un = 20) = (p = 2)|I” + 2p2[|(un — 20) = (p = 2) ||| Foun — Fop])
—[1(zn = yn) + (0 = 2I* + 2u11ll(z0 = yn) + (0 = 2| Frz0 — Frz|| + 20 — Knyal®
+2llyn = pllllzn — Knynll + 20m[17f (2n) — pFplll|zn1 — pl|.
It follows that
[(un = 20) = (0 = 2)II”
< lzn = pl1* = |21 = plI* + 2p2ll (un = 20) = (0 = 2)|[| Foun — Fap|
—1(zn = yn) + (0 = 2)* + 21l (20 — yn) + (0 = 2)|[ [ Fr2n — Frz||
+ [len — Kaynl®
+ 2llyn — pllllzn — Knynll + 20n |17 (2n) — pEpll[[#ns1 — p
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< (len = pll + l2ns1 — 220 — Tnga | + 2p2(| (wn — 20) — (p — 2) [l Faun — Fapl|
—I(zn = yn) + (0 = 2)|I> + 201 (2n — wn) + (0 — 2) ||| Fr2n — Fu2]|
+ |#n — Knynll? + 2llyn — pllll2n — Knynll + 200 |7 f (20) — pFpll||@ns1 — -

Since a, = 0, ||Tn —Tni1|| = 0, ||[Foun—Fop|| — 0and ||(zn—yn)+(p—2)|| = 0
as n — 0o, we have

Jim [ = 2) = (9= 2)]| =0 (3:24)
Note that TT(S) ) g firmly nonexpansivity. Hence we have
lun = plI* = 1T (@0 — ruAwn) = T (p = raAp) |
< (un = p, (&n = rnAn) = (p — ra Ap))
= 2~ raAza) = (b~ ra AR + i — I
= l(@n = rnAzn) = (p = r0.Ap) = (un — p)[|?)

1
5 lzn = pI” + llun = pl* = (@0 = un) = ru(Azn — Ap)|*)

IN

1
= 5(lln = pl* + llun = plI* = lon = wnl]* + 2 (Azp = Ap, @0 — un)
— ol Az, — Apl?,

which implies that

lun = pI* < lzn = plI* = |z — wnll® + 2ra]| Az — Ap|llzn —unl.  (3.25)
From @EI), BX) and @B25), we have
ln+1 =Pl

= [lan(vf(zn) — pF'p) + Bul®n — Knyn) + (I — anpF ) Knyn — (I — Ofn,UF)Kan2
<N = anpF)Knyn — (I — anpF)Knp + Bn(zn — Knyn)||2
+ 20n (v f(&n) — pFp, Tni1 — p)
< — anpuF)Knyn — (I — anpF)Kpp + Bu(zn — Knyn)||2
+ 2an|[vf (2n) = pFplll|lzns1 — pll
<[ = ant)lyn — pll + Ballzn — Knyn||]2 + 20 ||V f(20) — pEpl[|[2n41 — Dl
< (lyn = pll + 2 = Knynl)* + 20anllvf (20) = pFpll 201 = pl
< (lun = pll + llon = Knynl)* + 20017 (@n) — nFplll|znsr — pl
llun p||2—|— ||33n_Knyn||2+2||un_p””$n_Knyn”
+ 2an|[vf (2n) — pFplll|lzns1 — pll
< lzn — p|| —lzn — un||2 + 21 [|Azn — Apll||lzn — unll + (|25 — nyn”2
+ 2fjun = pllllzn = Knynll + 2an |7 f (2n) — pEFpllllznir —pl.-
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Then we have

lzn — un||2

< [lzn _p”2 = lzns1 — p||2 + 2rn || Az, — Aplll|lzn — unll + (|20 — Knyn||2
+ 2[un = pllllen = Knyall + 207 f (2n) — nFpl[|n1 = pll

< (lzn = pll + llznt1 = pIDlzn = znsall + 2l Az — Apllllzn = unll + llon — Knyal?
+ 2[jun — pllllzn — Knynll + 2an|[vf (2n) — nEpllllznis — pl-

Since o, — 0, || Az, — Ap|| = 0, ||&n — Tny1]| — 0 and ||z, — Kpys|| — O as
n — 00, we obtain that

lim ||z, — un| = 0. (3.26)

n—oo

From (323), B324) and ([B.26]), we obtain that

nh_)ngo lwn —ynl = nli,néo [(un — 2n) = (p = 2) + (20 — yn) + (0 — 2)||

< lim ((un = 20) = (p = 2)| + || (20— ya) + (0~ 2)]

n—roo

=0 (3.27)
and
lim ||z, —ynl < lim ||z, —ups| + lim ||un, — ya|| = 0. (3.28)
n—o00 n—00 n—00
Since || Knyn — Ynll < | Kn¥n — Znll + |20 — yn||, we also have
lim ||K,yn — yn| = 0. (3.29)
n—oo
Step 4. We shall show that

lim sup((uF — vf)a™, 2™ — x,) <0,

n—00

where z* = PA(I — uF + v f)x*. To show this inequality, we can choose a subse-
quence {yn,  of {y,} such that

dim ((uF =~ f)a”, 2" = yn,) = imsup((uF —yf)a", 2" = yn). (3.30)

n—oo

Since {yn, } is bounded, there exists a subsequence {yy,; } of {yy,} which converges
weakly to w. Without loss of generality, we may assume that y,,, — w. Let us show
w e A.
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First, we prove that w € O. Utilizing Lemma 2.8, we have

IT(x) = T(y)|?
= |TSH TS (2 — poFaz) — i TS (@ — poFax))]
— T T (y — paFoy) — P T (y — paFoy)]|1?
<|TE2 (2 — paFox) — T2 (y — paFay) — pa (FITS? (v — poFax)
— FT52 (y — paFoy))|?
= TS (x — paFox) — T2 (y — peFay)||® — 201 (T2 (v — paFox)
— T2 (y — paFoy), T2 (x — paFox) — BTS2 (y — paFoy))
+ IR AT (2 — poFax) — FITS (y — po Fay) |12
<|TS2 (= paFox) — T2 (y — paFoy)|I” — 2m G 1A TS? (@ — poFox)
— BTS2 (y — poFoy) |1 + pi | TS5 (2 — poFox) — VT2 (y — paFoy)||
= TS (2 — paFox) — TG (y — paFoy)l|” + pa (i — 20) | TS (v — paFo)
— TS (y — paFay)|?
<TG (= paFox) — T2 (y — paFoy) ||
< [z — paFox) — (y — paFay)|?
= |[(x — y) — pa(Fox — Fay)|?
< o= yl* 4 pa(p2 — 262)|| Fox — Fay|?
< |lz —y*.

for all z,y € C. This shows that I' : C' — C' is nonexpansive. Note that

lyn = T(yn) |l = T (un) = T(yn)ll < [ltn — yull

from @B2Z17), we have lim ||y, — T'(yn)| < lim ||un — ynl| = 0. According to
n—00 n—o0

Lemma [2.8] and Lemma 2,10, we obtain w € O.

Next, we show that w € Q. From u,, = Tr(f’“a)(acn — rpAxy,), we know that

1
D (un,y) + 0(y) — o(un) + (Azp,y — un) + —(Y — Un,up — x,) >0, Vye C.

T'n

From (A2) it follows that

1
o(y) — p(un) + (Azn,y — un) + Ay~ un un — 20) 2 By, un), Yy e C.

n
Replacing n by n;, we have

Un,

i

— Ty,
@(y)_</)(uni)+<"4xnmy_uni>+<y_unia > > (I)(yauni)v Vy eC. (331)

Uz
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Put u, = ty + (1 — t)w for all t € (0,1] and y € C. Then we have u; € C. From
B31) we have

Qp(ut) - (p(unz) + <ut — Unp,, Aut>

Uy, — Ty
> (g — Un,, Atg) — (U — Un,, Azp,) — (U — Un,, %) + ®(ut, un,)
n;

Up, — Tp,
= <ut — Un,, Aug — Aun1> + <ut — Up,;, Ap, — AIH1> - <ut = Un,, %>
-

i

+ D(ut, Up,)-

Since ||un, — zn, || — 0, we have | Au,, — Az,,|| — 0. Further, from monotonicity
of A, we have (us — un,, Aug — Auy,,) > 0.
From (A4), the weakly semicontinuity of ¢ , u,, — x,, — 0 and u,, — w, we have

o(ug) — p(w) + (uy — w, Aug) > ®(ug,w) as i — oo. (3.32)
From (A1), (A4), ([B32) and the convexity of ¢ , we obtain
0= ®(u, ur) + p(ur) — p(ur)
= @(u, (ty + (1 — t)w)) + @ty + (1 — t)w) — p(ue)
< t@(ug, y) + (1= )P (uy, w) +te(y) + (1 — )p(w) — pur)
< t@(ug, y) + (1= ) (p(ue) — p(w) + (ue —w, Auy)) + to(y) + (1 — t)p(w) — e(ur)

= t®(ur, y) — tp(ur) + (1 — ) (ur — w, Aug) + tp(y)
= t[®(ur,y) — p(ue) + @(y)] + (1 = Oty — w, Auy), (3.33)

and hence
D(ut, y) — p(ur) +¢(y) + (L= )y —w, Auy) >0, vy eC.
Letting ¢t — 0, it follows from (A3) and the weakly semicontinuity of ¢ that
D(w,y) = p(w) + oY) +(y —w, Aw) 2 0, vy eC. (3.34)

This implies that w € 2. Next, we show that w € NY; Fiz(T;). Assume that there
exists j € {1,2,..., N} such that w # Tjw. By Lemmam we have w # Kw.
Since y,, — w and w # Kw, by Opial’s condition[lS] and (B3:29) and Lemma[2ZT3]

we have

liminf [|yn, — w| <liminf [jy,, — Kw||
17— 00 1—00

< h}gg}f(nym - Kﬂiym + ||Kmym - me” + ”Knlw - Kw”)

< hmlnf ||yn1 - w”a
11— 00

which derives a contradiction. This implies that w = Kw. It follows from
w € Fiz(K) = NI, Fiz(T;), that w € N, Fix(T;). Hence w € A.
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Since x* = PA(I — uF + v f)z*, we have
limsup((uF' —vf)2", & — %) = lim (uF = f)z", yn, —27)
n—oo 3 oo
= ((uF —vf)z",w— ")
<o0. (3.35)

Step 5. Finally, we prove that {x,}, {u,} and {y,} converge strongly to z*.
From (BI), utilizing Lemma and Lemma [2T5 we have

[@nss — 27|

= llan(vf(@n) = nFz*) + Bn(wn — 2%) + (1 = Bu)] — anpF) Knyn
— (A= Bu)I - O‘n/LF)KnI*”Q

< Bu(zn — ™) + (1 = Bu)] — anptF) Knyn — (1 = Bu)I — anuF) Kpa™|?
+ 2an (v f(zn) — pFa”, zp — 2%)

< Ballen — 2| + (1 = Bu) — anpF ) Knyn — (1 — Bn)I — anUF)Knx*H]Q
+ 2an (v f(zn) — pFa”, zpp —27)

< [Bullzn — 2| + 11(1 = Ba)((I — - fnﬁnuF)Knyn - (I- - fnﬁn

+ 2007 (f(2n) = f(27), 2ngr = 27) + 200 (v f(27) = pF2™, 2np1 — 27)

< [Bullan ="l + (1= B)(1 - 725

+2anypllen — & |[[enen — 27| 4 200 (v f(27) = pF2", 2nga — 27)

pF) Kz

)llan — 27[]?

< (1= anr)?||zn — 2| + anvp(llan — 2| + |2 — 2*[)
200 {1/ (5") = pFa" wpss — o)
=(1- an7)2||$n - x*||2 + anypllTn — x*||2 + anypllTni1 — x*||2
+ 200 (7 f(2") — pFz*, 2ngr — 27)
which implies that

et

1—a,7)%+ anyp N 200, N
< 0= 0nT) o = 2712+ 2t (/@) = Fa” s ng — o)
— QpYp 1 — Qnyp
2(1 —yp)on * (anT)? *
=1 - =—llzn — 2| + ————[lwn — 2" |?
1—apyp 1—
2an * * *
+ m(vf(w ) — wFx* xpq —2*)
2(r — Qp N 2(r — fo
< (- 2T e 20
— apYp I —apyp
(a’ﬂT)2M1 1 * * *
x4 (vf(a") = pFa”, zng1 — ")}

2r—p)  T—p
= (1 =8,)||zn — 2*||* + 6n0n, (3.36)
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T)2M1 +

where My = sup{||lz, — p||? : n > 1}, 6, = 220 4pq o, = %

1—anvyp

o0
Tiyp (vf(z*) = pFa*, xpy1 — x*). It is easy to see that 6, — 0, Zl 0p, = 00 and
n=

limsupo, < 0. Applying Lemma 24 to ([B36), we conclude that z, — x* as

n—oo

n — oo. Consequently, we can obtain ||z, —uy|| — 0 and ||z, —y,|| = 0 that {u,}
and {y,} are also converges strongly to z*. This completes the proof. O

Corollary 3.2. Let H be a real Hilbert space, C a closed convex nonempty subset
of H. Let ®,G1,Go: C x C' — R be three bifunctions which satisfying (A1)-(A4)
and ¢ : C — R a lower semicontinuous and convex function with assumption (B1)
or (B2). Let F1,F; : C — H be (3—inverse strongly monotone and (a—inverse
strongly monotone, respectively. Let {T;}.| be a finite family of nonexpansive
mappings of C into H such that NY, Fiz(T;) N MEP(®,0) N O # (. Let F :
C — H be a k—Lipschitzian and n—strongly monotone operator with constants
k,m >0 and f : C — C a p—Lipschitzian mapping with constant p > 0. Let
0<pu< % and 0 < vp < 1, where 7 = 1 — /1 — u(2n — pk?). Suppose {a,}
and {Bn} are two sequences in (0,1), {r,} C (0,00), u1 € (0,2¢1), u2 € (0,2¢2)
and {\ni} N, is a sequence in [a,b] with 0 < a < b < 1. For every n > 1, let K,
be a K—mapping generated by T1,T5,...,Tn and Ap 1, An2,..., A N. Let 21 € C
arbitrarily. Suppose the sequences {xn} and {u,} are generated iteratively by

U = B(un,y) + oY) = o(un) + 7=y = Un, up — 20), ¥y € C,

Yn = Tlﬁl [TE; (Un, — paFouy) — ulFlTE; (un — poFouy)], (3.37)
Tpi1 = Y f(@n) + Butn + (1 = Bu)l — anpF)Knyn, ¥n > 1,

where the sequences {an},{Bn} , {rn} and { N}, satisfy the following condi-
tions:

(i) lim a, =0 and > a, = oo;
n—oo n=0

(i) 0 < liminf 8, <limsup S, < 1;
n— oo

n—oo
(iii) nlLrI;o(rn+1 —1rp) =0;
(i) lUm |Apt1,:— Anil =0 for every i € {1,2,...,N}.
n—oo

Then both {x,} and {u,} converges strongly to z* € NN, Fiz(T;)NM EP(®, »)NO,
where ©° = PN pia(r)nmep @00 — pEF +7f)x* and (2%, y") is a solution of
problem (L) where y* = TS (x* — pa Fox™).

Proof. In Theorem Bl for all n > 0, u,, = Tr(f’“a)(:tn — rpAxy,) is equivalent to

1
D(un, y)+¢(y) = (un) +(Azn, y = tn) + — (Y —un, un—xn) > 0, Vy € C. (3.38)

n
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Putting A = 0, we obtain

1
D (n,y) +o(y) — @(un) + —(Y — Un,tup — x,) >0, VyeC.

n

O

Corollary 3.3. Let H be a real Hilbert space, C a closed convexr nonempty subset
of H. Let ®,G1,G2 : C x C — R be three bifunctions which satisfying (A1)-
(A4). Let A, F1, F5 : C — H be d—inverse strongly monotone, (1 —inverse strongly
monotone and (a—inverse strongly monotone, respectively. Let {T;}Y.| be a finite
family of nonexzpansive mappings of C into H such that N, Fix(T;)NEPNO # (.
Let FF : C — H be a k—Lipschitzian and n—strongly monotone operator with
constants k,n > 0 and f : C — C a p—Lipschitzian mapping with constant p > 0.
Let 0 < p < i—z and 0 < vp < 7, where 7 = 1 — /1 — u(2n — pk?). Suppose
{an} and {B,} are two sequences in (0,1), {rn} is a sequence in (0,20], u1 €
(0,2¢1), 2 € (0,2¢2) and {Mni}Y, is a sequence in [a,b] with 0 < a < b <
1. For every n > 1, let K,, be a K—mapping generated by T1,T5,...,Tn and
A1y An2s -y An n. Let 1 € C arbitrarily. Suppose the sequences {z,} and {un,}
are generated iteratively by

Un = (I)(un,y) + <A:En,y - un> + %<y — Up, Up — $n>a vy e C,

yn = TS TG (un — paFoup) — pn FITS2 (un — paFoun), (3.39)
Tn41 = an”Yf(xn) + Bnn + ((1 - ﬂn)I - ozn,uF)Knyn,Vn > 1,

where the sequences {ay},{Bn} , {rn} and { N}, satisfy the following condi-
tions:

(i) lim a, =0 and Y a, = oo;

(#1) 0 <liminf 8, <limsup S, < 1;
n—oo

n—00

(i) 0 < liminfr, <limsupr, < 2§ and lim (r,41 —r,) =0;
n—oo n—oo n—oo

(iv) Um |Apg1i— Anil =0 for every i € {1,2,...,N}.
n—oo

Then both {x,} and {u,} converges strongly to x* € NY_, Fiz(T;)NEPNO ,where
T =Py pio(rynernod —pF +yf)z* and (2%, y*) is a solution of problem (L8]
where y* = TE; (x* — poFox™).

Proof. Put ¢ =0 in Theorem B.Il Then we have from (B.38)) that

1
q)(unuy)+<Axnuy_un>+_<y_un7un_xn> 207 Vyec

Tn
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Corollary 3.4. Let H be a real Hilbert space, C a closed convex nonempty subset
of H. Let ®,G1,G2 : C x C — R be three bifunctions which satisfying (A1)-
(A4). Let Fi,Fr : C — H be (q—inverse strongly monotone and (a—inverse
strongly monotone, respectively. Let {T;}.| be a finite family of nonexpansive
mappings of C into H such that NN Fix(T;) N EP(®) N O # 0. Let F : C —
H be a k—Lipschitzian and n—strongly monotone operator with constants k,n >
0 and f : C — C a p—Lipschitzian mapping with constant p > 0. Let 0 <
nw < % and 0 < vp < 7, where 7 = 1 — /1 — p(2n — ux?). Suppose {a,} and
{Bn} are two sequences in (0,1), {r,} C (0,00), u1 € (0,2(1), 2 € (0,2¢2) and
i}t is a sequence in [a,b] with 0 < a < b < 1. For every n > 1, let K,
be a K—mapping generated by 11,15, ..., Tn and My 1, n2,.. ., nN. Let 1 € C
arbitrarily. Suppose the sequences {x,} and {u,} are generated iteratively by

Unp = @(un,y) + %<y — Up, Up — In>7 Vy eC,

Yn = Tﬁl [Tf; (un, — poFouy,) — ulFlTE; (up, — poFouy)], (3.40)
Tpt1 = anYf(n) + Bun + (1 = Bu)l — anpF)Knyn,¥n > 1,

where the sequences {au},{Bn} , {rn} and { N}, satisfy the following condi-
tions:
(i) nli)rr;o an =0 and n:Oan = 00;

(i) 0 < liminf 8, <limsup S, < 1;
n— oo

n—oo
(i) RILH;O(Tn+1 — 1) =0;
(iv) Um |Apg1,i— Al =0 for every i € {1,2,...,N}.
n—r oo

Then both {z,} and {u,} converges strongly to x* € NN, Fiz(T;) N EP(®) N O,
where ©* = PN pig(rynep@nod — pF +f)z* and (z%,y*) is a solution of
problem (LB) where y* = T2 (x* — pp Fox™).

Proof. Put ¢ =0 and A =0 in Theorem [3] Then we have from (B38) that

1
fb(un,y) =+ 'f‘_<y — Up, Up — $n> >0, Vy eC.

n

O

Corollary 3.5. Let H be a real Hilbert space, C' a closed convex nonempty subset
of H. Let G1,G2 : C x C — R be two bifunctions which satisfying (A1)-(A4). Let
A, F1, Fy : C — H be §—inverse strongly monotone, (1 —inverse strongly monotone
and (a—inverse strongly monotone, respectively. Let {T;}X.; be a finite family of
nonezxpansive mappings of C into H such that "X, Fiz(T;)NVI(A,C)NO # (. Let
F : C — H be a k—Lipschitzian and n—strongly monotone operator with constants
k,m >0 and f: C — C a p—Lipschitzian mapping with constant p > 0. Let 0 <
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"< i—g and 0 < vp < 7, where 1 = 1— /1 — u(2n — ux?). Suppose {a, } and {B,}
are two sequences in (0,1), {rn} is a sequence in (0,26], u1 € (0,2¢1), u2 € (0,2¢2)
and {\,;}N . is a sequence in [a,b] with 0 < a < b < 1. For every n > 1, let K,,
be a K—mapping generated by T1,T>,...,Tn and Ap 1, n2,..., A\n,n. Let x1 € C
arbitrarily. Suppose the sequences {xn} and {un} are generated iteratively by

un = Po(xy, — rpAxy,),
Yn = TSHTG (un — paFoun) — pn VTS (wn, — proFoun)], (3.41)
Tnt1 = WY f(xn) + Brnxn + (1 — Bn)l — anuF)Kyyn,Vn > 1,

where the sequences {an},{Bn} , {rn} and {M\.:}Y, satisfy the following condi-
tions:

(i) lim ap, =0 and Y a, = oo;
n—roo n=0

(i4) 0 <liminf 3, <limsup B, < 1;
n—oo

n—r00

(i) 0 < liminfr, <limsupr, < 2§ and lim (r,41 —r,) =0;
n—oo n—oo n—oo

(iv) Um |Apg1i— Anil =0 for every i € {1,2,...,N}.
n—oo
Then both {x,} and {u,} converges strongly to * € NN, Fixz(T;)NVI(A,C)NO,

where ¥ = PN pin(rynvia,cynod — pF' +vf)z* and (2, y*) is a solution of
problem ([L8)) where y* = TE; (x* — poFox™).

Proof. Put ® =0 and ¢ =0 in Theorem BTl Then we have from (B38)) that

1
<Axnay_un> + r_<y_un7un _$n> >0, Vy eC.

n

That is,
(y — Un, Ty — TR ATy, —up) <0, VyeC.

It follows that u,, = Pc(z, —rnAx,) for all n > 1. Hence the corollary is obtained
by Theorem [B11 O

Example 3.6. The example of our iteration parameters are :

1 n n 7
n = n <— ) n = — a/)s Anizzi, 21, 6 1,2,...,]\],
“ n b nt1 " (n+2) ’ (N+1)n " ied }
e e T
M1 47 2 47 Y 4p7 M 21%2
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