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1 Introduction

All graphs considered in this paper are finite, undirected and simple. Let G
be a graph with vertex set V(G) and edge set E(G). The complement of G is
denoted by G. A neighbor set of a vertex v in G is denoted by Ng(v) = {u €
V(G)luv € E(G)}. For v € V(G) and T C V(G), a neighbor set of a vertex v in
T is denoted by Np(v) = {u € T|uv € E(G)} and if X C V(G), Ng(X) denotes
Uvex Na(v). Observe that Np(v) = Ng(v) NT. The degree of a vertex u in G
is denoted by degg(u) = |[Ng(u)|. The minimum degree and maximum degree in
a graph G is denoted by §(G) and A(G), respectively. The distance between two
vertices x and y in a graph G is the number of edges in a shortest path connecting
them and denoted by dg(z,y). The number of odd components of G is denoted by
¢o(G). A complete graph of order r is denoted by K,.. Let H C V(G), a subgraph
of G induced by H is denoted by G[H]. For graphs H and G, G is called H-free
if G does not contain H as an induced subgraph. A subgraph H is called a clique
if H 2 K., for some 7.

A set S C V(G) is called an independent vertex set if no two of which are
adjacent. The maximum cardinality of an independent set of G is denoted by
a(@G). For graphs Hy and Ha, the join of Hy and Ha, denoted by Hy + Hj is the
graph with vertex set V(H;)UV (Hz) and edge set E(H;)UE(Hs)U{uv|u € V(Hy)
and v € V(Haz)}. A subset M of E(Q) is called a matching if no two edges of M
have common end vertex. A vertex u is saturated by M if there is an edge in M
incident with uw. For simplicity, a set of all vertices saturated by M is denoted by
V(M). M is called a maximum matching in G if G contains no matching of size
greater than |M|. A perfect matching in G is a matching that saturates all vertices
of G. If My, M5 are matching in a graph G, then a symmetric different of M; and
My, denoted by M;AMs, is an induced subgraph G[(M; — M) U (Ms — My)).

For a positive integer k, a connected graph G of order at least 2k + 2 is k-
extendable if for every matching M of size k in G, there is a perfect matching
in G containing all edges of M. A graph G is k-factor-critical if, for every set
S C V(G) with |S| = k, the graph G — S contains a perfect matching. For
k =1 and k = 2, k-factor-critical graph is also called factor-critical and bicritical,
respectively. For simplicity, a graph with a perfect matching is called 0-extendable
and O-factor-critical. Observe that if G is k-extendable, then |V (G)| is even and
if G is k-factor-critical, then |V (G)| = k (mod 2).

In 1980, Plummer [I] introduced the concept of k-extendable graphs. He
gave a sufficient condition for a graph to be k-extendable in terms of minimum
degree. He also established a fundamental theorem (see Theorem that mainly
used in studying matching extension. One main problem is to establish sufficient
conditions for special classes of graphs to be k-extendable. (see, e.g. [2,[3]). Since
1980, the concept of extendable graphs have been recieved attention from many
researchers, see Plummer [4]-[6].

The concept of k-factor-critical graphs was introduced in 1996 by Favaron [7].
She established the necessary and sufficient condition for a graph to be k-factor-
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critical. She also provided a relationship between n-extendable graphs and k-factor
- critical graphs.

The complementary prism of G, denoted by GG, is the graph obtained by
taking a copy of G and a copy of G and then joining corresponding vertices by
an edge. A complementary prism is a special case of complementary product of
graphs introduced by Haynes et al. [§] in 2007. They pointed out that the famous
Petersen graph is C5C's and a corona K, - K1 which is the graph obtained by adding
a vertex and an edge to every vertex of a complete graph K,, is K, K,. Some
parameters of complementary prism of graphs such as the vertex independence
number, the chromatic number and the domination number have been investigated
(see [8]-[14]).

A problem that arises is that of investigating properties of G so that GG is
k-extendable for some positive integer k. In our two previous papers [15] [16], we
establish that if G is a 2-regular H-free graph where H € {Cs,Cy, Cs}, then GG is
2-extendable and if G is either connected 3-regular F-free or connected ro-regular
graph of order p > 2r¢ + 1 where ry > 4, then GG is 2-extendable where the graph
F is shown in Figure 1. In this paper, we scope our attention to G and G which
are both non-bipartite graphs. A new strategy for approaching the problem when
G or @ is bipartite is required. In fact, we show, in Section |4} that if G and G are
l1-extendable and ls-extendable non-bipartite graphs for Iy > 2 and Iy > 2, then
GG is (I+1)-extendable where | = min{ly,ls}. One might ask whether there exist
such graphs G and G. We affirm this in Section [2| by providing some constructions
of a non-bipartite graph G such that G' and G are [;-extendable and lo-extendable
non-bipartite graphs, respectively, where [; and ls are positive integers. Section
contains some results on extendability and factor-criticality graphs that we make
use of in establishing our results in Section [

v

Figure 1: the graph F'
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2 Some constructions of extendable non-bipartite
graphs

In this section, we provide two constructions of extendable non-bipartite graphs
in which their complement graphs are also extendable by using cartesian and lexi-
cographic products of two extendable graphs. We first give definitions of cartesian
and lexicographic products.

The cartesian product G x H of two graphs G and H has the vertex set
V(G) x V(H) and two vertices (uy,v1) and (ug, v2) are adjacent whenever ujug €
E(G) and v; = va, or u3 = uz and v1ve € E(H). The lexicographic product Go H
of two graphs G and H has the vertex set V(G) x V(H) and two vertices (u1,v1)
and (ug,v2) are adjacent either ujus € E(G), or u; = ug and vive € E(H).

The first two results in this section concern the extendability of graphs ob-
tained from a cartesian product, established by Gyori and Plummer [2] and a
lexicographic product established by Bai et al. [I7].

Theorem 2.1 ([2]). For non-negative integers ly and lz, let G; be a l; -extendable
graph for 1 <i <2. Then Gy X G is (I1 + Iy + 1)-extendable. O

Theorem 2.2 ([I7]). For non-negative integers ly and la, let G; be al; -extendable
graph for 1 <i < 2. Then G10Gsy is 2(11 +1)(I2 4 1)-factor-critical. In particular,
G10Gy is (I3 + 1)(Ig + 1)-extendable. O

In 1980, Plummer[I] gave a sufficient condition for a graph to be k-extendable
in terms of minimum degree.

Theorem 2.3 ([I]). Let G be a graph of order 2p. If §(G) > p + k, for a non-
negative integer k, then G is k-extendable. O

We are now ready for our constructions.

Theorem 2.4. For non-negative integers ly, lo, p1 > 2l + 2 and py > 2l + 2
and 1 < i < 2, let H; be l;-extendable of order p;. Further, let G = Hy x Hy. If
A(Hy) =p1 — 1 —1t1 and A(Hy) = pa — 1 — to for some non-negative integers t;
and ta, then G is (I + Iz + 1)-extendable and G is (3(p1 —2)(p2 —2) +t1 +t2 — 1)-
extendable.

Proof. By Theorem G = Hy X Hy is (1 + o + 1)-extendable as required. We
need only show that G is (3 (p1 — 2)(p2 — 2) + t1 + t2 — 1)-extendable. Clearly, G
and G are of order p1ps. Since Ng((u,v)) = {(z,v)|zu € E(H1)} U {(u,y)|vy €
E(Hs)}, dega((u,v)) = degm, (u) + degm,(v). Thus A(G) = A(Hy) + A(Hz) =
p1 4+ p2 — 2 —t; — ta. Therefore, 6(G) = p1ps —p1 —p2+2+t1 +ta—1 =
ipips+ipipo —pi—pot+ti+to+1=1pipo+ 3(p1 —2)(p2 —2) +t1 +t2 — 1. By
Theorem G is (3(p1 — 2)(p2 — 2) + t1 + t2 — 1)-extendable as required. This
proves our theorem. O
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Corollary 2.5. Let Hy, Hy and G be graphs defined in Theorem 2 If either H,
or Hs is non-bipartite, then G and G are also non-bipartite. O

Theorem 2.6. For non-negative integers hy, ha, hi, he, let H; be a h;-extendable
and let H; be a h;-extendable for 1 <i < 2. Then G = HyoHy is (h1+1)(hy+1)-
extendable graph and G is (hy + 1)(hg + 1)-extendable graph.

Proof. By Theorem G = Hy o Hy is (hy + 1)(he + 1)-extendable. We first
show that G = H; o Hy. Clearly, V(G) = V(Hyo Hs) = V(Hy) x V(Hs) =
V(Hy) x V(H3) = V(H; 0 Ha). Let (u1,v1), (u2,v2) € V(Hy) x V(Hz) and let
(u1,v1)(uz,v2) € E(Hy o Ha). Thus (uy,v1)(uz,ve) ¢ E(Hyo Hy).

If uy = ug, then vive ¢ E(Hs) and thus (u1,v1)(ug,ve) € E(Hi0Hs). Further,
if u # uo, then uyus ¢ E(Hp). And again (u,vy)(uz,ve) € E(Hy o Hs). Hence,
E(Hl o HQ) g E(ﬁl OFQ).

We now suppose that (uy,v1)(ug,ve) € E(Hy o Ha). If u; = ug, then vivy €
E(Hs). Thus (u1,v1)(ug,vs) ¢ E(Hy o Hy). Further, if u; # ug, then ujug €
E(H;) and thus (u1,v1)(uz,v2) ¢ E(Hy o Hy). In either case (u1,v1)(uz,v2) €
E(H, o H,). Hence, E(Hy; o Hy) C E(H,o Hy). Therefore, E(H; o Hy) =
E(Hy o Hy). Thus Hy o Hy = H; o Hy. Tt follows by Theorem that G is
(hy + 1)(hg + 1)-extendable graph as required. This proves our theorem. O

Corollary 2.7. For 1 < i < 2, let H;, H; and G be graphs defined in Theorem
. If Hy is connected, E(H3) # ¢ and E(Hg) # ¢ then G and G are non-
bipartite. ]

According to Theorems 2.4] and [2.6] we have shown that there exists a graph
G such that G is [1-extendable and G is lo-extendable for some integers [; and .
Theorem establishes that for any positive integers [y and ls, there is a graph
G such that G is l;-extendable and G is ly-extendable.

Lemma 2.8. Let P; be a path of order t. Ift > 4 is an even integer, then P; is
0-extendable and Py is (t — 4)-factor-critical. Further, Py is (t — 4)-extendable.

Proof. Clearly, P; contains a perfect matching. We only show that P; is (t — 4)-
factor-critical. Let T C V(P;) such that |T| =t — 4. Clearly, P; — T is connected
and contains Pj as a subgraph. Thus P; — T is one of a graph in {K,, K4 —
e,Cy, Ky — {e1,ea}, Py}, where e; and ey have a common end vertex. In either
case, Py — T contains a perfect matching. Thus P; — T is (t — 4)-factor-critical
as required. It then follows by definition of k-extendable that P, is %(t — 4)-
extendable. This proves our lemma. O

Theorem 2.9. For positive integers l1 and lz, there is a graph G such that G is
l1-extendable and G is la-extendable. Further, G and G are non-bipartite.

Proof. Let Hy = Poj, 4o and Hy = Py,,5. By Lemma Hy is (Ip — 1)-
extendable, H; is 0-extendable, Hj is 0-extendable and Hs is (Iz — 1)-extendable.
Let G = Hy o Hy. By Theorem G is lj-extendable and G is ls-extendable
as required. Further, it is clear that G and G are non-bipartite. This proves our
theorem. L]
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3 Results on extendability and k-factor critical
graphs

In this section, we establish some results which are used in establishing our
results in Section 4. Our first result is a well known theorem for studying an
existence of a perfect matching in graphs established by Tutte.

Theorem 3.1 ([18]). (Tutte’s Theorem) A graph G has a perfect matching if and
only if for any S CV(Q), co(G — S) <|S]. O

In 1980, Plummer [I] established a fundamental theorem on k-extendable
graphs as following.

Theorem 3.2 ([1]). Let G be a graph of order p > 2k +2 and k > 1. If G is
k-extendable, then

(a) G is (k — 1)-extendable, and

(b) G is (k + 1)-connected. O

A necessary and sufficient condition for a graph to be k-extendable and to be
k-factor-critical was provided by Yu [19] and Favaron [7], respectively.

Theorem 3.3 ([19]). A graph G is k-extendable (k > 1) if and only if for any
SCV(G),

(a) co(G — S) < |S]| and

(b) co(G—=S5) =S| —2t,(0 <t < k—1) implies that F(S) < t, where F(S) is
the size of a mazimum matching in G[S]. O

Theorem 3.4 ([7]). A graph G is k-factor-critical if and only if |V(G)| =k (mod
2) and for S CV(G) with |S| > k,co(G — S) < |S] — k. O

Some following properties of k-factor-critical graphs were proved in [7].

Theorem 3.5 ([7]). Let G be a k-factor-critical graph. Then G is (k — 2)-factor-
critical. O

Theorem 3.6 ([7]). If G is a 2k-extendable non-bipartite graph for 2k > 2, then
G is a 2k-factor-critical graph. O

Maschlanka and Volkmann [20] gave a relationship between k-extendable non-
bipartite graph and the independence number.

Theorem 3.7 ([20]). Let G be a k-extendable non-bipartite graph of order p. Then
o(G) < ip— k. O

In Phd. Thesis of Yu [21], he gave the following observation.

Observation 3.1. A graph G is k-extendable if and only if for any matching M
of sizei (1<i<k), G—V(M) is a (k—1i)-extendable graph. O
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An observation on k-factor-critical graphs which is similar to Observation [3.1
can be stated as following.

Observation 3.2. Let G be a k-factor-critical graph and S C V(G) where |S| < k.
Then G — S is (k — |S])-factor-critical. O

A following lemma, follows from Theorem

Lemma 3.8. Let G be a k-extendable non-bipartite graph and S C V(G) where
|S| <2k —2. Then G — S is a non-bipartite graph.

Proof. Suppose to the contrary that G — S is a bipartite graph. Then «(G) >
(G =V(S)) = L(IV(G)| — (2k — 2)) = L|V(G)| — k + 1. But this contradicts
Theorem and completes the proof of our lemma. O

Our next corollary follows immediately by Observation |3.1) and Lemma [3.8

Corollary 3.9. Let G be a k-extendable non-bipartite graph and let M be a match-
ing in G where |[M| =1 <k —1. Then G — V(M) is (k — l)-extendable non-
bipartite. [

Note that the upper bound on |M] in Corollary is best possible. Let
G = Ky, + K, for some positive integers k,t > 2. It is easy to see that G is k-
extendable. Clearly, there is a matching M of size k in G[K4] such that G—V (M)
is a bipartite graph.

4 Main results

In this section, we establish the extendability of the complementary prism GG
of G where G and G are l;-extendable and Ily-extendable non-bipartite graphs,
respectively. We begin with some lemmas. To simplify our discussion of com-
plementary prisms, G and G are referred to subgraph copies of G and G, re-
spectively, in GG. For a vertex v of G, there is exactly one vertex of G which
is adjacent to v in GG. This vertex is denoted by v. That is {v} = Ng(v).
Conversely, v is the only vertex of G which is adjacent to ©. Similarly, for a set
¢ # X ={x1,29,...,2x} C V(G), {Z1,%2,...,%} C V(G) is denoted by X and
vice versa.

In 2015, Janseana and Ananchuen [16] gave a relationship between the number
of odd components and a size of a cutset in complementary prism.

Lemma 4.1 ([16]). Let GG be a complementary prism and let S = AU B be a
cutset of GG, where A C V(G) and B C V(G). Then

a) co(GG — S) = |S| — 2t, for some t > 0.

b) co(GG — S) = |A| + |B| — 2t < ¢o(G[B — A]) + ¢o(G[A — B]) < |A| + |B| —
2|AN B|. Consequently, |AN B| < t.

c) If co(G[B — A)]) + ¢o(G[A— B]) = |A| + |B| — 2|AN B|, then each component
of G|B — A] and G[A — B is singleton and hence G[A — B] is a clique. O
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Lemma 4.2. Let G be a k-extendable graph for some integer k > 2 and let S C
V(G) be a cutset of G. If G[S] contains t < k — 1 independent edges, then |S| >
k+t+41.

Proof. Let 8" = S—V(F) where F is a matching of size ¢t in G[S]. By Observation
G' =G —V(F) is (k — t)-extendable. Observe that k —¢ > 1. By Theorem
b)7 G’ is (k — t + 1)-connected. Since S’ is a cutset of G', |S’| > k—t+ 1 and
thus |[S]| > 2t +k —t+1=k+t+1 as required. This proves our lemma. O

Let = be a real number, |z|. is denoted a greatest even integer less than x
and |z], is denoted a greatest odd integer less than x. Clearly, [z]. = 2[§] and
|z]o = 2|(x — 1)/2] + 1. Note that for an even integer k, if = is an integer and
|z]e =kthenz=korz=Fk+1.

Lemma 4.3. Let G be a k-extendable non-bipartite graph for k > 2. Further, let
M C E(G) be a matching of size m and let S = ¢ or S C V(G) — V(M) be an
independent set such that k —m — |S| =t > 0 for some integer t. Then

(a) If |S| is even, then G—(V(M)US) is t-extendable. Further G—(V(M)US)
is | t]e-factor-critical. Consequently, there is a perfect matching in G—(V(M)US).

(b) If |S| is odd and t > 1, then G — (V(M)US) is |t],-factor-critical. Thus
G — (V(M)US) is 1-factor-critical.

(c) If |S| is odd, t = 0 and there is a vertex v € V(G) — (V(M) U S) such
that vs € E(G) for some s € S, then G — (V(M) U S U {v}) contains a perfect
matching.

Proof. We first suppose m = k. So S = ¢ and thus G — (V(M)U S) = G —
V(M) contains a perfect matching by Theorem [3.2)(a) and it is O-factor-critical as
required. We now suppose that m < k—1. By Corollary G-V (M)is (k—m)-
extendable non-bipartite. Since k —m = |[S|+1t, G — V(M) is (|S| + t)-extendable
non-bipartite.

(a) |S] is even. By Theorem 3.2(a), G — V(M) is (S| + [¢t])-extendable and
thus it is (|S] + [t]e)-factor-critical by Theorem 3.6 Hence, by Observation
G — (V(M)US) is |t].-factor-critical as required. It then follows by Theorem
) that G — (V(M) U S) contains a perfect matching. This proves (a).

(b) |S] is odd and ¢ > 1. By Theorem a), G — V(M) is (|S| + [t]o)-
extendable and thus it is (|S| + |¢],)-factor-critical by Theorem By Observa-
tion[3.2} G — (V(M)US) is [t],-factor-critical. Since t > 1, [¢], > 1. Further, by
Theorem G — (V(M)UYS) is 1-factor-critical as required. This proves (b).

(c) Let M' = M U {vs} and " = S — {s}. Hence, our result follows from (a).
This completes the proof of our lemma. O

Lemma 4.4. Let G be a k-extendable graph for some integer k and let S C V(G)
be a cutset of G. If G[S] contains t independent edges for t < k, then c¢,(G—8S) <
|S| — 2¢t. Further, if 1 <t <k —1 and c,(G — S) = |S| — 2t then G — S contains
no even components.



Extendability of Complementary Prism of Extendable Graphs 711

Proof. Let F' be a matching of size ¢ in G[S]. Since G is a k-extendable graph,
G — V(F) contains a perfect matching by Theorem a). By Theorem |3.1
o(G=5)=c,((G=V(F))=(S=V(F))) <|S=V(F)| =S| — 2t, as required.
We now suppose that 1 <¢ <k —1 and ¢,(G —S) = |S| — 2¢t. Let D be an even
component of G — S. By Lemma and the fact that t <k -1 < k+ 1, V(F)
is not a cutset of G. Then there is an edge e = sd joining a vertex s in S — V(F)
and a vertex d in D. Since G is k-extendable and F U {e} is a matching of size
t+1 <k, it follows that there is a perfect matching in G' = G — (V(F) U {s,d}).
Let 8" =5 — (V(F)U{s}). Clearly, ¢,(G' = 5") = c,(G—S)+1=|S| -2t +1.
Since G’ contains a perfect matching, by Theorem 3.1} [S|—2t+1 < ¢,(G' —5') <
|S|—(|V(F)|+1)| = |S|—2t—1, a contradiction. Hence, there is no even component
in G — S. This proves our lemma. O

Lemma 4.5. Let G be a l-extendable graph and let M be a matching of size | +t
where t > 1. Then there is a maximum matching in G —V (M) saturates all except
at most 2t non-adjacent vertices in G — V (M).

Proof. Let T C M where |T| =t. Thus M — T is a matching of size [ in G. So
there is a perfect matching F in G — V(M —T). Clearly, |V(F)NV(T)| = 2t. Let
Fy={aye F{z,y} NV(M) =¢} and Fo={ay € Flr € V(M) and y ¢ V(M)}.
Further, let F} be a maximum matching in G[V (Fy) — V(M)]. Then, Fy U F} is
a matching in G — V(M) saturates all except at most 2¢ non-adjacent vertices as
required. O

By similar arguments as in the proof of Lemma [4.5] the next lemma follows.

Lemma 4.6. Let G be a k-factor-critical graph and let T C V(G) where |T'| = k+t.
Then there is a mazimum matching in G — V(T') saturates all except at most t
non-adjacent vertices. [

Lemma 4.7. Let G be an 1-extendable graph of order p > 6 and let v be a vertex
of degree 2 in G. Then there are perfect matchings My, My in G such that v is
a vertex of Cop in My AMy where n > 3. Further, there is a vertex x € V(Cay)

where Cay, is a subgraph of My /AMy such that ve ¢ E(G) and G —{v,x} contains
a perfect matching.

Proof. Let {u1,us} = Ng(v). We first suppose Ng(u1) N Ng(uz) = {v}. Let
M; be a perfect matching in G containing vu; and Ms a perfect matching in
G containing vug. Clearly, {vuj,uguz} € M; and {vug,ujus} C My for some
us,ugy € V(G). Since {v} = Ng(u1) N Ng(uz),us # us. Hence, ugusvujuy is a
path of length 4 containing v. It must be contained in an even cycle of order at
least 6 in M7 A M, as required.

So we now suppose that Ng(u1) N Ng(uz) # {v}. Then there is a vertex
v # uz € Ng(u1) N Ng(ug). Since G is 2-connected by Theorem [3.2(b) and G
is of order at least 6, it follows that wus is not a cut vertex. Then there is a
vertex ug € Ng(u1) U Ng(u2) where ug # us. Without loss of generality, suppose
ug € Ng(uy). Let M; be a perfect matching in G containing ujug and My be a
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perfect matching in G containing ugug. It is easy to see that {ujug,vus} C My
and {ugug,vu1} C My. Hence, uqujvugug is a path of length 4 containing v. It
must be contained in an even cycle of order at least 6 in M;/AMs as required.
Further, let © € V(Cs,) such that the distance between v and x along the cycle
Cyy, is 3. Clearly, zv ¢ E(G) and it is easy to see that G —{v, z} contains a perfect
matching. This completes the proof of our lemma. O

For an induced subgraph H of G, Compyg denotes the set of all components
in H. If X C V(G), then we use Comx for Comg|x). For a cutset S of
GG, put A = SNV(G), B=SNV(G) and C = V(G) — (AU B). Thus
S = AU B. Further, let Tg_4 = {F|F is an odd component of G[B — A] and
Ng(u) = V(F) € Afor all w € V(F)}. Ty 5 = {F|F is an odd component of
G[A — B] and Ng(u) — V(F) C B for all 4 € V(F)}. Finally, let L = Lg U Lg,
where Lg = {F|F is an odd component in G[B — A] and N, z(V(F)) NC # ¢}
and Lg = {F|F is an odd component in G[A — B] and N g(V(F)) N C # ¢}.
Note that if ' = ¢, then L = ¢. Clearly, ITp_4 NLg=¢ and Iy 5N Lz =¢. It
is easy to see that, if G is connected and G[B — A] contains only odd components,
then Comp_4 = Tg_4 U Lg. Similarly, if G is connected and G[A — B] contains
only odd components, then Com4_5 = T5_5 U L. In what follows, the symbols
Compyg, S, A, B, C, Tg_4, T3_5, L, Lg and L are referred to these set up.

Lemma 4.8. For a graph G, let A C V(G) and B C V(G). Suppose c,(G — A) =
|A| —t1 and co(G — B) = |B| — ta, for some non-negative integers ti, to. Then
co(GG —(AUB)) < |A|+|B| — (t1 +t2). Further, if AUB # V(G) and G — A and
G — B contain no even components, then c,(GG—(AUB)) < |A|+|B|— (t1+t2)—2.

Proof. Tt is easy to see that ¢,(GG — (AU B)) < |A| + |B| — (t1 + t2). We now
suppose that AU B # V(G) and G — A, G — B contain no even components.
Let x € V(G) — (AU B). Then z is in an odd component of G — A, say C.
Clearly, z ¢ AU B and thus Z is in an odd component of G — B, say D. Hence,
GG[V(C)UV(D)] forms an even component in GG — (AU B). Therefore ¢,(GG —

(AU B)) < |A| + |B| — (t1 + t2) — 2 as required. This proves our lemma. O

Lemma 4.9. Let G and G be l;-extendable and ly-extendable graphs, respectively
where ly and ls are positive integers. Further, let M be a matching of size | +1 in
GG where | = min{ly,lo}. If either M = {x;%;|x; € V(G) for 1 <i <1+ 1} or
M C (E(G)U E(Q)), then GG has a a perfect matching containing M.

Proof. Clearly, if M = {z;Z;|z; € V(G) for 1 <i <1+ 1}, then {vo|v € V(G)}
is a perfect matching in GG containing M as required. So we now suppose that

M C (E(G)UE(G)). Put Mg = MNE(G) and Mgz = MNE(G). If 1 <|Mg| <1
and 1 < |M§\ < [, then it is easy to see that M = Mg U Mg can be extended
to a perfect matching in GG, by Theorem a), since G is l;-extendable and G
is lp-extendable. Hence, we suppose without loss of generality that |Mq| =1+ 1.
Suppose there is no perfect matching in G containing M¢. By Lemma [£.5] there
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is a maximum matching F in G — V(M) saturates all except two non-adjacent
vertices, say  and y. So #j € E(G). Since G is ly-extendable where I > 1 and by
Theorem a), it follows that there is a perfect matching F» in G containing Z7.
Hence, M U Fy U (Fy — {zy}) U {2z, yy} is a perfect matching in GG containing
M as required. This completes the proof of our lemma. O

We are now ready to prove our main result. We begin with the extendability
of GG where G is [1-extendable and G is ly-extendable for I > 4 and 5 > 4.

Theorem 4.10. For positive integers 1y > 4, lo > 4, let G and G be 1 -extendable
and lz-extendable non-bipartite graphs of order p > 2l + 2, respectively, where
I =min{ly,la}. Then GG is (I + 1)-extendable.

Proof. Let M C E(GG) be a matching of size [ + 1 in GG. Put Mg = M N E(G),
Mz =MNE(G) and M,z = M — (Mg U Mg). Note that M,z = {zZ| for some
r e V(G)}. If Mg = M or Myg = ¢, then, by Lemma there is a perfect
matching in GG containing M as required. We now suppose that M & # M and
Mg # ¢. Without loss of generality, we may suppose that |[Mg| > [Mg|. Hence,
Mg # ¢.

Put S = V(G) N V(Mgg). Let Ng be a maximum matching in G[S]. Put
Is = S — V(Ng). Clearly, Is is an independent set. Similarly, let Ng be a
maximum matching in G[S] and put Iy = S — V(Ng). For simplicity, we denote
the cardinalities of each set by its small letter, i.e., mg = |Mg|, mg = |Mg|,
Mmea = |MG§|7 $= ‘S|7 ig = ‘I5|a ete.

Clearly, 1 < mg <1l,s=3§,ng+ig > 1and ng+ig > lsinces =5 =mg gz > 1.
Therefore,

I+1=mg+mg+mga (4.1)
I+1=mg+mg+s (4.2)
l+1=mg+mg+2ns +is (4.3)
I4+1=mg+mg+2ng + iz (4.4)

Consequently, mg +ng =1+ 1 — (mg + ng +ig) < [ since ng +ig > 1 and
mg +ng =1+ 1— (mg + ng + ig) < since ng + ig > 1. Further, s = ig (mod
2) and 5 = ig (mod 2) because s = 2ng + ig and s = 5 = 2ng + ig.

We first suppose that ig = 0. Since mg + ng < I, by Theorem a), there is
a perfect matching in G — (V(Mg) U Ng), say Fg. Now consider G. By Equation
l—(mg+ng+ig) = mg+ng—1 > 0since mg > 1. By Lemma a), there
is a perfect matching in G — (V(Mz U N5) U I5), say Fz. Hence, M U Fg U Fy is
a perfect matching in GG containing M as required.

So we now suppose that ig > 1. We distinguish 2 cases according to parity of
s.

Case 1: sis even. So ig > 2 and ig > 0 are also even. We distinguish 2
subcases according to mg + ns.
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Subcase 1.1 : mg+ng > 1. So, by Equation l—(mg+ns+is) =mg+
ng—1 > 0. By Lemmal4.3|(a), there is a perfect matching in G—(V (MgUNg)UIg),
say Fg. Further, by Equation and the fact that mg > 1, I — (mg + ng +
ig) = mg +ng—12>0. So, by Lemma a), there is a perfect matching in
G — (V(MgU Ng) U Ig), say Fg. Hence, M U Fg U Fg is a perfect matching in
GG containing M as required.

Subcase 1.2 : mg = ng = 0. We first show that ng < L. Since ng = 0, G[9]
is independent and thus G[S] is a complete graph. Because s is even, ng = %E =
%s. So, by Equatlona.nd the fact tha‘F mg > 1,ng = %s = %(Z—FI—.’ITLG_TTL.@) =
5(I+1=mg) < é as required. By Equatlon l-mg =mg+2ng+is—1=i5—1
and |ig — 1], =ig — 2 > 0 since ig = s is even. It follows by Lemma a) that
G =G —-V(Mg) is (is — 2)-factor-critical. By Lemma there is a maximum
matching Fg in G’ — Ig saturates all except at most 2 vertices in G’ — Ig.

We next consider G. By Equation and the fact that mg > 1, | — (mg +
ng+ig) = mag+ng—12>ng > 0. By Lemma (a), there is a perfect matching
in G — (V(MgUNg)UIg), say Fg. Clearly, if Fg is a perfect matching in G’ — I,
then M U Fg U F is a perfect matching in GG as required.

We now suppose that Fg is not a perfect matching. Let z,y € V(G')—Ig where
z and y are unsaturated by Fg. Clearly, zy ¢ E(G). So 7y € E(G). Because
ng < é and [ > 4, it follows that mg+ng+1 =ng+1 < é—l—l < %—i—(é—l) <I[l-1.
By Theorem a), there is a perfect matching in G—V (MzgU Ngu{aj;y}L say FZ.
Hence, M U Fg U (Flé —{zy}) U{zZ,yy} is a perfect matching in GG containing
M as required. This proves Case 1.

Case 2 : s is odd. So ig and ig are also odd. We distinguish 3 subcases
according to mg + ng.

Subcase 2.1 : mgz = ng = 0. By Equation I —(mg+ (is — 1)) =
mg + 2ng = 0. Let ¢ € Ig, by Lemma a), there is a perfect matching in
G — (V(Mg)U (Is — {i})), say Fg. Let iv € Fg. We now consider G. Since
ns = 0, G[S] is independent and thus G[S] is a complete graph of odd order s.
Therefore, ng = 1(s — 1) and ig = 1. By Equation Il=mg+s—1 So
l—(mg+ng+ig) =1l—(ng+ig) =meg+s—1—(3(s—1)+1) =mg+3(s—3).

We next show that mg + %(s —3) > 1. Suppose to the contrary that mg +
2(s—3) = 0. Since mg > 1 and s is a positive odd integer, it follows that m¢g =1
and s = 1. By Equation[f2} I +1=mg +mg+s=1+0+1=2. Thusl =1,
contradicting the fact that [ > 4. Hence, mg + 3(s — 3) > 1 as required.

Therefore, | — (mg + ng + ig) = mg + 3(s — 3) > 1. By Lemma ),
G—(V(MzUNg)UIg) is 1-factor-critical. Recall that iv € Fg. Clearly, v ¢ V (Mg)
since mg = 0. So there is a perfect matching in G — ((V(MgUNg)UIg)U{v}), say
Fg. Hence, M U (Fg — {iv}) U Fz U {vv} is a perfect matching in GG containing
M as required. This proves Subcase 2.1.

Subcase 2.2 : mg + ng > 2. By Equation Il —(mg+ng +is) =
mg +ng —1>1. By Lemma b)7 G — (V(Mg U Ng) U Ig) is 1-factor-critical.
We now consider G. By Equation I — (mg+ng+ig) =mg+ng— 1.

We first suppose that [ — (mg—+ng+ig) = mg+ng—1> 1. By Lemma[4.3(b),
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G — (V(MgU Ng) U Ig) is 1-factor-critical. Let z € V(G) such that =,z ¢ V(M).
Clearly, x exists because |V (Mg U Mg)US| <2141 and G and G are of order at
least 21 +2. Since G — (V(MgUNg)UIs) and G — (V(MgUNg)UIg) are 1-factor-
critical, it follows that there is a perfect matching in G — (V(MgUNg)UIsU{z}),
say F, and there is a perfect matching in G — (V (Mg U Ng) U IgU {Z}), say Fg.
Hence, M UFgUFgU{xT} is a perfect matching in GG containing M as required.

So we next suppose that [ — (mg + ng +ig) = mg +ng — 1 = 0. It follows
that ng = 0 and mg = 1 since mg > 1. Thus ig = 5 and mg < mg = 1.
Put Mg = {zy}. Since G is ly-extendable, for [ > 4, by Theorem b)7 G is
5-connected. So {Z, 7} UV (Mg) is not a cutset of G since [{Z,5} UV (Mg)| < 4.
Hence, there is an edge joining a vertex in V(G) — ({z,y} UV (Mg)), say u, and
a vertex in S, say w. Because | — (mg + ng +ig) = 0 and ig = 5, it follows that
l — (m§+n§+1+(i§— 1) =1- (m§+n§+l+(§—1)) = 0. By Lemma
4.3((a), there is a perfect matching in G — (V (Mg U Ng U {aw}) U (S — {w})), say
Fg. Since G — (V(Mq U Ng) U Ig) is 1-factor-critical and u ¢ V(Mg), it follows
that there is a perfect matching in G — (V(Mg U Ng) U Is U{u}), say Fg. Hence,
MU Fg U Fg U {ut} is a perfect matching in GG containing M as required. This
proves Subcase 2.2.

Subcase 2.3 : mgz + ng = 1. By Equation @ and the fact that ig is odd,
mag +ns =14+1—(mg+ns+is) <1 —1. We distinguish 2 subcases according
to mg and ns.

Subcase 2.3.1 : mg = 0 and ng = 1. Observe that G[V (Mg U Ng)| contains
mg + ng <1 —1 independent edges and |V (Mg U Ng)| = 2(mg + ng) = (mag +
ng) +mg +ns <l—1+ (mg+ng). It follows by Lemmathat V(Mg U Ng)
is not a cutset of G. Then there are a vertex u € V(G) — (V(Mg) U S) and
a vertex z € Ig such that uz € F(G). Since | — ((mg +ns + 1) + (is — 1)) =
I—(mg+ns+is) = mg+ng—1 =0, by Lemma a), there is a perfect matching
in G— (V(MgUNgU{uz})U (Is — {z2})), say Fg. We now consider G. We next
show that mg+ng > 2. Suppose to the contrary that mg+ng = 1. Since mg > 1,
ng = 0 and mg = 1. By EquationLtl =mg +mg+2ng +is =3 +1is. S0
ig=1—2>4—2=2. Tt follows that G[S] contains K> as an induced subgraph.
Thus ng > 1, contradicting the fact that ng = 0. Hence, mg + ng > 2.

By Equation | — (mg+ng +ig) = mg +ng—12>1. By Lemma ),
G — (V(Mg U Ng) U Ig) is 1-factor-critical. Recall that mg = 0. So u ¢ V(Mg)
Therefore, there is a perfect matching in G — (V(Mg U Ng) U Ig U {u}), say Fg.
Hence, M UFgUFgU{uu} is a perfect matching in GG containing M as required.
This completes the proof of Subcase 2.3.1.

Subcase 2.3.2 : mz = 1 and ng = 0. Put mg = {Z:72}. Note that
mg +ng > 2since m =l +1 2> 5 and ng = 0. If there is a vertex u €
V(G) — (V(Mg) US U {x1,22}) such that uz € E(G) for some z € S, then
by applying similar argument as in the proof of Subcase 2.3.1, there is a perfect
matching in GG containing M as required. So we now suppose that there is no
vertex u € V(G) — (V(Mg) U S U {x1,z2}) such that uz € E(G) for some z € S.
Thus V(Mg) U {z1,22} is a cutset of G and {x1, 22} is a cutset of G — V(M¢).
We next show that s = 1. Suppose to the contrary that s > 3. By Equation
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(I — mg)-extendable. Because | — mg > 3, by Theorem b), G — V(Mg) is
4-connected, contradicting the fact that {x1,z2} is a cutset of G—V (M¢). Hence,
s=1. Put S = {z}. Therefore, zu ¢ E(G) for u € V(G)—(V(Mg)USU{x1, z2}).
So Ng(z) CV(Mg) U {z1,z2}

By Equation mg =l+1—-mg—s=1—1. By Observation G =
G — V(Mg) is 1-extendable. By Theorem [3.2(b), G’ is 2-connected. Therefore,
Nei(2) = {1, 22} and deger(2) = 2. By Lemma[4.7] there is a vertex u € V(G)
such that uz ¢ E(G’) and G’ — {u, z} contains a perfect matching, say Fg. We
now consider G. Since | >4, mz =1 and § = s = 1, it follows that | — (mg+35) =
[—2>2. By Lemma (b), G =G- V(MgUS) is 1-factor-critical. Then there
is a perfect matching in G - {a}, say Fz. Hence, M UFqUFgU{uu} is a perfect
matching in GG containing M as required. This completes the proof of Subcase
2.3.2. and thus completes the proof of our theorem. O

mg=Il+1-mg—s=1—s5s<1-3. ByObservati G—-V(Mg) is
)

We now turn our attention to the extendability of GG when G or G is I-
extendable for 1 < [ < 3. We first provide an example of a graph G where
both G and G are l-extendable but GG is not 2-extendable. Let H be a 1-
extendable graph such that H is k-extendable for some integer k& > 1. By Theorems
and H exists. We now construct a 1l-extendable graph G from H.
Let P = uq,ug,us,us be a path of order 4 and put V(G) = V(H) U V(P) and
E(G) = E(H)UV(P)U{uih,ushlh € V(H)}. It is routine to verify that G and
G are l-extendable. However, GG is not 2-extendable since {u;,u3us} cannot
be extended to a perfect matching in GG.

We now scope our attention to extendability of GG where G is I;-extendable
and G is ly-extendable for I; > 2 and Iy > 2. We first consider the case I; = 2
and ly > 2. We begin with the following lemma. Recall that if ¢ # {x1,...,2:} C
V(G), then {Z1,...,Z:} C V(G) is denoted by X and vice versa.

Lemma 4.11. Let G and G be 2-extendable non-bipartite graphs of order p > 10
and let M = {mlxg,glgg,zz} be a matching of size 8 in GG, where iacl,xg,z} C
V(G) and {§1,92,2} C V(G). Then there is a perfect matching in GG containing
M.

Proof. Suppose to the contrary that there is no perfect matching in GG containing
M. By Theorem there is a cutset T' C V(GG) — V(M) such that ¢,(GG —
(V(M)UT)) > |T|. By parity, ¢,(GG—(V(M)UT)) > |T|+2. Put S = TUV(M).
S0 ¢o(GG—S8) > |S|—4. Put A = SNV(G), B = SNV (G) and C = V(G)—(AUB).
Observe that |A| > 3 and |B| > 3.

By Theorem G and G are bicritical. Thus, by Theorem co(G—A) <
|A] — 2 and ¢,(G — B) < |B| — 2. We first show that ¢,(G — A) = |A| — 2 and
¢o(G — B) = | B| — 2. Suppose to the contrary that c,(G — A) < |A| —2. By parity,
co(G — A) < |A| — 4. Tt then follows by Lemma that ¢,(GG — S) < ¢, (G —
A) +¢,(G — B) < |A| + |B| — 6, contradicting the fact that c¢,(GG — S) > |S| — 4.
Hence, ¢,(G — A) = |A| — 2. Similarly, ¢,(G — B) = |B| — 2.
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Since G and G are 2-extendable, by Theorem b)7 G[A] and G[B] contain
at most one independent edge. Because {z1,72,2} C A and {ij1,¥»2,2} C B,
G[A] and G[B] contain exactly 1 independent edge. By Lemma G — A and
G — B contain no even components. If AU B # V(G), then, by Lemma
co(GG — 8) = ¢,(GG — (AU B)) < |A| +|B| — 6 = |S| — 6, again a contradiction.
Hence, AU B = V(G). Observe that if ¢,(G — A) > 4, G[B] = G — A contains at
least 4 independence vertices and thus G[B] contains a matching of size at least
two, a contradiction. Hence, ¢,(G — A) < 3. Similarly, ¢,(G — B) < 3 and each
component of G — B is singleton otherwise G[A] = G — B contains at least 2
independent edges, a contradiction. Therefore, ¢,(G[B — A]) = ¢,(G — A) < 3 and
G[A—B] = c,(G—B) < 3. Since ¢,(G— A) = |A| —2 and ¢,(G — B) = |B| - 2, it
follows that |A| = 2+ ¢,(G — A) <5 and |B| = |B| = 2+ ¢,(G — B) < 5. Because
z€ANB,|JAUB|=|A|+|B| - |ANB| <5+4+5—1 <9, contradicting the fact
that |V (G)| = p > 10. This completes the proof of our lemma. O

_ The next theorem shows that if G is a 2-extendable non-bipartite graph and
G is a l-extendable non-bipartite graph of order p > 10 and [ > 2, then GG is
3-extendable.

Theorem 4.12. Let G be a 2-extendable non-bipartite graph of order p > 10.
If G is l-extendable non-bipartite for some positive integer | > 2, then GG is
3-extendable.

Proof. By Theorem ), G is 2-extendable non-bipartite graph. Let M be a
matching of size 3 in GG. Put Mg = M N E(G), Mg = M N E(G) and M,z =
M — (Mg U Mg). Further, put mg = |Mg|,mg = |Mg| and mog = [Mqg|. If
Mmeg = 0 or mge = 3, then, by Lemma there is a perfect matching in GG
containing M as required. So we now consider 1 < m & < 2. We distinguish 2
cases according to m.g.

Case 1: mggz = 1. If mg = mg = 1, then, by Lemma there is a
perfect matching in GG containing M as required. So we suppose without loss of
generality that mg = 2, m= = 0. By applying similar arguments as in the proof
of Subcase 2.1 in Theorem there is a perfect matching in GG containing M
as required.

Case 2: m,= = 2. By applying similar arguments as in the proof of Case
1 in Theorem there is a perfect matching in GG containing M as required.
This completes the proof of our theorem. O

We point out here that the bound on the order of graphs in Theorem
is best possible and the hypothesis that G and G are non-bipartite is essential.
Let G be a 3-regular bipartite graph of order 8 with bipartition (X,Y) where
X ={al <i<4}and Y = {y|1 <i <4} and BE(G) = {my|L < i #j < 4},
It is not difficult to show that G = K4 x K5 and both G and G are 2-extendable.
However, GG is not 3-extendable since {x1Z1, 2y1, J2¥3 } cannot be extended to
a perfect matching in GG.
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We finally turn our attention to 3-extendable graphs.

Lemma 4.13. Suppose G and G are 3-extendable non-bipartite graphs of or-
der p > 8. Let {z,y,21,22,23} C V(G) and {z1, 72,23} C V(G) such that
G[{z1,292,23}] = Ks. Further, let M = {xy, 2121, 22%2,2323} be a matching of

size 4 in GG. Then there is a perfect matching in GG containing M.

Proof. Suppose there is no perfect matching in GG — V(M). Then by Theorem
there is a cutset T C V(GG) — V(M) such that ¢,(GG — (T UV (M))) > [T].
By parity, ¢,(GG — (TUV(M))) > |T| +2. Put S=TUV(M). So ¢,(GG - S) >
|S| — 6. Since GG contains a perfect matching, by Theorem co(GG—S) < |5
Thus |S| — 6 < (GG —S) < |S|. Put A = SNV(G), B=SnV(G) and
C=V(G) - (AuUB).

Clearly, {z1, 22,23} € AN B. By Lemma (b), co(GG — 8) < |S| — 6. So
co(GG — S) = |S| — 6.

Since zy, 2122 € E(G), by Lemma co(G — A) < |A| — 4. On the other
hand, since G is 3-extendable non-bipartite graph, by Theorems a) and
G is bicritical. Therefore, by Theorem co(G — B) < |B| — 2. We first show
that ¢,(G — A) = |A| — 4 and ¢,(G — B) = |B| — 2. Suppose to the contrary
that co(G — A) # |A| — 4. By parity, ¢,(G — A) < |A] — 6. By Lemma [4.8(a),
co(GG — S) = ¢,(GG — (AU B)) < |A| — 6 +|B| — 2 = |S| — 8, a contradiction.
Hence, c,(G — A) = |A| —4. By similar argument, ¢,(G — B) = |B|—2. By Lemma
G — A contains no even components. We next show that G’ — B contains no
even components. Suppose this is not the case. Then G — B contains an even

component, say D. Let bd € E(G) such that b € B and d € V(D). By Corollary
G =G- {b, d} is 2-extendable non-bipartite. By T heorem G is bicritical.
Since ¢,(G — (BU{d})) = |B| - 1, co(é/ — (B - {b})) = | B — {b}|, contradicting
Theorem Hence, G — B contains no even components.

If AU B # V(G), then by Lemma co(GG — 8) = ¢,(GG — (AU B)) <
co(G—A)+c,(G—B)—2 = |A|+|B|—8 = |S|—8, a contradiction. So AUB = V(G).

Note that G[A — B] contains the edge zy. We first show that G[A — B
contains exactly one independent edge. Suppose G[A — B] contains 2 independent
edges. Since z129 € E(G[AN B]), there are at least 3 independent edges in G[A].
Therefore, by Lemma [4.4] ¢,(G — A) < |A| — 6, contradicting the fact that ¢,(G —
A) = |A| — 4. Hence, G[A — B] contains exactly one independent edge. We next
show that G[B] contains no edges. Suppose to the contrary that B contains an
edge @iue. By Corollary G — {1, 2} is 2-extendable non-bipartite graph.
By Theorem G — {uy, Uz} is bicritical. Then, by Theorem co(G — B) =
co((G = {1, u2}) — (B — {u1,u2})) < |B — {1, u2}| — 2 = |B| — 4, contradicting
the fact that ¢,(G — B) = |B| — 2. Hence, G[B] contains no edges and G[B] is
independent. So G[B] and G[B — A] are clique and thus ¢,(G[B — 4]) < 1.

Therefore, |A| —4 = ¢,(G — A) = ¢,(G[B — A]) < 1. So |A| < 5. If G[A — B]
contains at least 4 components, then G[A — B] contains at least two independent
edges. But this contradicts the fact that G[A— B] contains exactly one independent

edges. Hence, G[A— B] contains at most 3 components. Therefore, c,(G[A—B]) =
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co(G—B) = |B|—2 < 3. Hence, |B| = |B| < 5. It follows that |V (G)| = |[AUB| =
|A|+ |B|—|ANB| <545 —3=71, a contradiction. This proves our lemma. [

Lemma 4.14. Suppose G and G are 3-extendable non-bipartite graphs of or-
der p > 8. Let {z,y,21,20,23} C V(G) and {z1,22,23} C V(G) such that
G[{z1,292,23}] 2 Ks3. Further, let M = {xy, 2121, 20202, 2323} be a matching of

size 4 in GG. Then there is a perfect matching in GG containing M.

Proof. Suppose M = {xy, 2121, 2222, 2323} where z,y € V(G). Since G[{z1, 22, 23}]
# K3, we may suppose that z122 ¢ E(G). Since zy € E(G), by Lemma a),
there is a perfect matching in G — {x,y, 21,22}, say Fg. Let zsw € Fg. Again,
because 2%, € E(G), by Lemma b‘za), there is a perfect matching in G —
{z1, 22, w, Z3}, say Fg. Thus MU (Fg — {z3w}) U FgU{ww} is a perfect matching
in GG containing M as required. This completes the proof of our lemma. O

Theorem 4.15. Let G be a 3-extendable non-bipartite graph of order p > 8.
If G is l-extendable non-bipartite for some positive integer | > 3, then GG is
4-extendable.

Proof. By Theorem b)7 G is 3-extendable non-bipartite graph. Let M be
a matching of size 4 in GG. Put Mg = M N E(G), Mg = M N E(G) and
Mgz = M — (Mg U Mg). Without loss of generallity, suppose |Mg| > |Mg]. If
M & = ¢ or Mz = M, then, by Lemma there is a perfect matching in GG
containing M as required. So we now suppose that M.z # ¢ and M,z # M.
Therefore, 1 < |Mqg| < 3. We distinguish 3 cases according to |M &/

Case 1: |M | = 1. By applying similar arguments as in the proof of Subcase
2.1 (if [M#| = 0) or Subcase 2.3 (if |[Mg| =1) in Theorem there is a perfect
matching in GG containing M as required.

Case 2: |M | = 2. By applying similar arguments as in the proof of Case 1
in Theorem there is a perfect matching in GG containing M as required.

Case 3: [M;g| = 3. Then, [Mg| =1 and |Mg| = 0. So, by Lemmas [£.13| and
there is a perfect matching in GG containing M as required.

This completes the proof of our theorem. O
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