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1 Introduction

All graphs considered in this paper are finite, undirected and simple. Let G
be a graph with vertex set V (G) and edge set E(G). The complement of G is
denoted by G. A neighbor set of a vertex v in G is denoted by NG(v) = {u ∈
V (G)|uv ∈ E(G)}. For v ∈ V (G) and T ⊆ V (G), a neighbor set of a vertex v in
T is denoted by NT (v) = {u ∈ T |uv ∈ E(G)} and if X ⊆ V (G), NG(X) denotes⋃

v∈X NG(v). Observe that NT (v) = NG(v) ∩ T . The degree of a vertex u in G
is denoted by degG(u) = |NG(u)|. The minimum degree and maximum degree in
a graph G is denoted by δ(G) and ∆(G), respectively. The distance between two
vertices x and y in a graph G is the number of edges in a shortest path connecting
them and denoted by dG(x, y). The number of odd components of G is denoted by
co(G). A complete graph of order r is denoted by Kr. Let H ⊆ V (G), a subgraph
of G induced by H is denoted by G[H]. For graphs H and G, G is called H-free
if G does not contain H as an induced subgraph. A subgraph H is called a clique
if H ∼= Kr, for some r.

A set S ⊆ V (G) is called an independent vertex set if no two of which are
adjacent. The maximum cardinality of an independent set of G is denoted by
α(G). For graphs H1 and H2, the join of H1 and H2, denoted by H1 +H2 is the
graph with vertex set V (H1)∪V (H2) and edge set E(H1)∪E(H2)∪{uv|u ∈ V (H1)
and v ∈ V (H2)}. A subset M of E(G) is called a matching if no two edges of M
have common end vertex. A vertex u is saturated by M if there is an edge in M
incident with u. For simplicity, a set of all vertices saturated by M is denoted by
V (M). M is called a maximum matching in G if G contains no matching of size
greater than |M |. A perfect matching in G is a matching that saturates all vertices
of G. If M1,M2 are matching in a graph G, then a symmetric different of M1 and
M2, denoted by M14M2, is an induced subgraph G[(M1 −M2) ∪ (M2 −M1)].

For a positive integer k, a connected graph G of order at least 2k + 2 is k-
extendable if for every matching M of size k in G, there is a perfect matching
in G containing all edges of M . A graph G is k-factor-critical if, for every set
S ⊆ V (G) with |S| = k, the graph G − S contains a perfect matching. For
k = 1 and k = 2, k-factor-critical graph is also called factor-critical and bicritical,
respectively. For simplicity, a graph with a perfect matching is called 0-extendable
and 0-factor-critical. Observe that if G is k-extendable, then |V (G)| is even and
if G is k-factor-critical, then |V (G)| ≡ k (mod 2).

In 1980, Plummer [1] introduced the concept of k-extendable graphs. He
gave a sufficient condition for a graph to be k-extendable in terms of minimum
degree. He also established a fundamental theorem (see Theorem 3.2) that mainly
used in studying matching extension. One main problem is to establish sufficient
conditions for special classes of graphs to be k-extendable. (see, e.g. [2, 3]). Since
1980, the concept of extendable graphs have been recieved attention from many
researchers, see Plummer [4]-[6].

The concept of k-factor-critical graphs was introduced in 1996 by Favaron [7].
She established the necessary and sufficient condition for a graph to be k-factor-
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critical. She also provided a relationship between n-extendable graphs and k-factor
- critical graphs.

The complementary prism of G, denoted by GG, is the graph obtained by
taking a copy of G and a copy of G and then joining corresponding vertices by
an edge. A complementary prism is a special case of complementary product of
graphs introduced by Haynes et al. [8] in 2007. They pointed out that the famous
Petersen graph is C5C5 and a corona Kn ·K1 which is the graph obtained by adding
a vertex and an edge to every vertex of a complete graph Kn, is KnKn. Some
parameters of complementary prism of graphs such as the vertex independence
number, the chromatic number and the domination number have been investigated
(see [8]-[14]).

A problem that arises is that of investigating properties of G so that GG is
k-extendable for some positive integer k. In our two previous papers [15, 16], we
establish that if G is a 2-regular H-free graph where H ∈ {C3, C4, C5}, then GG is
2-extendable and if G is either connected 3-regular F -free or connected r0-regular
graph of order p ≥ 2r0 +1 where r0 ≥ 4, then GG is 2-extendable where the graph
F is shown in Figure 1. In this paper, we scope our attention to G and G which
are both non-bipartite graphs. A new strategy for approaching the problem when
G or G is bipartite is required. In fact, we show, in Section 4, that if G and G are
l1-extendable and l2-extendable non-bipartite graphs for l1 ≥ 2 and l2 ≥ 2, then
GG is (l+1)-extendable where l = min{l1, l2}. One might ask whether there exist
such graphs G and G. We affirm this in Section 2 by providing some constructions
of a non-bipartite graph G such that G and G are l1-extendable and l2-extendable
non-bipartite graphs, respectively, where l1 and l2 are positive integers. Section 3
contains some results on extendability and factor-criticality graphs that we make
use of in establishing our results in Section 4.

Figure 1: the graph F
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2 Some constructions of extendable non-bipartite
graphs

In this section, we provide two constructions of extendable non-bipartite graphs
in which their complement graphs are also extendable by using cartesian and lexi-
cographic products of two extendable graphs. We first give definitions of cartesian
and lexicographic products.

The cartesian product G × H of two graphs G and H has the vertex set
V (G)× V (H) and two vertices (u1, v1) and (u2, v2) are adjacent whenever u1u2 ∈
E(G) and v1 = v2, or u1 = u2 and v1v2 ∈ E(H). The lexicographic product G◦H
of two graphs G and H has the vertex set V (G)× V (H) and two vertices (u1, v1)
and (u2, v2) are adjacent either u1u2 ∈ E(G), or u1 = u2 and v1v2 ∈ E(H).

The first two results in this section concern the extendability of graphs ob-
tained from a cartesian product, established by Györi and Plummer [2] and a
lexicographic product established by Bai et al. [17].

Theorem 2.1 ([2]). For non-negative integers l1 and l2, let Gi be a li -extendable
graph for 1 ≤ i ≤ 2. Then G1 ×G2 is (l1 + l2 + 1)-extendable.

Theorem 2.2 ([17]). For non-negative integers l1 and l2, let Gi be a li -extendable
graph for 1 ≤ i ≤ 2. Then G1 ◦G2 is 2(l1 +1)(l2 +1)-factor-critical. In particular,
G1 ◦G2 is (l1 + 1)(l2 + 1)-extendable.

In 1980, Plummer[1] gave a sufficient condition for a graph to be k-extendable
in terms of minimum degree.

Theorem 2.3 ([1]). Let G be a graph of order 2p. If δ(G) ≥ p + k, for a non-
negative integer k, then G is k-extendable.

We are now ready for our constructions.

Theorem 2.4. For non-negative integers l1, l2, p1 ≥ 2l1 + 2 and p2 ≥ 2l2 + 2
and 1 ≤ i ≤ 2, let Hi be li-extendable of order pi. Further, let G = H1 ×H2. If
∆(H1) = p1 − 1 − t1 and ∆(H2) = p2 − 1 − t2 for some non-negative integers t1
and t2, then G is (l1 + l2 + 1)-extendable and G is ( 1

2 (p1−2)(p2−2) + t1 + t2−1)-
extendable.

Proof. By Theorem 2.1, G = H1 ×H2 is (l1 + l2 + 1)-extendable as required. We
need only show that G is ( 1

2 (p1 − 2)(p2 − 2) + t1 + t2 − 1)-extendable. Clearly, G

and G are of order p1p2. Since NG((u, v)) = {(x, v)|xu ∈ E(H1)} ∪ {(u, y)|vy ∈
E(H2)}, degG((u, v)) = degH1(u) + degH2(v). Thus ∆(G) = ∆(H1) + ∆(H2) =
p1 + p2 − 2 − t1 − t2. Therefore, δ(G) = p1p2 − p1 − p2 + 2 + t1 + t2 − 1 =
1
2p1p2 + 1

2p1p2− p1− p2 + t1 + t2 + 1 = 1
2p1p2 + 1

2 (p1− 2)(p2− 2) + t1 + t2− 1. By

Theorem 2.3, G is ( 1
2 (p1 − 2)(p2 − 2) + t1 + t2 − 1)-extendable as required. This

proves our theorem.
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Corollary 2.5. Let H1, H2 and G be graphs defined in Theorem 2.4. If either H1

or H2 is non-bipartite, then G and G are also non-bipartite.

Theorem 2.6. For non-negative integers h1, h2, h̄1, h̄2, let Hi be a hi-extendable
and let Hi be a h̄i-extendable for 1 ≤ i ≤ 2. Then G = H1 ◦H2 is (h1 +1)(h2 +1)-
extendable graph and G is (h̄1 + 1)(h̄2 + 1)-extendable graph.

Proof. By Theorem 2.2, G = H1 ◦ H2 is (h1 + 1)(h2 + 1)-extendable. We first
show that G = H1 ◦ H2. Clearly, V (G) = V (H1 ◦H2) = V (H1) × V (H2) =
V (H1) × V (H2) = V (H1 ◦ H2). Let (u1, v1), (u2, v2) ∈ V (H1) × V (H2) and let
(u1, v1)(u2, v2) ∈ E(H1 ◦H2). Thus (u1, v1)(u2, v2) /∈ E(H1 ◦H2).

If u1 = u2, then v1v2 /∈ E(H2) and thus (u1, v1)(u2, v2) ∈ E(H1◦H2). Further,
if u1 6= u2, then u1u2 /∈ E(H1). And again (u1, v1)(u2, v2) ∈ E(H1 ◦H2). Hence,
E(H1 ◦H2) ⊆ E(H1 ◦H2).

We now suppose that (u1, v1)(u2, v2) ∈ E(H1 ◦H2). If u1 = u2, then v1v2 ∈
E(H2). Thus (u1, v1)(u2, v2) /∈ E(H1 ◦ H2). Further, if u1 6= u2, then u1u2 ∈
E(H1) and thus (u1, v1)(u2, v2) /∈ E(H1 ◦ H2). In either case (u1, v1)(u2, v2) ∈
E(H1 ◦H2). Hence, E(H1 ◦ H2) ⊆ E(H1 ◦H2). Therefore, E(H1 ◦ H2) =
E(H1 ◦H2). Thus H1 ◦H2 = H1 ◦ H2. It follows by Theorem 2.2 that G is
(h̄1 + 1)(h̄2 + 1)-extendable graph as required. This proves our theorem.

Corollary 2.7. For 1 ≤ i ≤ 2, let Hi, Hi and G be graphs defined in Theorem
2.6. If H1 is connected, E(H2) 6= φ and E(H2) 6= φ then G and G are non-
bipartite.

According to Theorems 2.4 and 2.6, we have shown that there exists a graph
G such that G is l1-extendable and G is l2-extendable for some integers l1 and l2.
Theorem 2.9 establishes that for any positive integers l1 and l2, there is a graph
G such that G is l1-extendable and G is l2-extendable.

Lemma 2.8. Let Pt be a path of order t. If t ≥ 4 is an even integer, then Pt is
0-extendable and P t is (t− 4)-factor-critical. Further, P t is 1

2 (t− 4)-extendable.

Proof. Clearly, Pt contains a perfect matching. We only show that P t is (t − 4)-
factor-critical. Let T ⊆ V (P t) such that |T | = t− 4. Clearly, P t − T is connected
and contains P4 as a subgraph. Thus P t − T is one of a graph in {K4,K4 −
e, C4,K4 − {e1, e2}, P4}, where e1 and e2 have a common end vertex. In either
case, P t − T contains a perfect matching. Thus P t − T is (t − 4)-factor-critical
as required. It then follows by definition of k-extendable that P t is 1

2 (t − 4)-
extendable. This proves our lemma.

Theorem 2.9. For positive integers l1 and l2, there is a graph G such that G is
l1-extendable and G is l2-extendable. Further, G and G are non-bipartite.

Proof. Let H1 = P 2l1+2 and H2 = P2l2+2. By Lemma 2.8, H1 is (l1 − 1)-
extendable, H1 is 0-extendable, H2 is 0-extendable and H2 is (l2 − 1)-extendable.
Let G = H1 ◦ H2. By Theorem 2.6, G is l1-extendable and G is l2-extendable
as required. Further, it is clear that G and G are non-bipartite. This proves our
theorem.
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3 Results on extendability and k-factor critical
graphs

In this section, we establish some results which are used in establishing our
results in Section 4. Our first result is a well known theorem for studying an
existence of a perfect matching in graphs established by Tutte.

Theorem 3.1 ([18]). (Tutte’s Theorem) A graph G has a perfect matching if and
only if for any S ⊆ V (G), co(G− S) ≤ |S|.

In 1980, Plummer [1] established a fundamental theorem on k-extendable
graphs as following.

Theorem 3.2 ([1]). Let G be a graph of order p ≥ 2k + 2 and k ≥ 1. If G is
k-extendable, then

(a) G is (k − 1)-extendable, and
(b) G is (k + 1)-connected.

A necessary and sufficient condition for a graph to be k-extendable and to be
k-factor-critical was provided by Yu [19] and Favaron [7], respectively.

Theorem 3.3 ([19]). A graph G is k-extendable (k ≥ 1) if and only if for any
S ⊆ V (G),

(a) co(G− S) ≤ |S| and
(b) co(G− S) = |S| − 2t, (0 ≤ t ≤ k− 1) implies that F (S) ≤ t, where F (S) is

the size of a maximum matching in G[S].

Theorem 3.4 ([7]). A graph G is k-factor-critical if and only if |V (G)| ≡ k (mod
2) and for S ⊆ V (G) with |S| ≥ k, co(G− S) ≤ |S| − k.

Some following properties of k-factor-critical graphs were proved in [7].

Theorem 3.5 ([7]). Let G be a k-factor-critical graph. Then G is (k− 2)-factor-
critical.

Theorem 3.6 ([7]). If G is a 2k-extendable non-bipartite graph for 2k ≥ 2, then
G is a 2k-factor-critical graph.

Maschlanka and Volkmann [20] gave a relationship between k-extendable non-
bipartite graph and the independence number.

Theorem 3.7 ([20]). Let G be a k-extendable non-bipartite graph of order p. Then
α(G) ≤ 1

2p− k.

In Phd. Thesis of Yu [21], he gave the following observation.

Observation 3.1. A graph G is k-extendable if and only if for any matching M
of size i (1 ≤ i ≤ k), G− V (M) is a (k − i)-extendable graph.
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An observation on k-factor-critical graphs which is similar to Observation 3.1
can be stated as following.

Observation 3.2. Let G be a k-factor-critical graph and S ⊆ V (G) where |S| < k.
Then G− S is (k − |S|)-factor-critical.

A following lemma follows from Theorem 3.7.

Lemma 3.8. Let G be a k-extendable non-bipartite graph and S ⊆ V (G) where
|S| ≤ 2k − 2. Then G− S is a non-bipartite graph.

Proof. Suppose to the contrary that G − S is a bipartite graph. Then α(G) ≥
α(G − V (S)) ≥ 1

2 (|V (G)| − (2k − 2)) = 1
2 |V (G)| − k + 1. But this contradicts

Theorem 3.7 and completes the proof of our lemma.

Our next corollary follows immediately by Observation 3.1 and Lemma 3.8

Corollary 3.9. Let G be a k-extendable non-bipartite graph and let M be a match-
ing in G where |M | = l ≤ k − 1. Then G − V (M) is (k − l)-extendable non-
bipartite.

Note that the upper bound on |M | in Corollary 3.9 is best possible. Let
G = K2k + Kt,t for some positive integers k, t ≥ 2. It is easy to see that G is k-
extendable. Clearly, there is a matching M of size k in G[K2k] such that G−V (M)
is a bipartite graph.

4 Main results

In this section, we establish the extendability of the complementary prism GG
of G where G and G are l1-extendable and l2-extendable non-bipartite graphs,
respectively. We begin with some lemmas. To simplify our discussion of com-
plementary prisms, G and G are referred to subgraph copies of G and G, re-
spectively, in GG. For a vertex v of G, there is exactly one vertex of G which
is adjacent to v in GG. This vertex is denoted by v. That is {v} = NG(v).
Conversely, v is the only vertex of G which is adjacent to v. Similarly, for a set
φ 6= X = {x1, x2, . . . , xk} ⊆ V (G), {x̄1, x̄2, . . . , x̄k} ⊆ V (G) is denoted by X and
vice versa.

In 2015, Janseana and Ananchuen [16] gave a relationship between the number
of odd components and a size of a cutset in complementary prism.

Lemma 4.1 ([16]). Let GG be a complementary prism and let S = A ∪ B be a
cutset of GG, where A ⊆ V (G) and B ⊆ V (G). Then

a) co(GG− S) = |S| − 2t, for some t ≥ 0.
b) co(GG− S) = |A|+ |B| − 2t ≤ co(G[B −A]) + co(G[A−B]) ≤ |A|+ |B| −

2|A ∩B|. Consequently, |A ∩B| ≤ t.
c) If co(G[B−A]) + co(G[A−B]) = |A|+ |B|−2|A∩B|, then each component

of G[B −A] and G[A−B] is singleton and hence G[A−B] is a clique.
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Lemma 4.2. Let G be a k-extendable graph for some integer k ≥ 2 and let S ⊆
V (G) be a cutset of G. If G[S] contains t ≤ k − 1 independent edges, then |S| ≥
k + t+ 1.

Proof. Let S′ = S−V (F ) where F is a matching of size t in G[S]. By Observation
3.1, G′ = G − V (F ) is (k − t)-extendable. Observe that k − t ≥ 1. By Theorem
3.2(b), G′ is (k − t+ 1)-connected. Since S′ is a cutset of G′, |S′| ≥ k − t+ 1 and
thus |S| ≥ 2t+ k − t+ 1 = k + t+ 1 as required. This proves our lemma.

Let x be a real number, bxce is denoted a greatest even integer less than x
and bxco is denoted a greatest odd integer less than x. Clearly, bxce = 2bx2 c and
bxco = 2b(x − 1)/2c + 1. Note that for an even integer k, if x is an integer and
bxce = k then x = k or x = k + 1.

Lemma 4.3. Let G be a k-extendable non-bipartite graph for k ≥ 2. Further, let
M ⊆ E(G) be a matching of size m and let S = φ or S ⊆ V (G) − V (M) be an
independent set such that k −m− |S| = t ≥ 0 for some integer t. Then

(a) If |S| is even, then G−(V (M)∪S) is t-extendable. Further G−(V (M)∪S)
is btce-factor-critical. Consequently, there is a perfect matching in G−(V (M)∪S).

(b) If |S| is odd and t ≥ 1, then G− (V (M) ∪ S) is btco-factor-critical. Thus
G− (V (M) ∪ S) is 1-factor-critical.

(c) If |S| is odd, t = 0 and there is a vertex v ∈ V (G) − (V (M) ∪ S) such
that vs ∈ E(G) for some s ∈ S, then G − (V (M) ∪ S ∪ {v}) contains a perfect
matching.

Proof. We first suppose m = k. So S = φ and thus G − (V (M) ∪ S) = G −
V (M) contains a perfect matching by Theorem 3.2(a) and it is 0-factor-critical as
required. We now suppose that m ≤ k−1. By Corollary 3.9, G−V (M) is (k−m)-
extendable non-bipartite. Since k−m = |S|+ t, G−V (M) is (|S|+ t)-extendable
non-bipartite.

(a) |S| is even. By Theorem 3.2(a), G− V (M) is (|S|+ btce)-extendable and
thus it is (|S| + btce)-factor-critical by Theorem 3.6. Hence, by Observation 3.2,
G − (V (M) ∪ S) is btce-factor-critical as required. It then follows by Theorem
3.2(a) that G− (V (M) ∪ S) contains a perfect matching. This proves (a).

(b) |S| is odd and t ≥ 1. By Theorem 3.2(a), G − V (M) is (|S| + btco)-
extendable and thus it is (|S|+ btco)-factor-critical by Theorem 3.6. By Observa-
tion 3.2, G− (V (M)∪ S) is btco-factor-critical. Since t ≥ 1, btco ≥ 1. Further, by
Theorem 3.5, G− (V (M) ∪ S) is 1-factor-critical as required. This proves (b).

(c) Let M ′ = M ∪ {vs} and S′ = S − {s}. Hence, our result follows from (a).
This completes the proof of our lemma.

Lemma 4.4. Let G be a k-extendable graph for some integer k and let S ⊆ V (G)
be a cutset of G. If G[S] contains t independent edges for t ≤ k, then co(G−S) ≤
|S| − 2t. Further, if 1 ≤ t ≤ k − 1 and co(G− S) = |S| − 2t then G− S contains
no even components.
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Proof. Let F be a matching of size t in G[S]. Since G is a k-extendable graph,
G − V (F ) contains a perfect matching by Theorem 3.2(a). By Theorem 3.1,
co(G− S) = co((G− V (F ))− (S − V (F ))) ≤ |S − V (F )| = |S| − 2t, as required.
We now suppose that 1 ≤ t ≤ k − 1 and co(G− S) = |S| − 2t. Let D be an even
component of G − S. By Lemma 4.2 and the fact that t ≤ k − 1 < k + 1, V (F )
is not a cutset of G. Then there is an edge e = sd joining a vertex s in S − V (F )
and a vertex d in D. Since G is k-extendable and F ∪ {e} is a matching of size
t+ 1 ≤ k, it follows that there is a perfect matching in G′ = G− (V (F ) ∪ {s, d}).
Let S′ = S − (V (F ) ∪ {s}). Clearly, co(G′ − S′) = co(G − S) + 1 = |S| − 2t + 1.
Since G′ contains a perfect matching, by Theorem 3.1, |S|−2t+1 ≤ co(G′−S′) ≤
|S|−(|V (F )|+1)| = |S|−2t−1, a contradiction. Hence, there is no even component
in G− S. This proves our lemma.

Lemma 4.5. Let G be a l-extendable graph and let M be a matching of size l+ t
where t ≥ 1. Then there is a maximum matching in G−V (M) saturates all except
at most 2t non-adjacent vertices in G− V (M).

Proof. Let T ⊆ M where |T | = t. Thus M − T is a matching of size l in G. So
there is a perfect matching F in G−V (M −T ). Clearly, |V (F )∩V (T )| = 2t. Let
F1 = {xy ∈ F |{x, y} ∩ V (M) = φ} and F2 = {xy ∈ F |x ∈ V (M) and y /∈ V (M)}.
Further, let F ′2 be a maximum matching in G[V (F2) − V (M)]. Then, F1 ∪ F ′2 is
a matching in G− V (M) saturates all except at most 2t non-adjacent vertices as
required.

By similar arguments as in the proof of Lemma 4.5, the next lemma follows.

Lemma 4.6. Let G be a k-factor-critical graph and let T ⊆ V (G) where |T | = k+t.
Then there is a maximum matching in G − V (T ) saturates all except at most t
non-adjacent vertices.

Lemma 4.7. Let G be an 1-extendable graph of order p ≥ 6 and let v be a vertex
of degree 2 in G. Then there are perfect matchings M1, M2 in G such that v is
a vertex of C2n in M14M2 where n ≥ 3. Further, there is a vertex x ∈ V (C2n)
where C2n is a subgraph of M14M2 such that vx /∈ E(G) and G−{v, x} contains
a perfect matching.

Proof. Let {u1, u2} = NG(v). We first suppose NG(u1) ∩ NG(u2) = {v}. Let
M1 be a perfect matching in G containing vu1 and M2 a perfect matching in
G containing vu2. Clearly, {vu1, u2u3} ⊆ M1 and {vu2, u1u4} ⊆ M2 for some
u3, u4 ∈ V (G). Since {v} = NG(u1) ∩ NG(u2), u3 6= u4. Hence, u3u2vu1u4 is a
path of length 4 containing v. It must be contained in an even cycle of order at
least 6 in M14M2 as required.

So we now suppose that NG(u1) ∩ NG(u2) 6= {v}. Then there is a vertex
v 6= u3 ∈ NG(u1) ∩ NG(u2). Since G is 2-connected by Theorem 3.2(b) and G
is of order at least 6, it follows that u3 is not a cut vertex. Then there is a
vertex u4 ∈ NG(u1) ∪NG(u2) where u4 6= u3. Without loss of generality, suppose
u4 ∈ NG(u1). Let M1 be a perfect matching in G containing u1u4 and M2 be a
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perfect matching in G containing u2u3. It is easy to see that {u1u4, vu2} ⊆ M1

and {u2u3, vu1} ⊆ M2. Hence, u4u1vu2u3 is a path of length 4 containing v. It
must be contained in an even cycle of order at least 6 in M14M2 as required.
Further, let x ∈ V (C2n) such that the distance between v and x along the cycle
C2n is 3. Clearly, xv /∈ E(G) and it is easy to see that G−{v, x} contains a perfect
matching. This completes the proof of our lemma.

For an induced subgraph H of G, ComH denotes the set of all components
in H. If X ⊆ V (G), then we use ComX for ComG[X]. For a cutset S of

GG, put A = S ∩ V (G), B = S ∩ V (G) and C = V (G) − (A ∪ B). Thus
S = A ∪ B. Further, let TB−A = {F |F is an odd component of G[B − A] and
NG(u) − V (F ) ⊆ A for all u ∈ V (F )}. TA−B = {F |F is an odd component of

G[A − B] and NG(ū) − V (F ) ⊆ B for all ū ∈ V (F )}. Finally, let L = LG ∪ LG,
where LG = {F |F is an odd component in G[B − A] and NGG(V (F )) ∩ C 6= φ}
and LG = {F |F is an odd component in G[A − B] and NGG(V (F )) ∩ C 6= φ}.
Note that if C = φ, then L = φ. Clearly, TB−A ∩ LG = φ and TA−B ∩ LG = φ. It
is easy to see that, if G is connected and G[B−A] contains only odd components,
then ComB−A = TB−A ∪ LG. Similarly, if G is connected and G[A−B] contains
only odd components, then ComA−B = TA−B ∪LG. In what follows, the symbols

ComH , S, A, B, C, TB−A, TA−B , L, LG and LG are referred to these set up.

Lemma 4.8. For a graph G, let A ⊆ V (G) and B ⊆ V (G). Suppose co(G−A) =
|A| − t1 and co(G − B) = |B| − t2, for some non-negative integers t1, t2. Then
co(GG− (A∪B)) ≤ |A|+ |B|− (t1 + t2). Further, if A∪B 6= V (G) and G−A and
G−B contain no even components, then co(GG−(A∪B)) ≤ |A|+|B|−(t1+t2)−2.

Proof. It is easy to see that co(GG − (A ∪ B)) ≤ |A| + |B| − (t1 + t2). We now
suppose that A ∪ B 6= V (G) and G − A, G − B contain no even components.
Let x ∈ V (G) − (A ∪ B). Then x is in an odd component of G − A, say C.
Clearly, x̄ /∈ A ∪ B and thus x̄ is in an odd component of G − B, say D. Hence,
GG[V (C)∪V (D)] forms an even component in GG− (A∪B). Therefore co(GG−
(A ∪B)) ≤ |A|+ |B| − (t1 + t2)− 2 as required. This proves our lemma.

Lemma 4.9. Let G and G be l1-extendable and l2-extendable graphs, respectively
where l1 and l2 are positive integers. Further, let M be a matching of size l+ 1 in
GG where l = min{l1, l2}. If either M = {xix̄i|xi ∈ V (G) for 1 ≤ i ≤ l + 1} or
M ⊆ (E(G) ∪ E(G)), then GG has a a perfect matching containing M .

Proof. Clearly, if M = {xix̄i|xi ∈ V (G) for 1 ≤ i ≤ l + 1}, then {vv̄|v ∈ V (G)}
is a perfect matching in GG containing M as required. So we now suppose that
M ⊆ (E(G)∪E(G)). Put MG = M ∩E(G) and MG = M ∩E(G). If 1 ≤ |MG| ≤ l
and 1 ≤ |MG| ≤ l, then it is easy to see that M = MG ∪MG can be extended
to a perfect matching in GG, by Theorem 3.2(a), since G is l1-extendable and G
is l2-extendable. Hence, we suppose without loss of generality that |MG| = l + 1.
Suppose there is no perfect matching in G containing MG. By Lemma 4.5, there
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is a maximum matching F1 in G − V (M) saturates all except two non-adjacent
vertices, say x and y. So x̄ȳ ∈ E(G). Since G is l2-extendable where l2 ≥ 1 and by
Theorem 3.2(a), it follows that there is a perfect matching F2 in G containing x̄ȳ.
Hence, M ∪ F1 ∪ (F2 − {x̄ȳ}) ∪ {xx̄, yȳ} is a perfect matching in GG containing
M as required. This completes the proof of our lemma.

We are now ready to prove our main result. We begin with the extendability
of GG where G is l1-extendable and G is l2-extendable for l1 ≥ 4 and l2 ≥ 4.

Theorem 4.10. For positive integers l1 ≥ 4, l2 ≥ 4, let G and G be l1-extendable
and l2-extendable non-bipartite graphs of order p ≥ 2l + 2, respectively, where
l = min{l1, l2}. Then GG is (l + 1)-extendable.

Proof. Let M ⊆ E(GG) be a matching of size l+ 1 in GG. Put MG = M ∩E(G),
MG = M ∩E(G) and MGG = M − (MG ∪MG). Note that MGG = {xx̄| for some
x ∈ V (G)}. If MGG = M or MGG = φ, then, by Lemma 4.9, there is a perfect
matching in GG containing M as required. We now suppose that MGG 6= M and
MGG 6= φ. Without loss of generality, we may suppose that |MG| ≥ |MG|. Hence,
MG 6= φ.

Put S = V (G) ∩ V (MGG). Let NS be a maximum matching in G[S]. Put
IS = S − V (NS). Clearly, IS is an independent set. Similarly, let NS be a
maximum matching in G[S] and put IS = S − V (NS). For simplicity, we denote
the cardinalities of each set by its small letter, i.e., mG = |MG|, mG = |MG|,
mGG = |MGG|, s = |S|, iS = |IS |, etc.

Clearly, 1 ≤ mG ≤ l, s = s̄, nS+iS ≥ 1 and nS+iS ≥ 1 since s = s̄ = mGG ≥ 1.
Therefore,

l + 1 = mG +mG +mGG (4.1)

l + 1 = mG +mG + s (4.2)

l + 1 = mG +mG + 2nS + iS (4.3)

l + 1 = mG +mG + 2nS + iS . (4.4)

Consequently, mG + nS = l + 1 − (mG + nS + iS) ≤ l since nS + iS ≥ 1 and
mG + nS = l + 1 − (mG + nS + iS) ≤ l since nS + iS ≥ 1. Further, s ≡ iS (mod
2) and s̄ ≡ iS (mod 2) because s = 2nS + iS and s = s̄ = 2nS + iS .

We first suppose that iS = 0. Since mG + nS ≤ l, by Theorem 3.2(a), there is
a perfect matching in G− (V (MG)∪NS), say FG. Now consider G. By Equation
4.4, l− (mG +nS + iS) = mG +nS−1 ≥ 0 since mG ≥ 1. By Lemma 4.3(a), there
is a perfect matching in G− (V (MG ∪NS)∪ IS), say FG. Hence, M ∪ FG ∪ FG is
a perfect matching in GG containing M as required.

So we now suppose that iS ≥ 1. We distinguish 2 cases according to parity of
s.

Case 1 : s is even. So iS ≥ 2 and iS ≥ 0 are also even. We distinguish 2
subcases according to mG + nS .



714 Thai J. Math. 13 (2015)/ P. Janseana and N. Ananchuen

Subcase 1.1 : mG +nS ≥ 1. So, by Equation 4.3, l− (mG +nS + iS) = mG +
nS−1 ≥ 0. By Lemma 4.3(a), there is a perfect matching in G−(V (MG∪NS)∪IS),
say FG. Further, by Equation 4.4 and the fact that mG ≥ 1, l − (mG + nS +
iS) = mG + nS − 1 ≥ 0. So, by Lemma 4.3(a), there is a perfect matching in
G − (V (MG ∪ NS) ∪ IS), say FG. Hence, M ∪ FG ∪ FG is a perfect matching in
GG containing M as required.

Subcase 1.2 : mG = nS = 0. We first show that nS ≤
l
2 . Since nS = 0, G[S]

is independent and thus G[S] is a complete graph. Because s is even, nS = 1
2 s̄ =

1
2s. So, by Equation 4.2 and the fact that mG ≥ 1, nS = 1

2s = 1
2 (l+1−mG−mG) =

1
2 (l+1−mG) ≤ l

2 as required. By Equation 4.3, l−mG = mG+2nS+iS−1 = iS−1
and biS − 1ce = iS − 2 ≥ 0 since iS = s is even. It follows by Lemma 4.3(a) that
G′ = G − V (MG) is (iS − 2)-factor-critical. By Lemma 4.6, there is a maximum
matching FG in G′ − IS saturates all except at most 2 vertices in G′ − IS .

We next consider G. By Equation 4.4 and the fact that mG ≥ 1, l − (mG +
nS + iS) = mG + nS − 1 ≥ nS ≥ 0. By Lemma 4.3(a), there is a perfect matching
in G− (V (MG∪NS)∪ IS), say FG. Clearly, if FG is a perfect matching in G′− IS ,
then M ∪ FG ∪ FG is a perfect matching in GG as required.

We now suppose that FG is not a perfect matching. Let x, y ∈ V (G′)−IS where
x and y are unsaturated by FG. Clearly, xy /∈ E(G). So x̄ȳ ∈ E(G). Because
nS ≤

l
2 and l ≥ 4, it follows that mG+nS+1 = nS+1 ≤ l

2 +1 ≤ l
2 +( l

2−1) ≤ l−1.

By Theorem 3.2(a), there is a perfect matching in G−V (MG∪NS∪{x̄ȳ}), say F ′
G

.

Hence, M ∪ FG ∪ (F ′
G
− {x̄ȳ}) ∪ {xx̄, yȳ} is a perfect matching in GG containing

M as required. This proves Case 1.

Case 2 : s is odd. So iS and iS are also odd. We distinguish 3 subcases
according to mG + nS .

Subcase 2.1 : mG = nS = 0. By Equation 4.3, l − (mG + (iS − 1)) =
mG + 2nS = 0. Let i ∈ IS , by Lemma 4.3(a), there is a perfect matching in
G − (V (MG) ∪ (IS − {i})), say FG. Let iv ∈ FG. We now consider G. Since
nS = 0, G[S] is independent and thus G[S] is a complete graph of odd order s.
Therefore, nS = 1

2 (s − 1) and iS = 1. By Equation 4.2, l = mG + s − 1. So
l− (mG +nS + iS) = l− (nS + iS) = mG + s− 1− ( 1

2 (s− 1) + 1) = mG + 1
2 (s− 3).

We next show that mG + 1
2 (s − 3) ≥ 1. Suppose to the contrary that mG +

1
2 (s−3) = 0. Since mG ≥ 1 and s is a positive odd integer, it follows that mG = 1
and s = 1. By Equation 4.2, l + 1 = mG + mG + s = 1 + 0 + 1 = 2. Thus l = 1,
contradicting the fact that l ≥ 4. Hence, mG + 1

2 (s− 3) ≥ 1 as required.

Therefore, l − (mG + nS + iS) = mG + 1
2 (s − 3) ≥ 1. By Lemma 4.3(b),

G−(V (MG∪NS)∪IS) is 1-factor-critical. Recall that iv ∈ FG. Clearly, v̄ /∈ V (MG)
since mG = 0. So there is a perfect matching in G−((V (MG∪NS)∪IS)∪{v̄}), say
FG. Hence, M ∪ (FG − {iv}) ∪ FG ∪ {vv̄} is a perfect matching in GG containing
M as required. This proves Subcase 2.1.

Subcase 2.2 : mG + nS ≥ 2. By Equation 4.3, l − (mG + nS + iS) =
mG + nS − 1 ≥ 1. By Lemma 4.3(b), G− (V (MG ∪NS) ∪ IS) is 1-factor-critical.

We now consider G. By Equation 4.4, l − (mG + nS + iS) = mG + nS − 1.

We first suppose that l−(mG+nS +iS) = mG+nS−1 ≥ 1. By Lemma 4.3(b),
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G− (V (MG ∪NS)∪ IS) is 1-factor-critical. Let x ∈ V (G) such that x, x̄ /∈ V (M).
Clearly, x exists because |V (MG ∪MG)∪ S| ≤ 2l+ 1 and G and G are of order at
least 2l+2. Since G−(V (MG∪NS)∪IS) and G−(V (MG∪NS)∪IS) are 1-factor-
critical, it follows that there is a perfect matching in G− (V (MG∪NS)∪IS ∪{x}),
say FG, and there is a perfect matching in G− (V (MG ∪NS)∪ IS ∪ {x̄}), say FG.
Hence, M ∪FG∪FG∪{xx̄} is a perfect matching in GG containing M as required.

So we next suppose that l − (mG + nS + iS) = mG + nS − 1 = 0. It follows
that nS = 0 and mG = 1 since mG ≥ 1. Thus iS = s̄ and mG ≤ mG = 1.
Put MG = {xy}. Since G is l2-extendable, for l2 ≥ 4, by Theorem 3.2(b), G is
5-connected. So {x̄, ȳ} ∪ V (MG) is not a cutset of G since |{x̄, ȳ} ∪ V (MG)| ≤ 4.
Hence, there is an edge joining a vertex in V (G) − ({x̄, ȳ} ∪ V (MG)), say ū, and
a vertex in S, say w̄. Because l − (mG + nS + iS) = 0 and iS = s̄, it follows that
l − (mG + nS + 1 + (iS − 1)) = l − (mG + nS + 1 + (s̄ − 1)) = 0. By Lemma
4.3(a), there is a perfect matching in G− (V (MG ∪NS ∪ {ūw̄})∪ (S − {w̄})), say
FG. Since G − (V (MG ∪NS) ∪ IS) is 1-factor-critical and u /∈ V (MG), it follows
that there is a perfect matching in G− (V (MG ∪NS)∪ IS ∪ {u}), say FG. Hence,
M ∪FG ∪FG ∪ {uū} is a perfect matching in GG containing M as required. This
proves Subcase 2.2.

Subcase 2.3 : mG + nS = 1. By Equation 4.3 and the fact that iS is odd,
mG + nS = l + 1− (mG + nS + iS) ≤ l − 1. We distinguish 2 subcases according
to mG and nS .

Subcase 2.3.1 : mG = 0 and nS = 1. Observe that G[V (MG ∪NS)] contains
mG + nS ≤ l − 1 independent edges and |V (MG ∪NS)| = 2(mG + nS) = (mG +
nS) +mG + nS ≤ l − 1 + (mG + nS). It follows by Lemma 4.2 that V (MG ∪NS)
is not a cutset of G. Then there are a vertex u ∈ V (G) − (V (MG) ∪ S) and
a vertex z ∈ IS such that uz ∈ E(G). Since l − ((mG + nS + 1) + (iS − 1)) =
l−(mG+nS+iS) = mG+nS−1 = 0, by Lemma 4.3(a), there is a perfect matching
in G− (V (MG ∪NS ∪ {uz}) ∪ (IS − {z})), say FG. We now consider G. We next
show that mG+nS ≥ 2. Suppose to the contrary that mG+nS = 1. Since mG ≥ 1,
nS = 0 and mG = 1. By Equation 4.3, l + 1 = mG +mG + 2nS + iS = 3 + iS . So
iS = l − 2 ≥ 4− 2 = 2. It follows that G[S] contains K2 as an induced subgraph.
Thus nS ≥ 1, contradicting the fact that nS = 0. Hence, mG + nS ≥ 2.

By Equation 4.4, l − (mG + nS + iS) = mG + nS − 1 ≥ 1. By Lemma 4.3(b),
G − (V (MG ∪NS) ∪ IS) is 1-factor-critical. Recall that mG = 0. So ū /∈ V (MG)
Therefore, there is a perfect matching in G− (V (MG ∪NS) ∪ IS ∪ {ū}), say FG.
Hence, M ∪FG∪FG∪{uū} is a perfect matching in GG containing M as required.
This completes the proof of Subcase 2.3.1.

Subcase 2.3.2 : mG = 1 and nS = 0. Put mG = {x̄1x̄2}. Note that
mG + nS ≥ 2 since m = l + 1 ≥ 5 and nS = 0. If there is a vertex u ∈
V (G) − (V (MG) ∪ S ∪ {x1, x2}) such that uz ∈ E(G) for some z ∈ S, then
by applying similar argument as in the proof of Subcase 2.3.1, there is a perfect
matching in GG containing M as required. So we now suppose that there is no
vertex u ∈ V (G)− (V (MG) ∪ S ∪ {x1, x2}) such that uz ∈ E(G) for some z ∈ S.
Thus V (MG) ∪ {x1, x2} is a cutset of G and {x1, x2} is a cutset of G − V (MG).
We next show that s = 1. Suppose to the contrary that s ≥ 3. By Equation
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4.2, mG = l + 1 −mG − s = l − s ≤ l − 3. By Observation 3.1, G − V (MG) is
(l − mG)-extendable. Because l − mG ≥ 3, by Theorem 3.2(b), G − V (MG) is
4-connected, contradicting the fact that {x1, x2} is a cutset of G−V (MG). Hence,
s = 1. Put S = {z}. Therefore, zu /∈ E(G) for u ∈ V (G)−(V (MG)∪S∪{x1, x2}).
So NG(z) ⊆ V (MG) ∪ {x1, x2}

By Equation 4.2, mG = l + 1 −mG − s = l − 1. By Observation 3.1, G′ =
G − V (MG) is 1-extendable. By Theorem 3.2(b), G′ is 2-connected. Therefore,
NG′(z) = {x1, x2} and degG′(z) = 2. By Lemma 4.7, there is a vertex u ∈ V (G′)
such that uz /∈ E(G′) and G′ − {u, z} contains a perfect matching, say FG. We
now consider G. Since l ≥ 4, mG = 1 and s̄ = s = 1, it follows that l− (mG + s̄) =

l− 2 ≥ 2. By Lemma 4.3(b), G
′

= G− V (MG ∪S) is 1-factor-critical. Then there

is a perfect matching in G
′−{ū}, say FG. Hence, M ∪FG∪FG∪{uū} is a perfect

matching in GG containing M as required. This completes the proof of Subcase
2.3.2. and thus completes the proof of our theorem.

We now turn our attention to the extendability of GG when G or G is l-
extendable for 1 ≤ l ≤ 3. We first provide an example of a graph G where
both G and G are 1-extendable but GG is not 2-extendable. Let H be a 1-
extendable graph such thatH is k-extendable for some integer k ≥ 1. By Theorems
2.4, 2.6 and 2.9, H exists. We now construct a 1-extendable graph G from H.
Let P = u1, u2, u3, u4 be a path of order 4 and put V (G) = V (H) ∪ V (P ) and
E(G) = E(H) ∪ V (P ) ∪ {u1h, u4h|h ∈ V (H)}. It is routine to verify that G and
G are 1-extendable. However, GG is not 2-extendable since {u1ū1, u3u4} cannot
be extended to a perfect matching in GG.

We now scope our attention to extendability of GG where G is l1-extendable
and G is l2-extendable for l1 ≥ 2 and l2 ≥ 2. We first consider the case l1 = 2
and l2 ≥ 2. We begin with the following lemma. Recall that if φ 6= {x1, . . . , xt} ⊆
V (G), then {x̄1, . . . , x̄t} ⊆ V (G) is denoted by X and vice versa.

Lemma 4.11. Let G and G be 2-extendable non-bipartite graphs of order p ≥ 10
and let M = {x1x2, ȳ1ȳ2, zz̄} be a matching of size 3 in GG, where {x1, x2, z} ⊆
V (G) and {ȳ1, ȳ2, z̄} ⊆ V (G). Then there is a perfect matching in GG containing
M .

Proof. Suppose to the contrary that there is no perfect matching in GG containing
M . By Theorem 3.1, there is a cutset T ⊆ V (GG) − V (M) such that co(GG −
(V (M)∪T )) > |T |. By parity, co(GG−(V (M)∪T )) ≥ |T |+2. Put S = T ∪V (M).
So co(GG−S) ≥ |S|−4. Put A = S∩V (G), B = S∩V (G) and C = V (G)−(A∪B).
Observe that |A| ≥ 3 and |B| ≥ 3.

By Theorem 3.6, G and G are bicritical. Thus, by Theorem 3.4, co(G−A) ≤
|A| − 2 and co(G − B) ≤ |B| − 2. We first show that co(G − A) = |A| − 2 and
co(G−B) = |B|−2. Suppose to the contrary that co(G−A) < |A|−2. By parity,
co(G − A) ≤ |A| − 4. It then follows by Lemma 4.8 that co(GG − S) ≤ co(G −
A) + co(G−B) ≤ |A|+ |B| − 6, contradicting the fact that co(GG− S) ≥ |S| − 4.
Hence, co(G−A) = |A| − 2. Similarly, co(G−B) = |B| − 2.
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Since G and G are 2-extendable, by Theorem 3.3(b), G[A] and G[B] contain
at most one independent edge. Because {x1, x2, z} ⊆ A and {ȳ1, ȳ2, z̄} ⊆ B,
G[A] and G[B] contain exactly 1 independent edge. By Lemma 4.4, G − A and
G − B contain no even components. If A ∪ B 6= V (G), then, by Lemma 4.8,
co(GG− S) = co(GG− (A ∪B)) ≤ |A|+ |B| − 6 = |S| − 6, again a contradiction.
Hence, A ∪B = V (G). Observe that if co(G−A) ≥ 4, G[B] = G−A contains at
least 4 independence vertices and thus G[B] contains a matching of size at least
two, a contradiction. Hence, co(G − A) ≤ 3. Similarly, co(G − B) ≤ 3 and each
component of G − B is singleton otherwise G[A] = G − B contains at least 2
independent edges, a contradiction. Therefore, co(G[B−A]) = co(G−A) ≤ 3 and
G[A−B] = co(G−B) ≤ 3. Since co(G−A) = |A| − 2 and co(G−B) = |B| − 2, it
follows that |A| = 2 + co(G−A) ≤ 5 and |B| = |B| = 2 + co(G−B) ≤ 5. Because
z ∈ A ∩ B, |A ∪ B| = |A| + |B| − |A ∩ B| ≤ 5 + 5 − 1 ≤ 9, contradicting the fact
that |V (G)| = p ≥ 10. This completes the proof of our lemma.

The next theorem shows that if G is a 2-extendable non-bipartite graph and
G is a l-extendable non-bipartite graph of order p ≥ 10 and l ≥ 2, then GG is
3-extendable.

Theorem 4.12. Let G be a 2-extendable non-bipartite graph of order p ≥ 10.
If G is l-extendable non-bipartite for some positive integer l ≥ 2, then GG is
3-extendable.

Proof. By Theorem 3.2(b), G is 2-extendable non-bipartite graph. Let M be a
matching of size 3 in GG. Put MG = M ∩ E(G), MG = M ∩ E(G) and MGG =
M − (MG ∪MG). Further, put mG = |MG|,mG = |MG| and mGG = |MGG|. If
mGG = 0 or mGG = 3, then, by Lemma 4.9, there is a perfect matching in GG
containing M as required. So we now consider 1 ≤ mGG ≤ 2. We distinguish 2
cases according to mGG.

Case 1: mGG = 1. If mG = mG = 1, then, by Lemma 4.11, there is a
perfect matching in GG containing M as required. So we suppose without loss of
generality that mG = 2, mG = 0. By applying similar arguments as in the proof
of Subcase 2.1 in Theorem 4.10, there is a perfect matching in GG containing M
as required.

Case 2: mGG = 2. By applying similar arguments as in the proof of Case
1 in Theorem 4.10, there is a perfect matching in GG containing M as required.
This completes the proof of our theorem.

We point out here that the bound on the order of graphs in Theorem 4.12
is best possible and the hypothesis that G and G are non-bipartite is essential.
Let G be a 3-regular bipartite graph of order 8 with bipartition (X,Y ) where
X = {xi|1 ≤ i ≤ 4} and Y = {yi|1 ≤ i ≤ 4} and E(G) = {xiyj |1 ≤ i 6= j ≤ 4}.
It is not difficult to show that G ∼= K4 ×K2 and both G and G are 2-extendable.
However, GG is not 3-extendable since {x1x̄1, x2y1, ȳ2ȳ3} cannot be extended to
a perfect matching in GG.
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We finally turn our attention to 3-extendable graphs.

Lemma 4.13. Suppose G and G are 3-extendable non-bipartite graphs of or-
der p ≥ 8. Let {x, y, z1, z2, z3} ⊆ V (G) and {z̄1, z̄2, z̄3} ⊆ V (G) such that
G[{z1, z2, z3}] ∼= K3. Further, let M = {xy, z1z̄1, z2z̄2, z3z̄3} be a matching of
size 4 in GG. Then there is a perfect matching in GG containing M .

Proof. Suppose there is no perfect matching in GG − V (M). Then by Theorem
3.1, there is a cutset T ⊆ V (GG)− V (M) such that co(GG− (T ∪ V (M))) > |T |.
By parity, co(GG− (T ∪V (M))) ≥ |T |+ 2. Put S = T ∪V (M). So co(GG−S) ≥
|S|−6. Since GG contains a perfect matching, by Theorem 3.1, co(GG−S) ≤ |S|.
Thus |S| − 6 ≤ co(GG − S) ≤ |S|. Put A = S ∩ V (G), B = S ∩ V (G) and
C = V (G)− (A ∪B).

Clearly, {z1, z2, z3} ⊆ A ∩ B. By Lemma 4.1(b), co(GG − S) ≤ |S| − 6. So
co(GG− S) = |S| − 6.

Since xy, z1z2 ∈ E(G), by Lemma 4.4, co(G − A) ≤ |A| − 4. On the other
hand, since G is 3-extendable non-bipartite graph, by Theorems 3.2(a) and 3.6,
G is bicritical. Therefore, by Theorem 3.4, co(G − B) ≤ |B| − 2. We first show
that co(G − A) = |A| − 4 and co(G − B) = |B| − 2. Suppose to the contrary
that co(G − A) 6= |A| − 4. By parity, co(G − A) ≤ |A| − 6. By Lemma 4.8(a),
co(GG − S) = co(GG − (A ∪ B)) ≤ |A| − 6 + |B| − 2 = |S| − 8, a contradiction.
Hence, co(G−A) = |A|−4. By similar argument, co(G−B) = |B|−2. By Lemma
4.4, G − A contains no even components. We next show that G − B contains no
even components. Suppose this is not the case. Then G − B contains an even
component, say D. Let b̄d̄ ∈ E(G) such that b̄ ∈ B and d̄ ∈ V (D). By Corollary

3.9, G
′

= G−{b̄, d̄} is 2-extendable non-bipartite. By Theorem 3.6, G
′
is bicritical.

Since co(G− (B ∪ {d̄})) = |B| − 1, co(G
′ − (B − {b̄})) = |B − {b̄}|, contradicting

Theorem 3.4. Hence, G−B contains no even components.
If A ∪ B 6= V (G), then by Lemma 4.8, co(GG − S) = co(GG − (A ∪ B)) ≤

co(G−A)+co(G−B)−2 = |A|+|B|−8 = |S|−8, a contradiction. So A∪B = V (G).
Note that G[A − B] contains the edge xy. We first show that G[A − B]

contains exactly one independent edge. Suppose G[A−B] contains 2 independent
edges. Since z1z2 ∈ E(G[A ∩ B]), there are at least 3 independent edges in G[A].
Therefore, by Lemma 4.4, co(G−A) ≤ |A| − 6, contradicting the fact that co(G−
A) = |A| − 4. Hence, G[A − B] contains exactly one independent edge. We next
show that G[B] contains no edges. Suppose to the contrary that B contains an
edge ū1ū2. By Corollary 3.9, G − {ū1, ū2} is 2-extendable non-bipartite graph.
By Theorem 3.6, G − {ū1, ū2} is bicritical. Then, by Theorem 3.4, co(G − B) =
co((G− {ū1, ū2})− (B − {ū1, ū2})) ≤ |B − {ū1, ū2}| − 2 = |B| − 4, contradicting
the fact that co(G − B) = |B| − 2. Hence, G[B] contains no edges and G[B] is
independent. So G[B] and G[B −A] are clique and thus co(G[B −A]) ≤ 1.

Therefore, |A| − 4 = co(G− A) = co(G[B − A]) ≤ 1. So |A| ≤ 5. If G[A− B]
contains at least 4 components, then G[A−B] contains at least two independent
edges. But this contradicts the fact that G[A−B] contains exactly one independent
edges. Hence, G[A−B] contains at most 3 components. Therefore, co(G[A−B]) =
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co(G−B) = |B|−2 ≤ 3. Hence, |B| = |B| ≤ 5. It follows that |V (G)| = |A∪B| =
|A|+ |B| − |A ∩B| ≤ 5 + 5− 3 = 7, a contradiction. This proves our lemma.

Lemma 4.14. Suppose G and G are 3-extendable non-bipartite graphs of or-
der p ≥ 8. Let {x, y, z1, z2, z3} ⊆ V (G) and {z̄1, z̄2, z̄3} ⊆ V (G) such that
G[{z1, z2, z3}] � K3. Further, let M = {xy, z1z̄1, z2z̄2, z3z̄3} be a matching of
size 4 in GG. Then there is a perfect matching in GG containing M .

Proof. SupposeM = {xy, z1z̄1, z2z̄2, z3z̄3} where x, y ∈ V (G). SinceG[{z1, z2, z3}]
� K3, we may suppose that z1z2 /∈ E(G). Since xy ∈ E(G), by Lemma 4.3(a),
there is a perfect matching in G − {x, y, z1, z2}, say FG. Let z3w ∈ FG. Again,
because z̄1z̄2 ∈ E(G), by Lemma 4.3(a), there is a perfect matching in G −
{z̄1, z̄2, w̄, z̄3}, say FG. Thus M ∪ (FG−{z3w})∪FG∪{ww̄} is a perfect matching
in GG containing M as required. This completes the proof of our lemma.

Theorem 4.15. Let G be a 3-extendable non-bipartite graph of order p ≥ 8.
If G is l-extendable non-bipartite for some positive integer l ≥ 3, then GG is
4-extendable.

Proof. By Theorem 3.2(b), G is 3-extendable non-bipartite graph. Let M be
a matching of size 4 in GG. Put MG = M ∩ E(G), MG = M ∩ E(G) and
MGG = M − (MG ∪MG). Without loss of generallity, suppose |MG| ≥ |MG|. If
MGG = φ or MGG = M , then, by Lemma 4.9, there is a perfect matching in GG
containing M as required. So we now suppose that MGG 6= φ and MGG 6= M .
Therefore, 1 ≤ |MGG| ≤ 3. We distinguish 3 cases according to |MGG|.

Case 1: |MGG| = 1. By applying similar arguments as in the proof of Subcase
2.1 (if |MG| = 0) or Subcase 2.3 (if |MG| = 1) in Theorem 4.10, there is a perfect
matching in GG containing M as required.

Case 2: |MGG| = 2. By applying similar arguments as in the proof of Case 1
in Theorem 4.10, there is a perfect matching in GG containing M as required.

Case 3: |MGG| = 3. Then, |MG| = 1 and |MG| = 0. So, by Lemmas 4.13 and
4.14, there is a perfect matching in GG containing M as required.

This completes the proof of our theorem.
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