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1 Introduction

Let E be an infinite compact subset of the complex plane C such that C \ E
is simply connected. There exists a unique exterior conformal mapping Φ from
C \ E onto C \ {w : |w| ≤ 1} satisfying Φ(∞) = ∞ and Φ′(∞) > 0. We assume
that E is such that the inverse function Ψ = Φ−1 can be extended continuously to
C \ {w : |w| < 1}. Note that the closure of a bounded Jordan region and a finite
interval satisfy the above conditions. In this whole paper, E is as described above.
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Let µ be a finite positive Borel measure with infinite support supp(µ) contained
in E. We write µ ∈ M(E) and define the associated inner product,

〈g, h〉µ :=

∫

g(ζ)h(ζ)dµ(ζ), g, h ∈ L2(µ).

Let
pn(z) := κnz

n + · · · , κn > 0, n = 0, 1, 2, . . . ,

be the orthonormal polynomial of degree n with respect to µ having positive
leading coefficient; that is, 〈pn, pm〉µ = δn,m. Denote by H(E) the space of all
functions holomorphic in some neighborhood of E.

Definition 1.1. Let F ∈ H(E), µ ∈ M(E), and a pair of nonnegative integers
(n,m) be given. A rational function [n/m]µF := Pµ

n,m/Qµ
n,m is called an (n,m)

(linear) Padé-orthogonal approximant of F with respect to µ if Pµ
n,m and Qµ

n,m

are polynomials satisfying

deg(Pµ
n,m) ≤ n, deg(Qµ

n,m) ≤ m, Qµ
n,m 6≡ 0,

〈Qµ
n,mF − Pµ

n,m, pj〉µ = 0, for j = 0, 1, 2, . . . , n+m.

Since Qµ
n,m 6≡ 0, we normalize it to have leading coefficient equal to 1.

These rational functions always exist because finding an ordered pair of (Pµ
n,m,

Qµ
n,m) is the same as solving a system of n + m + 1 linear equations with n +

m + 2 unknowns. But in general they may not be unique (see [2, Example 1.2]).
Moreover, it is not difficult to see that if E = {z ∈ C : |z| ≤ 1} and dµ = dθ/2π
on the unit circle {z ∈ C : |z| = 1}, then the linear Padé-orthogonal approximants
are exactly the classical Padé approximants (see the G. Frobenius definition [3]
for the definition of the classical Padé approximants). Note that linear Padé-
orthogonal approximants have been called by several names such as linear Padé
approximants of orthogonal expansions [4], α-Padé approximants [1, 5], Fourier-
Padé approximants [6–8], and orthogonal Padé approximants [9,10]. Furthermore,
we would like to emphasize that there is another construction called nonlinear
Padé approximants of orthogonal expansions (see e.g. [11]) which is intimately
connected with linear Padé-orthogonal approximants. However, since we restrict
our consideration to the linear case, we will omit the word “linear” when we refer
to linear Padé-orthogonal approximants.

Almost all results in the subject of Padé-orthogonal approximation have been
mainly concentrated on the case when the measure µ is supported on a finite inter-
val (see e.g. [1,5,9,10,12–15]). S.P. Suetin [1] was the first to prove the convergence
of row sequences of Padé-orthogonal approximants for a general class of measures
supported on [−1, 1] for which the corresponding sequence of orthonormal polyno-
mials has ratio asymptotic behavior. Moreover, he also proved an inverse result [5]
for row sequences of Padé-orthogonal approximants with respect to a measure sup-
ported on [−1, 1] under the assumption that the denominators of the approximants
converge with geometric rate to a certain polynomial of degree m. For measures
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satisfying Szegő’s condition, V.I. Buslaev [9,10] obtained inverse type results with-
out the requirement that the denominators converge geometrically. Some problems
on the convergence of diagonal sequences of Padé-orthogonal approximants with
respect to a measure supported on [−1, 1] were considered in [12–15]. Some papers
which consider measures µ supported on the unit circle are [6–8,16]. N. Bosuwan,
G. López Lagomasino, and E.B. Saff [2] and N. Bosuwan and G. López Lago-
masino [17] gave direct and inverse results for row sequences of Padé-orthogonal
approximants corresponding to measures supported on a general compact E as
described above. The results in [2, 17] generalized the results in [1, 5, 9, 10]. The
object of this paper is to investigate a convergence behavior of Padé-orthogonal
approximants [n/m]µF with respect to a measure supported on a general compact
set as n → ∞ and m → ∞, particularly as m := mn → ∞, with mn = o(n) as
n → ∞, and n → ∞. The sequences like these were called nondiagonal sequences
by D.S. Lubinsky and A. Sidi in [14, Section 4.]. S.P. Suetin [1, Theorem 3] was
the first to prove the convergence in capacity of nondiagonal sequences of Padé-
orthogonal approximants with respect to a measure supported on [−1, 1]. Later,
D.S. Lubinsky and A. Sidi [14, Theorem 4.1] also considered a convergence in
capacity of nondiagonal sequences of Padé-orthogonal approximants with respect
to a measure supported on [−1, 1] but in a very different way, for example, the
condition on a measure µ, the condition of the approximated function, and a re-
gion of convergence. Our main result in this paper generalizes the result of S.P.
Suetin [1, Theorem 3].

An outline of this paper is as follows. In the section 2, we introduce some
notation and auxiliary lemmas. The statement of the main result and its proof
are in the section 3.

2 Notation and auxiliary lemmas

First of all, we introduce some needed notation. For any ρ > 1, we denote by

Γρ := {z ∈ C : |Φ(z)| = ρ}, and Dρ := E ∪ {z ∈ C : |Φ(z)| < ρ},

a level curve of index ρ and a canonical domain of index ρ, respectively. We
denote by ρ0(F ) the index ρ > 1 of the largest canonical domain Dρ to which F
can be extended as a holomorphic function, and by ρm(F ) the index ρ of the largest
canonical domain Dρ to which F can be extended as a meromorphic function with
at most m poles (counting multiplicities). Basically, the notation ρm(F ) is just
the generalization of the radius of m-meromorphy of F . Moreover, we denote by

Dρ∞(F ) =
∞
⋃

m=0

Dρm(F )

the maximal canonical domain in which F can be continued to a meromorphic
function.
Let µ ∈ M(E) be such that

lim
n→∞

|pn(z)|1/n = |Φ(z)|, (2.1)
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uniformly inside C \ E. Such measures are called regular (see e.g. [18]). Here and
in what follows, the phrase “uniformly inside a domain” means “uniformly on each
compact subset of the domain”. The Fourier coefficient of F with respect to pn is
given by

Fn := 〈F, pn〉µ =

∫

F (z)pn(z)dµ(z). (2.2)

As for Taylor series (see, for example, [18, Theorem 6.6.1]), it is easy to show that

ρ0(F ) =
(

lim
n→∞

|Fn|1/n
)−1

.

Additionally, the series
∑∞

n=0 Fnpn(z) converges to F (z) uniformly inside Dρ0(F )

and diverges pointwise for all z ∈ C \Dρ0(F ). Therefore, if (2.1) holds, then

Qµ
n,m(z)F (z)− Pµ

n,m(z) =

∞
∑

k=n+m+1

〈Qµ
n,mF, pk〉µ pk(z)

for all z ∈ Dρ0(F ) and Pµ
n,m =

∑n
k=0〈Qµ

n,mF, pk〉µ pk is uniquely determined by
Qµ

n,m.
In this paper, we restrict ourselves to a class of measures R(E) ⊂ M(E). We

write µ ∈ R(E) when the corresponding sequence of orthonormal polynomials has
ratio asymptotics ; that is,

lim
n→∞

pn(z)

pn+1(z)
=

1

Φ(z)
, (2.3)

uniformly inside C\E. It is not difficult to see that if µ ∈ R(E), then µ is regular.
The second type functions sn defined by

sn(z) :=

∫

pn(ζ)

z − ζ
dµ(ζ), z ∈ C \ supp(µ),

are very useful our proof. The following lemma (see [2, Lemma 3.1]) is the asymp-
totic relation between the orthogonal polynomials pn and the second type functions
sn.

Lemma 2.1. If µ ∈ R(E), then

lim
n→∞

pn(z)sn(z) =
Φ′(z)

Φ(z)
,

uniformly inside C \E. Consequently, for any compact set K ⊂ C \E, there exists
n0 (n0 depends on K) such that sn(z) 6= 0 for all z ∈ K and n ≥ n0.

Finally, we state a lemma due to A.A. Gonchar which is quite useful in the
theory of rational approximation. We recall a definition of the logarithmic capacity
of a compact set K :

cap(K) := e−γ(K),
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where

γ(K) := inf

{∫ ∫

log
1

|z − t|dµ(z)dµ(t) : µ ≥ 0, supp(µ) ⊂ K, µ(K) = 1

}

.

Moreover, the logarithmic capacity can be extended to a noncompact set G by

cap(G) := sup{cap(K) : K ⊂ G, K is compact}.

Let W and Wn, n ∈ N, be functions defined on an open region Ω. We say that
the sequence {Wn}n∈N converges to W in capacity inside Ω, if for any ε > 0 and
for any compact subset K of Ω,

lim
n→∞

cap({z ∈ K : |Wn(z)−W (z)| ≥ ε}) = 0.

The following is a part of Lemma 1 in [19] or in Section §2., subsection 2, part
b in [20] proved by A.A. Gonchar.

Lemma 2.2. Suppose that the sequence of functions {Wn}n∈N converges to the
function W in capacity inside an open region Ω. If the functions Wn are mero-
morphic and have no more than m < ∞ poles in Ω, then the limit function W is
also meromorphic in Ω and has at most m poles in Ω. Hence, in particular, if W
has a pole of order ν at the point a ∈ Ω, then at least ν poles of Wn tend to a as
n → ∞.

3 Main result

The following theorem is our main result. This result extends Suetin’s result
in [1, Theorem 3] from the interval [−1, 1] to a general compact set E as described
above.

Theorem 3.1. Let F ∈ H(E) and µ ∈ R(E). Denote by Dρ∞(F ) the maximal
canonical domain in which F can be continued to a meromorphic function. Then
every sequence [n/mn]

µ
F with mn → ∞,mn = o(n) as n → ∞ converges in capac-

ity to F inside Dρ∞(F ). Moreover, if F has a pole of order ν at a point a ∈ Dρ∞(F ),
then at least ν poles of [n/mn]

µ
F tend to a as n → ∞ according to their multiplic-

ities.

Proof of Theorem 3.1. From µ ∈ R(E), it follows that

lim
n→∞

pn(z)

pn+l(z)
=

1

Φ(z)l
, l = 0, 1, 2, . . . , (3.1)

uniformly inside C \ E. By (3.1) and Lemma 2.1, for any l = 0, 1, 2, . . . , we have

lim
n→∞

sn+l(z)

sn(z)
= lim

n→∞

pn(z)

pn+l(z)

pn+l(z)sn+l(z)

pn(z)sn(z)
=

1

Φ(z)l
Φ′(z)/Φ(z)

Φ′(z)/Φ(z)
=

1

Φ(z)l
, (3.2)
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uniformly inside C \ E. Furthermore, by using the equalities (3.1) and (3.2), we
have

lim
n→∞

|pn(z)|1/n = |Φ(z)|, (3.3)

and

lim
n→∞

|sn(z)|1/n =
1

|Φ(z)| , (3.4)

uniformly inside C \ E, respectively.
Let K be a compact subset of Dρ∞(F ) and σ := max{|Φ(z)| : z ∈ K}. Denote

by d the number of poles of F in Dσ. Let λ1, λ2, . . . , λd be the poles of F in Dσ

and ωd(z) :=
∏d

j=1(z − λj). By the way that we take mn → ∞ and n → ∞,
without loss of generality, we assume that d ≤ mn ≤ n. From the definition of
Padé-orthogonal approximants and the condition (3.3), we have

Qµ
n,mn

(z)F (z)− Pµ
n,mn

(z) =

∞
∑

k=n+mn+1

ak,npk(z), z ∈ Dρ0(F ), (3.5)

where
ak,n := 〈Qµ

n,mn
F, pk〉µ, k = 0, 1, 2, . . . ,

and
ak,n = 0, k = n+ 1, n+ 2, . . . , n+mn.

Applying Cauchy’s integral formula and Fubini’s theorem, we obtain, for k =
0, 1, 2, . . . ,

ak,n := 〈Qµ
n,mn

F, pk〉µ =

∫

1

2πi

∫

Γρ1

Qµ
n,mn

(t)F (t)

t− z
dtpk(z)dµ(z)

=
1

2πi

∫

Γρ1

Qµ
n,mn

(t)F (t)

∫

pk(z)

t− z
dµ(z)dt =

1

2πi

∫

Γρ1

Qµ
n,mn

(t)F (t)sk(t)dt, (3.6)

where 1 < ρ1 < ρ0(F ). Let {α1, α2, . . . , αγ} be the set of the distinct poles of F
in Dσ and dk be the multiplicity of αk so that

ωd(z) =

d
∏

j=1

(z − λj) =

γ
∏

k=1

(z − αk)
dk , d =

γ
∑

k=1

dk.

Multiplying the equation (3.5) by ωd and expanding

∞
∑

k=n+mn+1

ak,nωdpk(= ωdQ
µ
n,mn

F − ωdP
µ
n,mn

∈ H(Dσ))
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in terms of the Fourier series corresponding to the orthonormal system {pν}∞ν=0,
we obtain that for z ∈ Dσ,

ωd(z)Q
µ
n,mn

(z)F (z)− ωd(z)P
µ
n,mn

(z) =

∞
∑

k=n+mn+1

ak,nωd(z)pk(z) =

∞
∑

ν=0

bν,npν(z),

(3.7)
where

bν,n :=

∞
∑

k=n+mn+1

ak,n〈ωdpk, pν〉µ, ν = 0, 1, 2, . . . . (3.8)

First of all, we will estimate |ak,n| in terms of |τk,n| where

τk,n :=
1

2πi

∫

Γρ2

Qµ
n,mn

(t)F (t)sk(t)dt, ρd−1(F ) < ρ2 < ρd(F ), k = 0, 1, 2, . . . .

(3.9)
Notice that the only difference between the integral in (3.9) and the last integral in
(3.6) is the domains of the integrals. The greater number ρ of Γρ will allow to have
a better bound on |sk|. For each k ≥ 0, the function Qµ

n,mn
Fsk is meromorphic

on Dρ2
\ Dρ1

= {z ∈ C : ρ1 ≤ |Φ(z)| ≤ ρ2} and has poles at α1, α2, . . . , αγ

with multiplicities at most d1, d2, . . . , dγ , respectively. Applying Cauchy’s residue
theorem to the function Qµ

n,mn
Fsk, we have

1

2πi

∫

Γρ2

Qµ
n,mn

(t)F (t)sk(t)dt−
1

2πi

∫

Γρ1

Qµ
n,mn

(t)F (t)sk(t)dt

=

γ
∑

j=1

res(Qµ
n,mn

Fsk, αj), (3.10)

for k ≥ 0. Recall that the limit formula for the residue of Qµ
n,mn

Fsk at αj is

res(Qµ
n,mn

Fsk, αj) =
1

(dj − 1)!
lim

z→αj

((z −αj)
djQµ

n,mn
(z)F (z)sk(z))

(dj−1). (3.11)

By the Leibniz formula and the fact that for n sufficiently large, sn(z) 6= 0 for
z ∈ C \ E (see Lemma 2.1), we can transform the expression under the limit sign
as follows

((z−αj)
djQµ

n,mn
(z)F (z)sk(z))

(dj−1) =

(

(z − αj)
djQµ

n,mn
(z)F (z)sn(z)

sk(z)

sn(z)

)(dj−1)

=

dj−1
∑

p=0

(

dj − 1

p

)

((z − αj)
djQµ

n,mn
(z)F (z)sn(z))

(dj−1−p)

(

sk(z)

sn(z)

)(p)

.

To avoid long expressions, let us introduce the following notation:

βn(j, p) :=
1

(dj − 1)!

(

dj − 1
p

)

lim
z→αj

((z − αj)
djQµ

n,mn
(z)F (z)sn(z))

(dj−1−p),
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for j = 1, 2, . . . , γ and p = 0, 1, 2, . . . , dj−1 (notice that the βn(j, p) do not depend
on k), so we can rewrite the equality (3.10) as

ak,n = τk,n −
γ
∑

j=1





dj−1
∑

p=0

βn(j, p)

(

sk
sn

)(p)

(αj)



 , n ≥ n0 and k = 0, 1, 2, . . . .

(3.12)
Since ak,n = 0, for k = n+1, n+2, . . . , n+mn, it follows from (3.12) and d ≤ mn

that

γ
∑

j=1

dj−1
∑

p=0

βn(j, p)

(

sk
sn

)(p)

(αj) = τk,n, k = n+ 1, n+ 2, . . . , n+ d. (3.13)

We will view this as a system of d equations with d unknowns βn(j, p). If we can
show that

Λn :=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(

sn+1

sn

)

(αj)
(

sn+1

sn

)′

(αj) · · ·
(

sn+1

sn

)(dj−1)

(αj)
(

sn+2

sn

)

(αj)
(

sn+2

sn

)′

(αj) · · ·
(

sn+2

sn

)(dj−1)

(αj)

...
...

...
...

(

sn+d

sn

)

(αj)
(

sn+d

sn

)′

(αj) · · ·
(

sn+d

sn

)(dj−1)

(αj)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

j=1,2,...,γ

6= 0, (3.14)

(this expression represents the determinant of order d in which the indicated groups
of columns are successively written out for j = 1, 2, . . . , γ), then we can express
βn(j, p) in terms of (sk/sn)

(p)(αj) and τk,n, for k = n+1, n+2, . . . , n+d. However,
since

limn→∞ |Λn| = |Λ| :=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

R(αj) R′(αj) · · · R(dj−1)(αj)
R2(αj) (R2)′(αj) · · · (R2)(dj−1)(αj)

...
...

...
...

Rd(αj) (Rd)′(αj) · · · (Rd)(dj−1)(αj)

∣

∣

∣

∣

∣

∣

∣

∣

∣

j=1,2,...,γ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

γ
∏

j=1

(dj − 1)!!

γ
∏

j=1

(Φ′(αj))
dj(dj−1)/2

γ
∏

j=1

Φ(αj)
−d2

j

∏

1≤i<j≤γ

(

1

Φ(αj)
− 1

Φ(αi)

)didj

∣

∣

∣

∣

∣

∣

,

where R(z) = 1/Φ(z) and n!! = 0!1!2! · · ·n! (use, for example, [21, Theorem 1] to
verify the last equality), for sufficiently large n, |Λn| 6= 0. In fact, for sufficiently
large n, |Λn| ≥ c1 > 0 where the number c1 does not depend on n (from now on,
we will denote some constants that do not depend on n by c2, c3, c4, . . . and we
will consider only n large enough so that |Λn| ≥ c1 > 0).

Applying Cramer’s rule to (3.13), we have

βn(j, p) =
Λn(j, p)

Λn
=

1

Λn

d
∑

s=1

τn+s,nCn(s, q), (3.15)
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where Λn(j, p) is the determinant obtained from Λn replacing the column with

index q = (
∑j−1

l=0 dl) + p+ 1 (where we define d0 := 0) with the column

[τn+1,n τn+2,n · · · τn+d,n]
T

and Cn(s, q) is the (s, q)
th cofactor of Λn(j, p). Substituting βn(j, p) in the formula

(3.12) with the expression in (3.15), we obtain

ak,n = τk,n − 1

Λn

γ
∑

j=1

dj−1
∑

p=0

d
∑

s=1

τn+s,nCn(s, q)

(

sk
sn

)(p)

(αj), k ≥ n+mn + 1.

(3.16)
Let δ > 0 be sufficiently small so that ρ0(F ) − 2δ > 1 and ε > 0 be sufficiently
small so that for all j = 1, 2, 3, . . . , γ,

{z ∈ C : |z − αj | = ε} ⊂ {z ∈ C : |Φ(z)| ≥ ρ0(F )− δ}

and
(

sk
sn

)(p)

(αj) =
p!

2πi

∫

|z−αj |=ε

sk(z)

sn(z)(z − αj)p+1
dz, (3.17)

where k = 0, 1, 2, . . . , and p = 0, 1, 2, . . . , dj − 1. Using (3.2) and (3.17), we can
easily check that for p = 0, 1, 2, . . . , dj − 1, j = 1, 2, . . . , γ, and k = n + 1, n +
2, . . . , n+ d,

∣

∣

∣

∣

∣

(

sk
sn

)(p)

(αj)

∣

∣

∣

∣

∣

≤ c2, (3.18)

for all n ≥ n1, and for p = 0, 1, 2, . . . , dj − 1, j = 1, 2, . . . , γ, and k ≥ n+mn + 1,

∣

∣

∣

∣

∣

(

sk
sn

)(p)

(αj)

∣

∣

∣

∣

∣

≤ c3
(ρ0(F )− 2δ)k−n

, (3.19)

for all n ≥ n2. The equation (3.18) implies that

|Cn(s, q)| ≤ (d− 1)!cd−1
2 = c4, s, q = 1, 2, . . . , d, (3.20)

for n ≥ n3. Combining the estimates (3.18), (3.19), (3.20), and |Λn| ≥ c1 > 0, we
see from (3.16) that

|ak,n| ≤ |τk,n|+
dc3c4
c1

1

(ρ0(F )− 2δ)k−n

d
∑

s=1

|τn+s,n|

≤ |τk,n|+
c5

(ρ0(F )− 2δ)k−n

d
∑

s=1

|τn+s,n|, k ≥ n+mn + 1,

(3.21)

for n ≥ n4.
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Secondly, we will give an estimate of |bν,n| (see the equality (3.8) for the
definition of bν,n) in terms of |τk,n|. By the Cauchy-Schwarz inequality and the
orthonormality of pν , we have

|〈ωdpk, pν〉µ|2 ≤ 〈ωdpk, ωdpk〉µ〈pν , pν〉µ ≤ max
z∈E

|ωd(z)|2 = c6, k, ν = 0, 1, 2, . . . .

(3.22)
By (3.21), (3.22), and the fact that

∞
∑

k=n+mn+1

1

(ρ0(F )− 2δ)k−n
≤

∞
∑

k=1

1

(ρ0(F )− 2δ)k
< ∞,

we obtain, for n sufficiently large and for all ν ≥ 0,

|bν,n| ≤
∞
∑

k=n+mn+1

|ak,n||〈ωdpk, pν〉µ| ≤
√
c6

∞
∑

k=n+mn+1

|ak,n|

≤ √
c6

(

∞
∑

k=n+mn+1

|τk,n|+ c5

∞
∑

k=n+mn+1

1

(ρ0(F )− 2δ)k−n

d
∑

s=1

|τn+s,n|
)

≤ c7

∞
∑

k=n+1

|τk,n|. (3.23)

Finally, we will show that

lim
n→∞

cap{z ∈ K : |F (z)− [n/mn]
µ
F | ≥ ε} = 0.

Choose δ > 0 so small that

ρ2 := ρd(F )− δ > ρd−1(F ), ρ0(F )− 2δ > 1, and
σ + δ

ρ2 − δ
< 1. (3.24)

By the triangle inequality, we can rewrite (3.7) in the following form

|ωd(z)Q
µ
n,mn

(z)F (z)−ωd(z)P
µ
n,mn

(z)| ≤
n+mn
∑

ν=0

|bν,n||pν(z)|+
∞
∑

ν=n+mn+1

|bν,n||pν(z)|.

(3.25)
Define

A1
n(z) :=

∑n+mn

ν=0 |bν,n||pν(z)|
|ωd(z)Q

µ
n,mn(z)|

and A2
n(z) :=

∑∞
ν=n+mn+1 |bν,n||pν(z)|
|ωd(z)Q

µ
n,mn(z)|

,

and let Qµ
n,mn

(z) :=
∏un

j=1(z − λn,j). Therefore, the relation (3.25) implies

∣

∣

∣

∣

F (z)−
Pµ
n,mn

(z)

Qµ
n,mn(z)

∣

∣

∣

∣

≤ A1
n(z) +A2

n(z),
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for all z ∈ D̂σ := Dσ \ (∪∞
n=0{λn,1, λn,2, . . . , λn,un

} ∪ {λ1, λ2, . . . , λd}).
Let us bound A1

n(z) from above. We will first estimate |τk,n/Qµ
n,mn

(z)| for z ∈ D̂σ

and for k ≥ n+ 1. By definition of τk,n,

τk,n
Qµ

n,mn(z)
=

1

2πi

∫

Γρ2

sk(t)F (t)
Qµ

n,mn
(t)

Qµ
n,mn(z)

dt, k ≥ n+ 1. (3.26)

Then, we shall approximate the factors multiplying F (t) in the integral sign sep-
arately. For n sufficiently large,

|sk(t)| ≤
c8

(ρ2 − δ)k
, k ≥ n+ 1.

Define
Qµ

n,mn,ρ2
(t) :=

∏

λn,j∈Dρ2

(t− λn,j).

It is easy to see that
∣

∣

∣

∣

t− ζ

z − ζ

∣

∣

∣

∣

≤ c9,

for all t ∈ Γρ2
, z ∈ D̂σ, and ζ ∈ C \ Dρ2

(note that the last inequality of (3.24)
implies that ρ2 > σ). Then,
∣

∣

∣

∣

Qµ
n,mn

(t)

Qµ
n,mn(z)

∣

∣

∣

∣

≤ c9
mn

∣

∣

∣

∣

Qµ
n,mn,ρ2

(t)

Qµ
n,mn,ρ2(z)

∣

∣

∣

∣

≤ cmn

10

|Qµ
n,mn,ρ2(z)|

, z ∈ D̂σ, t ∈ Γρ2
. (3.27)

By (3.26), we obtain
∣

∣

∣

∣

τk,n
Qµ

n,mn(z)

∣

∣

∣

∣

≤ cmn

11

|Qµ
n,mn,ρ2

(z)|(ρ2 − δ)k
, z ∈ D̂σ, k ≥ n+ 1, n ≥ n5,

which implies
∣

∣

∣

∣

bν,n
Qµ

n,mn(z)

∣

∣

∣

∣

≤ cmn

12

|Qµ
n,mn,ρ2(z)|(ρ2 − δ)n

, z ∈ D̂σ, n ≥ n6. (3.28)

Applying (3.3) and the maximum modulus principle, we have

|pν(z)| ≤ c13(σ + δ)ν , z ∈ Dσ, ν ≥ 0. (3.29)

Using (3.28) and (3.29), we obtain the estimate:

A1
n(z) =

1

|ωd(z)|

n+mn
∑

ν=0

|bν,n||pν(z)|
|Qµ

n,mn(z)|
≤ c13c

mn

12 (n+mn + 1)(σ + δ)n+mn

|ωd(z)Q
µ
n,mn,ρ2(z)|(ρ2 − δ)n

, z ∈ D̂σ.

We choose θ > 0 such that (σ + δ)/(ρ2 − δ) < θ < 1. Since mn = o(n) as n → ∞,
for n sufficiently large, thus, we have

A1
n(z) ≤

c14θ
n

|ωd(z)Q
µ
n,mn,ρ2

(z)| , z ∈ D̂σ. (3.30)
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Next, let us approximate A2
n(z). Since deg(ωdP

µ
n,mn

) ≤ n + d ≤ n + mn, by a
computation similar to (3.6), we obtain

bν,n = 〈ωdQ
µ
n,mn

F − ωdP
µ
n,mn

, pν〉µ = 〈ωdQ
µ
n,mn

F, pν〉µ

=
1

2πi

∫

Γρ2

ωd(t)Q
µ
n,mn

(t)F (t)sν(t)dt, ν ≥ n+mn + 1. (3.31)

As before, from (3.4) and (3.31), we have

|bν,n|
|ωd(z)Q

µ
n,mn(z)|

≤ cmn

15

|ωd(z)Q
µ
n,mn,ρ2

(z)|(ρ2 − δ)ν
, z ∈ D̂σ, ν ≥ n+mn + 1,

(3.32)
for n ≥ n7. Then, using (3.29) and (3.32), for n sufficiently large, we obtain, for
z ∈ D̂σ, footnotesize

A2
n(z) =

∞
∑

ν=n+mn+1

|bν,n||pν(z)|
|ωd(z)Q

µ
n,mn(z)|

=

∞
∑

ν=n+mn+1

c13c
mn

15 (σ + δ)ν

|ωd(z)Q
µ
n,mn,ρ2(z)|(ρ2 − δ)ν

≤ cmn

16

|ωd(z)Q
µ
n,mn,ρ2

(z)|

∞
∑

ν=n+mn+1

(σ + δ)ν

(ρ2 − δ)ν

≤ cmn

16

|ωd(z)Q
µ
n,mn,ρ2

(z)|

∞
∑

ν=n+1

(σ + δ)ν

(ρ2 − δ)ν
≤ cmn

17

|ωd(z)Q
µ
n,mn,ρ2

(z)|

(

σ + δ

ρ2 − δ

)n

.

Therefore, for n sufficiently large,

A2
n(z) ≤

c18θ
n

|ωd(z)Q
µ
n,mn,ρ2

(z)| . (3.33)

Combining (3.30) and (3.33), we have, for n sufficiently large,

∣

∣

∣

∣

F (z)−
Pµ
n,mn

(z)

Qµ
n,mn(z)

∣

∣

∣

∣

≤ c19θ
n

|ωd(z)Q
µ
n,mn,ρ2

(z)| , z ∈ D̂σ. (3.34)

Let Tn(z) := ωd(z)Q
µ
n,mn,ρ2

(z). Then, Tn(z) is a monic polynomial of degree at
most 2mn. Let ε > 0. Clearly,

en :=

{

z ∈ D̂σ :

∣

∣

∣

∣

F (z)−
Pµ
n,mn

(z)

Qµ
n,mn(z)

∣

∣

∣

∣

≥ ε

}

⊂
{

z ∈ D̂σ :
∣

∣ωd(z)Q
µ
n,mn,ρ2

(z)
∣

∣ ≤ c19θ
n

ε

}

=: En.

The capacity function is monotonic and has the well-known property,

cap {z ∈ C : |zn + an−1z
n−1 + . . .+ a0| ≤ ρn} = ρ, ρ > 0.
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Hence, we find that for n sufficiently large

cap en ≤ capEn ≤
(

1

ε
c19θ

n

)1/ deg Tn

≤
(

1

ε
c19θ

n

)1/2mn

≤ c
1/2mn

19 θn/2mn

ε1/2mn
.

This means that

cap{z ∈ K : |F (z)− [n/mn]
µ
F | ≥ ε} ≤ cap{z ∈ Dσ : |F (z)− [n/mn]

µ
F | ≥ ε}

= cap en → 0,

as n → ∞. This proves that [n/mn]
µ
F converges in capacity to F inside Dρ∞(F ), as

n → ∞. In addition, by Lemma 2.2, we get that each pole of F in Dρ∞(F ) attracts
at least as many poles of [n/mn]

µ
F as the order of that pole.
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