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1 Introduction

Let H be a real Hilbert space equipped with inner product 〈·, ·〉 and its induced
norm ‖ · ‖. Let K be a nonempty closed convex subset of H and A : H → H be
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a nonlinear operator. In 1980, Kinderlehrer and Stampacchia [1] initially studied
the following variational inequality problem, V IP (A,K), which is a problem of
finding u∗ ∈ K such that

〈A(u∗), v − u∗〉 for all v ∈ K. (1.1)

It is well known that for a closed convex subset K of H if A : H → H is η-strongly
monotone; that is, there exists η > 0 such that

〈A(x) −A(y), x− y〉 ≥ η‖x− y‖2

for all x, y ∈ H ; and κ-Lipschitz continuous; that is,

‖A(x)−A(y)‖ ≤ κ‖x− y‖

for a positive constant κ and x, y ∈ H , then the existence and uniqueness of the
solution of V IP (A,K) is guaranteed, see [1]. It is worth mentioning that the prob-
lem V IP (A,K) has been extensively studied because it can be applied to many
diverse disciplines such as systems of nonlinear equations, necessary optimality
conditions for optimization problems, complementarity problems, mathematical
programmings and many others. In order to solving the V IP (A,K), a number
of solution methods have been presented. Among them, in 2001, Yamada [2] pre-
sented the hybrid steepest descent method for solving the problem V IP (A,K) as
follows: Let T : H → H be a nonexpansive mapping, that is, for every x, y ∈ H

‖T (x)− T (y)‖ ≤ ‖x− y‖,

with Fix(T ) 6= ∅. Suppose that a mapping A : H → H is κ-Lipschitz continuous
and η-strongly monotone over H . By choosing µ ∈ (0, 2η

κ2 ) and let any sequence
{λn} ⊂ (0, 1) satisfying the following conditions:

(W1) limn→∞ λn = 0,

(W2)
∑∞

n=0 λn = +∞,

(W3) either limn→∞
λn−λn+1

λ2
n+1

= 0 or
∑∞

n=0 |λn − λn+1| < +∞,

the sequence {xn} generated, with arbitrary x0 ∈ H , by

xn+1 = Txn − λn+1µA(Txn), n ≥ 0. (1.2)

Yamada then proved that such sequence {xn} converges to the unique solution of
the V IP (A,F ix(T )), where Fix(T ) := {z ∈ H : z = T (z)}.

After Yamada’ s hybrid steepest descent method for solving variational in-
equalities was presented, there are many researches on this aspect; see, e.g. [3, 4,
5, 6, 7, 8, 9]

One of the interesting work is the paper of Xu and Kim [3], in 2003, they
replaced the condition (W3) of Yamada [2] by the following condition
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(W3)′ limn→∞
λn

λn+1
= 1, or equivalently, limn→∞

λn−λn+1

λn+1
= 0.

Then, they proved the strong convergence theorem for the hybrid steepest descent
method (1.2) under the condition (W1), (W2) and (W3)′.

Furthermore, in 2006, Zeng et al.[5] introduced the following relaxed hybrid
steepest descent algorithm:

Algorithm ZAW. Let {αn} ⊂ [0, 1), {λn} ⊂ (0, 1) and take a fixed number
µ ∈ (0, 2η/κ2). Starting with an arbitrary initial guess x0 ∈ H , one can generate
a sequence {xn} by following iterative scheme:

xn+1 = αnxn + (1− αn)[Txn − λn+1µA(Txn)] n ≥ 0. (1.3)

Then, under some suitable imposed control conditions, Zeng et al.[5] proved the
strong convergence result of {xn} to the unique solution of the variational inequal-
ity V IP (A,F ix(T )).

On the other hand, let us now consider the concept of a one-parameter strongly
continuous cosine family. Recall that the problem of convergence of the one-
parameter semigroups {T (t) : t ∈ [0,∞)} was raised by Brezis [10] who studied, in
fact, the behavior as t → 1 of the solutions of the first order differential inclusion

du

dt
∈ −A(u(t)), for a.e. t ∈ [0,∞),

where A is the infinitesimal generator operator of the one-parameter operator
semigroups {T (t) : t ∈ [0,∞)} of linear operator on a Hilbert space, see [11] for
more details. Consequently, the several researches about convergence of nonlinear
semigroup operators are offered in many aspects.

It is akin to one-parameter semigroup, to investigate the abstract second-order
differential inclusion

d2u

dt2
∈ A(u(t)), for a.e. t ∈ [0,∞),

the one-parameter cosine family {C(t) : t ∈ R} is considered. One can directly link
to the solutions of such problem, where A is the infinitesimal generator operator
of the one-parameter cosine family {C(t) : t ∈ R} of linear operator, see [12, 13]
for more details.

Of course, the fact that the concept of one-parameter cosine family also have
backgrounds in differential equations and evolutionary equations, very recently,
Xiao et al.[13] introduced the concept of cosine family of nonlinear operator. They
proposed some important properties of cosine family and, moreover, they proved a
series of convergence theorems such as implicit Ishikawa iterative method, explicit
Ishikawa iterative method, and Moudafi’ s viscosity approximation method for
nonexpansive cosine families under some suitable conditions in Hilbert spaces.

Motivated by all above results, in this paper we introduce a hybrid steepest
descent algorithm for nonexpansive cosine families and we show a strong conver-
gence result for our Algorithm. In fact, we will prove that under some suitable
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assumptions, the sequence {xn} generated by the Algorithm converges strongly
to a unique solution of the variational inequality V IP (A,F ix(C)), where Fix(C)
denoted the common fixed point set of a nonexpansive cosine family {C(t)}.

2 Preliminaries

Throughout this paper unless otherwise stated, let H be a real Hilbert space
with inner product 〈·, ·〉 and norm ‖ · ‖. Let K be a nonempty closed convex
subset of H . We denote the strong convergence and the weak convergence of {xn}
to x ∈ H by xn → x and xn ⇀ x, respectively.

Follows from Xiao et al. [13], we give the concept of cosine family of nonlinear
operators and some its properties as follows.

Definition 2.1 ([13]). A one-parameter family {C(t) : t ∈ R} of operators on K
is said to be strongly continuous cosine family if the following conditions hold:

(C-1) C(0)x = x for all x ∈ K, and C(t)θ = θ for all t ∈ R;

(C-2) C(t+ r) + C(t− r) = 2C(t)C(r), for all t, r ∈ R;

(C-3) C(t+ r)− C(t− r) =
∫ t+r

t−r
dτ

∫ τ

0
C(µ)dµ, for all t, r ∈ R;

(C-4) {C(t)} is strongly continuous on K, i.e., for each x ∈ K, the operator C(·)x
from R into K is continuous.

A strongly continuous cosine family (in short, cosine family) {C(t)} is called non-
expansive if for each t ∈ R,

‖C(t)x− C(t)y‖ ≤ ‖x− y‖ for all x, y ∈ K.

If {C(t)} is a cosine family, then {S(t)} is the associated sine family defined by

S(t) =
∫ t

0 C(τ)dτ , for all t ∈ R.

A point x∗ ∈ K is said to be common fixed point of the cosine family {C(t)} if
C(t)x∗ = x∗ for every t ∈ R and we denote the common fixed point set of {C(t)}
by Fix(C), that is Fix(C) :=

⋂
t∈R

Fix(C(t)).

The following lemmas are convenient for our proof.

Lemma 2.2 ([13]). Let {tn} be a sequence in [0,∞) such that 0 = lim infn→∞ tn <
lim supn→∞ tn, let g : [0,∞) → [0,∞) be a function such that limn→∞ g(tn) = 0.
Suppose either lim infn→∞(tn+1− tn) = 0 or lim infn→∞(tn− tn+1) = 0. Then for
each i ∈ N, there exists a subsequence {nk} of {n} such that

lim
k→∞

tnk
= lim

k→∞

g(tnk
)

(tnk
)i

= 0.



Hybrid Steepest Descent Method of One-parameter ... 677

Lemma 2.3 ([13]). Let K be a nonempty closed convex subset of a real Hilbert
space H and {C(t)} be a nonexpansive cosine family. Let {xn} be a sequence in
K, q ∈ K and {tn} be a sequence satisfying 0 < tn < t for all n ∈ N. Then,

‖xn − C(t)q‖ ≤
t2

t2n
‖xn − C(tn)xn‖+ ‖xn − q‖+ 2t sup

0≤r≤tn

∥∥S(r
2
)q
∥∥.

Now, we present a useful statement which appears in the proof of main The-
orems of Xiao et al. [13]. For sake of handiness, we state it again in the following
lemma.

Lemma 2.4 ([13]). Let {xn} be a bounded sequence in a nonempty closed con-
vex subset K of a real Hilbert space H and assume that 0 = lim infn→∞ tn <
lim supn→∞ tn and lim infn→∞(tn+1 − tn) = 0. If limn→∞ ‖xn − C(tn)xn‖ = 0,
then ωw(xn) ⊂ Fix(C), where ωw(xn) is denoted for the weak cluster set of the
sequence of {xn}.

Proof. We first note from our assumptions and Lemma 2.2 that there exists a
subsequence {nk} of {n} such that

lim
k→∞

tnk
= lim

k→∞

‖xnk
− C(tnk

)xnk
‖

(tnk
)i

= 0, ∀i ∈ N. (2.1)

Let x̃ be a weak cluster point of {xnk
}. Now, we will show that x̃ ∈ Fix(C) =⋂

t∈R
Fix(C(t)). If t = 0, then clearly that x̃ ∈ Fix(C(0)). Since C(t) = C(−t),

we can assume that t > 0. Since limk→∞ tnk
= 0, we can assume without loss of

generality that tnk
< t for all k ∈ N. By Lemma 2.3, we have

‖xnk
− C(t)x̃‖ ≤

t2

t2nk

‖xnk
− C(tnk

)xnk
‖+ ‖xnk

− x̃‖+ 2t sup
0≤r≤tnk

‖S(
r

2
)x̃‖.

Thus (2.1) implies that

lim sup
k→∞

‖xnk
− C(t)x̃‖ ≤ lim sup

k→∞
‖xnk

− x̃‖.

Since {xnk
} weakly converges to x̃, we have

‖x̃− C(t)x̃‖2 + lim sup
k→∞

‖xnk
− x̃‖2 = lim sup

k→∞
‖xnk

− C(t)x̃‖2 ≤ lim sup
k→∞

‖xnk
− x̃‖2.

and then ‖x̃−C(t)x̃‖ = 0. This implies that x̃ ∈ Fix(C(t)) for all t > 0. Therefore
x̃ ∈ Fix(C).

Lemma 2.5 ([14]). Let {an}n∈N be a sequence of nonnegative real numbers such
that

an+1 ≤ (1− βn)an + βnδn + γn, n ≥ 0,

where {βn}n∈N ⊂ (0, 1), {δn}n∈N ⊂ R and {γn}n∈N ⊂ [0,+∞) such that
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(i)
∑∞

n=1 βn = +∞;

(ii) lim supn→∞ δn ≤ 0;

(iii)
∑∞

n=1 γn < +∞.

Then limn→∞ an = 0.

Next, let {C(t)} be a nonexpansive cosine family on H with Fix(C) 6= ∅ and
A : H → H be κ-Lipschitzian and η-strongly monotone. Given λ ∈ (0, 1), µ > 0,
and t ∈ [0,∞), we define the mapping T λ : H → H by

T λ(x) = C(t)x − λµA(C(t)x), for all x ∈ H. (2.2)

Thus, we have the following lemma which its proof is akin to the proof of
Lemma 3.1 in Yamada [2]. For the sake of completeness, we present its proof
again.

Lemma 2.6. For any µ ∈ (0, 2η
κ2 ), λ ∈ (0, 1) and t ∈ [0,∞), we have

‖T λx− T λy‖ ≤ (1− λτ)‖x − y‖ for all x, y ∈ H, (2.3)

where τ := 1−
√
1 + µ2κ2 − 2µη ∈ (0, 1].

Proof. First, we consider that for every u, v ∈ H ,

‖(I − µA)u − (I − µA)v‖2 = ‖(u− v)− µ(Au −Av)‖2

= ‖u− v‖2 + µ2‖Au−Av‖2 − 2µ〈u− v,Au −Av〉

≤ ‖u− v‖2 + µ2κ2‖u− v‖2 − 2µη‖u− v‖2

= (1 + µ2κ2 − 2µη)‖u− v‖2.

Using the above inequality and the fact that {C(t)} is a nonexpansive cosine family,
we have for all x, y ∈ H ,

‖T λx− T λy‖ = ‖[C(t)x− λµA(C(t)x)] − [C(t)y − λµA(C(t)y)]‖

≤ λ‖(I − µA)C(t)x − (I − µA)C(t)y‖ + (1− λ)‖C(t)x − C(t)y‖

≤ λ
√
1 + µ2κ2 − 2µη‖x− y‖+ (1− λ)‖x− y‖

= (1− λτ)‖x − y‖.

Remark 2.7. It is clearly that τ ∈ (0, 1] alway exists. Indeed, we know that A
is κ-Lipschitzian and η-strongly monotone, the Cauchy-Schwarz inequality gives
us that 0 < η ≤ κ and furthermore we have 0 < 2η

κ2 . So, we can choose µ ∈

(0, 2η
κ2 ). We see that 0 ≤ (1 − µκ)2 ≤ 1 + µ2κ2 − 2µη < 1, which implies that

0 < 1−
√
1 + µ2κ2 − 2µη ≤ 1
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3 Hybrid Steepest Descent Method

Let {C(t)} be a nonexpansive cosine family on H with Fix(C) 6= ∅ and A :
H → H be κ-Lipschitzian and η-strongly monotone. For each given ξ ∈ (0, 1) we
let µ ∈ (0, 2η/κ2), λ ∈ (0, 1) and define a mapping Γ : H → H by

Γx = ξx+ (1− ξ)(C(t)x − λµA(C(t)x)), x ∈ H. (3.1)

Then it is not difficult to see that Γ is a contraction. As a matter of fact, using
Lemma 2.6 we derive that for every x, y ∈ H ,

‖Γx− Γy‖ = ‖ξ(x− y) + (1− ξ)(T λx− T λy)‖

≤ ξ‖x− y‖+ (1− ξ)(1 − λτ)‖x− y‖.

Since ξ + (1− ξ)(1− λτ) ∈ (0, 1), the Banach Contraction Principle will therefore
implies that there exists a unique fixed point of Γ in H .

We now propose a hybrid steepest descent algorithm for finding the solution
of the variational inequality as follows.

Algorithm I. Let {αn} ⊂ [0, 1), {λn} ⊂ (0, 1) and {tn} ⊂ [0,∞). Choose
µ ∈ (0, 2η

κ2 ). Starting with an arbitrary initial guess x1 ∈ H , let the sequence {xn}
generated by the following iterative scheme

xn+1 = αnxn + (1− αn)[C(tn)xn − λn+1µA(C(tn)xn)], n ≥ 1. (3.2)

The following result shows the strong convergence of Algorithm I.

Theorem 3.1. Let the sequence {xn} be generated by Algorithm I and assume the
following conditions hold:

(i) 0 = lim infn→∞ αn ≤ lim supn→∞ αn < 1 and
∑∞

n=1 |αn+1 − αn| < ∞;

(ii) limn→∞ λn = 0,
∑∞

n=1 λn = ∞ and limn→∞
λn

λn+1
= 1;

(iii) 0 = lim infn→∞ tn < lim supn→∞ tn and lim infn→∞(tn+1 − tn) = 0.

If
∑∞

n=1 ‖C(tn+1)xn − C(tn)xn‖ < ∞, then the sequence {xn} converges strongly
to the unique solution of the variational inequality problem V IP (A,F ix(C)).

Proof. We shall divide the proof into several steps.

Step 1. {xn} is bounded.
Indeed, for each z ∈ Fix(C), by Lemma 2.6 we have

‖xn+1 − z‖ ≤ αn‖xn − z‖+ (1 − αn)‖T
λn+1xn − z‖

≤ αn‖xn − z‖+ (1 − αn)[‖T
λn+1xn − T λn+1z‖+ ‖T λn+1z − z‖]

≤ αn‖xn − z‖+ (1 − αn)[(1 − λn+1τ)‖xn − z‖+ λn+1µ‖A(z)‖].

LetM > 0 be such thatM ≥ max{‖x0−z‖, µ
τ
‖A(z)‖}. By the induction argument,

we get

‖xn − z‖ ≤ M ∀n ≥ 1.
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Thus, {xn} is a bounded sequence, so are {C(tn)xn} and {A(C(tn)xn)}.

Step 2. ‖xn − C(tn)xn‖ −→ 0 as n → ∞.
In fact, we now consider the following equalities.

xn+1 − xn = αnxn − αn−1xn−1 + (1 − αn)T
λn+1xn − (1− αn−1)T

λnxn−1

= αnxn − αnxn−1 + αnxn−1 − αn−1xn−1 + (1− αn)T
λn+1xn

−(1− αn)T
λn+1xn−1 + (1 − αn)T

λn+1xn−1 − (1− αn−1)T
λnxn−1

= αn(xn − xn−1) + (αn − αn−1)xn−1 + (1 − αn)(T
λn+1xn

−T λn+1xn−1) + (1− αn)T
λn+1xn−1 − (1− αn−1)T

λnxn−1

= αn(xn − xn−1) + (αn − αn−1)xn−1 + (1 − αn)(T
λn+1xn

−T λn+1xn−1) + (1− αn)(C(tn)xn−1 − λn+1µA(C(tn)xn−1))

−(1− αn−1)(C(tn−1)xn−1 − λnµA(C(tn−1)xn−1))

= αn(xn − xn−1) + (αn − αn−1)xn−1 + (1 − αn)(T
λn+1xn

−T λn+1xn−1) + (1− αn)C(tn)xn−1 − (1− αn−1)C(tn−1)xn−1

−(1− αn)λn+1µA(C(tn)xn−1) + (1− αn−1)λnµA(C(tn−1)xn−1)

(3.3)

We observe that
(1− αn)C(tn)xn−1 − (1− αn−1)C(tn−1)xn−1

= (1− αn)C(tn)xn−1 − (1− αn)C(tn−1)xn−1

+(1− αn)C(tn−1)xn−1 − (1 − αn−1)C(tn−1)xn−1

= (1− αn)[C(tn)xn−1 − C(tn−1)xn−1]

+(αn−1 − αn)C(tn−1)xn−1, (3.4)

and
(1− αn)λn+1µA(C(tn)xn−1)− (1− αn−1)λnµA(C(tn−1)xn−1)

= (1 − αn)λn+1µA(C(tn)xn−1)− (1− αn)λn+1µA(C(tn−1)xn−1)

+(1− αn)λn+1µA(C(tn−1)xn−1)− (1 − αn−1)λnµA(C(tn−1)xn−1)

= (1 − αn)λn+1µ[A(C(tn)xn−1)−A(C(tn−1)xn−1)]

[(1 − αn)λn+1 − (1 − αn−1)λn]µA(C(tn−1)xn−1). (3.5)

By using (3.4) and (3.5), the inequality (3.3) becomes

xn+1 − xn = αn(xn − xn−1) + (αn − αn−1)xn−1

+(1− αn)(T
λn+1xn − T λn+1xn−1) + (1− αn)[C(tn)xn−1

−C(tn−1)xn−1] + (αn−1 − αn)C(tn−1)xn−1

−(1− αn)λn+1µ[A(C(tn)xn−1))−A(C(tn−1)xn−1)]

−[(1− αn)λn+1 − (1− αn−1)λn]µA(C(tn−1)xn−1) (3.6)
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This yields that

‖xn+1 − xn‖ ≤ αn‖xn − xn−1‖+ |αn − αn−1|‖xn−1‖

+(1− αn)‖T
λn+1xn − T λn+1xn−1‖

+(1− αn)‖C(tn)xn−1 − C(tn−1)xn−1‖

+|αn−1 − αn|‖C(tn−1)xn−1‖

+(1− αn)λn+1µ‖A(C(tn)xn−1)−A(C(tn−1)xn−1)‖

+|(1− αn)λn+1 − (1− αn−1)λn|µ‖A(C(tn−1)xn−1)‖

≤ αn‖xn − xn−1‖+ |αn − αn−1|‖xn−1‖

+(1− αn)(1 − λn+1τ)‖xn − xn−1‖

+(1− αn)‖C(tn)xn−1 − C(tn−1)xn−1‖

+|αn−1 − αn|‖C(tn−1)xn−1‖

+(1− αn)λn+1µκ‖C(tn)xn−1 − C(tn−1)xn−1‖

+|(1− αn)λn+1 − (1− αn−1)λn|µ‖A(C(tn−1)xn−1)‖

≤ (1− λn+1τ(1 − αn))‖xn − xn−1‖

+|αn − αn−1|(‖xn−1‖+ ‖C(tn−1)xn−1‖)

+(1− αn)‖C(tn)xn−1 − C(tn−1)xn−1‖

+(1− αn)λn+1µκ‖C(tn)xn−1 − C(tn−1)xn−1‖

+|(1− αn)λn+1 − (1− αn−1)λn|µ‖A(C(tn−1)xn−1)‖

≤ (1− λn+1τ(1 − αn))‖xn − xn−1‖+ |αn − αn−1|M̂

+(1 + λn+1µκ)‖C(tn)xn−1 − C(tn−1)xn−1‖

+|(1− αn)λn+1 − (1− αn−1)λn|µM̂,

≤ (1− λn+1τ(1 − αn))‖xn − xn−1‖

+λn+1τ(1 − αn)
µM̂

τ

∣∣∣1− (1− αn−1)

(1− αn)

λn

λn+1

∣∣∣

+|αn − αn−1|M̂ + (1 + λµκ)‖C(tn)xn−1 − C(tn−1)xn−1‖,

where M̂ > max{‖xn‖+‖C(tk)xn‖, ‖A(C(tk)xn)‖} for all n, k ≥ 0, and λn ≤ λ for
some λ > 0. By using (i) and (ii), we have

∑∞
n=1 λn+1τ(1−αn) ≥

∑∞
n=1 λn+1τ(1−

a) = ∞.
On the other hand, set

δn :=
µM̂

τ

∣∣∣1− (1− αn−1)

(1− αn)

λn

λn+1

∣∣∣ ≤ µM̂

τ

∣∣∣1− λn

λn+1

∣∣∣ → 0.

Moreover, set γn := |αn − αn−1|M̂ + (1 + λµκ)‖C(tn)xn−1 − C(tn−1)xn−1‖, we
have from (i) and (iii) that

∑∞
n=1 γn < ∞. Now, applying Lemma 2.5, we obtain

that

‖xn+1 − xn‖ −→ 0 as n → ∞. (3.7)
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We note that

‖xn+1 − C(tn)xn‖ = ‖αn(xn − C(tn)xn) + (1 − αn)(T
λn+1xn − C(tn)xn)‖

≤ αn‖xn − C(tn)xn‖+ (1− αn)λn+1µ‖A(C(tn)xn)‖

≤ αn‖xn − C(tn)xn‖+ λn+1µ‖A(C(tn)xn)‖

−→ 0 (n → ∞),

which gives us that

‖xn − C(tn)xn‖ ≤ ‖xn+1 − xn‖+ ‖xn+1 − C(tn)xn‖ −→ 0 as n → ∞. (3.8)

Step 3. lim infn→∞〈C(tn)xn−x∗, A(x∗)〉 ≥ 0, where x∗ is a unique solution of
V IP (A,F ix(C)). To prove this, we pick a subsequence {xnj

} of {xn} such that

lim inf
n→∞

〈C(tn)xn − x∗, A(x∗)〉 = lim
j→∞

〈C(tnj
)xnj

− x∗, A(x∗)〉. (3.9)

Since {xnj
} is bounded, by Lemma 2.4, it has a weakly convergent subsequence.

We may assume without loss of generality that xnj
⇀ x̄ ∈ Fix(C). We note from

(3.8) that

lim inf
n→∞

〈C(tn)xn − x∗, A(x∗)〉 = lim
j→∞

〈C(tnj
)xnj

− x∗, A(x∗)〉

= lim
j→∞

〈C(tnj
)xnj

− xnj
, A(x∗)〉

+ lim
j→∞

〈xnj
− x∗, A(x∗)〉

= 〈x̄ − x∗, A(x∗)〉 ≥ 0.

Step 4. Finally, we prove that xn −→ x∗ in norm.
Indeed, we now consider

‖xn+1 − x∗‖2 ≤ αn‖xn − x∗‖2 + (1 − αn)‖T
λn+1xn − x∗‖2

≤ αn‖xn − x∗‖2 + (1 − αn)‖T
λn+1xn − T λn+1x∗‖2

+2〈T λn+1xn − T λn+1x∗, T λn+1x∗ − x∗〉

= αn‖xn − x∗‖2 + (1 − αn)(1− λn+1τ)‖xn − x∗‖2

+2λn+1µ[〈C(tn)xn − x∗,−A(x∗)〉

+λn+1µ〈A(C(tn)xn), A(x
∗)〉]

≤ (1− λn+1τ(1− αn))‖xn − x∗‖2

+λn+1τ(1 − αn)
2µ

(1 − a)τ

[
〈C(tn)xn − x∗,−A(x∗)〉

+λn+1µ〈A(C(tn)xn), A(x
∗)〉

]
.
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We note that
lim supn→∞

2µ
(1−a)τ

(
〈C(tn)xn − x∗,−A(x∗)〉+ λn+1µ〈A(C(tn)xn), A(x

∗)〉
)

≤ lim sup
n→∞

2µ

(1 − a)τ
〈C(tn)xn − x∗,−A(x∗)〉

+ lim sup
n→∞

2λn+1µ
2

(1− a)τ
〈A(C(tn)xn), A(x

∗)〉

≤ lim sup
n→∞

2µ

(1 − a)τ
〈C(tn)xn − x∗,−A(x∗)〉

+ lim sup
n→∞

2λn+1µ
2

(1− a)τ
‖A(C(tn)xn)‖‖A(x

∗)‖

≤ 0.

By applying Lemma 2.5 again, we conclude that ‖xn − x∗‖ −→ 0 as n → ∞. The
proof is complete.

In particular, if we set αn = 0 for all n ≥ 1, then we have the following
corollary.

Corollary 3.2. Let the sequence {xn} be generated by the iterative scheme

xn+1 = C(tn)xn − λn+1µA(C(tn)xn), n ≥ 1, (3.10)

with an arbitrary initial guess x1 ∈ H, where {λn} ⊂ (0, 1), {tn} ⊂ [0,∞) and
µ ∈ (0, 2η

κ2 ). Assume the following conditions hold:

(i) limn→∞ λn = 0,
∑∞

n=1 λn = ∞ and limn→∞
λn

λn+1
= 1;

(ii) 0 = lim infn→∞ tn < lim supn→∞ tn and lim infn→∞(tn+1 − tn) = 0.

If
∑∞

n=1 ‖C(tn+1)xn − C(tn)xn‖ < ∞, then the sequence {xn} converges strongly
to the unique solution of the variational inequality problem V IP (A,F ix(C)).

Remark 3.3. It should be note that the condition limn→∞
λn

λn+1
= 1 in Corollary

3.2 may be replaced by
∑∞

n=1 |λn+1 − λn| < ∞ and the sequence {λn} can be
included in [0, 1). The result is also obtained as the following corollary.

Corollary 3.4. Let the sequence {xn} be generated by the iterative scheme

xn+1 = C(tn)xn − λnµA(C(tn)xn), n ≥ 1, (3.11)

with an arbitrary initial guess x1 ∈ H, where {λn} ⊂ [0, 1), {tn} ⊂ [0,∞) and
µ ∈ (0, 2η

κ2 ). Assume the following conditions hold:

(i) limn→∞ λn = 0,
∑∞

n=1 λn = ∞ and
∑∞

n=1 |λn+1 − λn| < ∞;

(ii) 0 = lim infn→∞ tn < lim supn→∞ tn and lim infn→∞(tn+1 − tn) = 0.
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If
∑∞

n=1 ‖C(tn+1)xn − C(tn)xn‖ < ∞, then the sequence {xn} converges strongly
to the unique solution of the variational inequality problem V IP (A,F ix(C)).

Proof. As similar to the arguments in Theorem 3.1, we know that {xn} is bounded
and ‖xn+1−C(tn)xn‖ → 0 as n → ∞. We will show that ‖xn+1−xn‖ → 0. Indeed,
we note that

‖xn+1 − xn‖ ≤ ‖T λnxn − T λnxn−1 − T λnxn−1 − T λn−1xn−1‖

≤ (1− λnτ)‖xn − xn−1‖+ ‖C(tn)xn−1 − C(tn−1)xn−1‖

+|λn − λn−1|µ‖A(C(tn)xn−1)‖

+λn−1µκ‖C(tn)xn−1 − C(tn−1)xn−1‖

≤ (1− λnτ)‖xn − xn−1‖+ |λn − λn−1|µM

+(1 + λµκ)‖C(tn)xn−1 − C(tn−1)xn−1‖

where M ≥ max{‖A(C(tk)xn)‖ : n, k ≥ 1}, and λ > 0 such that λn ≤ λ for all n.
By inductively, we obtain that

‖xn+1 − xn‖ ≤ ‖xm − xm−1‖
n∏

k=m+1

(1− λkτ) + µM

n∑

k=m+1

|λk − λk−1|

+(1 + λµκ)

n∑

k=m+1

‖C(tk)xk−1 − C(tk−1)xk−1‖,

for all n > m ≥ 0. We note that
∑∞

n=1 λn = ∞ ensure limn→∞
∏n

k=1(1−λk) = 0.
It follows that

lim sup
n→∞

‖xn+1 − xn‖ ≤ µM

n∑

k=m+1

|λk − λk−1|

+(1 + λµκ)
n∑

k=m+1

‖C(tk)xk−1 − C(tk−1)xk−1‖,

These together with condition (i), (iii) and approaching the limit as m → ∞ gives
us that limn→∞ ‖xn+1 − xn‖ = 0. Following the line proof of Theorem 3.1 by
setting αn = 0 for all n ≥ 1, we can obtain the result.

Remark 3.5. In general, the condition limn→∞
λn

λn+1
= 1 and

∑∞
n=1 |λn+1 −

λn| < ∞ are not comparable: neither of them implies the other (coupled with
limn→∞ λn = 0 and

∑∞
n=1 λn = ∞). For instance, in Example 3.1 and 3.2 of Xu

[15], a sequence {λn} defined by

λn =

{
1√
n

; n is odd number,
1√
n−1

; n is even number.
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One can see that the condition limn→∞
λn

λn+1
= 1 is satisfied but the condition∑∞

n=1 |λn+1 − λn| < ∞ is not satisfied. Nevertheless, if we take sequences {rk}
and {sk} of natural numbers such that:

(i) r1 = 1, rk < sk, and max{2sk, sk + 1} < rk+1, k ≥ 1;
(ii)

∑sk
i=rk

i−1 > 1, k ≥ 1,
and define a sequence {λn} by

λn =

{
1
n

if rk ≤ n ≤ sk, k ≥ 1,
1

2nk
if sk < n < mk+1, k ≥ 1.

One can check that the condition
∑∞

n=1 |λn+1 − λn| < ∞ is satisfied but the other
is not. For more detail, see [15].
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