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1 Introduction

The concept of bitopological space was introduced by J. C. Kelly [4]. On
the other hand K. Chandrasekhara Rao and N. Palaniappan [1] introduced the
concepts of regular generalized star closed sets and regular generalized star open
sets in a topological space.

In this paper, we introduce the concepts of τ1τ2 - regular generalized star
closed sets (τ1τ2 − rg∗ closed sets) and τ1τ2 - regular generalized star open sets
(τ1τ2 − rg∗ open sets) and study their basic properties in bitopological spaces.

2 Preliminaries

Let (X, τ1, τ2) or simply X denote a bitopological space. The intersection
(resp. union) of all τi - semi closed sets containing A (resp. τi - semi open sets
contained in A) is called the τi - semi closure (resp. τi - semi interior) of A, de-
noted by τi - scl(A) {resp. τi - sint(A)}. For any subset A ⊆ X, τi - int(A) and
τi - cl(A) denote the interior and closure of a set A with respect to the topology
τi respectively. The closure and interior of B relative to A with respect to the
topology τi are written as τi - clA(B) and τi - intA(B) respectively. For any subset
A ⊆ X, τi - rint(A) and τi - rcl(A) denote the regular interior and regular closure
of a set A with respect to the topology τi respectively. The regular closure and
regular interior of B relative to A with respect to the topology τi are written as
τi - rclA(B) and τi - rintA(B) respectively. The set of all τ2 - regular closed sets
in X is denoted by τ2 - R.C (X, τ1, τ2). The set of all τ1τ2 - regular open sets in X
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is denoted by τ1τ2 - R.O (X, τ1, τ2). AC denotes the complement of A in X unless
explicitly stated.

We shall require the following known definitions :

Definition 2.1 ([3], [5], [2]) A set A of a bitopological space (X, τ1, τ2) is called

(a) τ1τ2 - semi open if there exists a τ1 - open set U such that U ⊆ A ⊆ τ2 -
cl(U).

(b) τ1τ2 - semi closed if X −A is τ1τ2 - semi open.

Equivalently, a set A of a bitopological space (X, τ1, τ2) is called τ1τ2 - semi closed
if there exists a τ1 - closed set F such that τ2 - int(F ) ⊆ A ⊆ F.

(c) τ1τ2 - regular closed if τ1- cl[τ2- int(A)] =A.

(d) τ1τ2 - regular open if τ1- int[τ2- cl(A)] =A.

(e) τ1τ2 - regular generalized closed (τ1τ2 − rg closed) in X if τ2 - cl(A) ⊆ U
whenever A ⊆ U and U is τ1τ2 - regular open in X.

(f) τ1τ2 - regular generalized open (τ1τ2 − rg open) in X if F ⊆ τ2- int(A)
whenever F ⊆ A and F is τ1τ2 - regular closed in X.

3 τ1τ2 - Regular Generalized Star Closed Sets

Definition 3.1 A subset A of a bitopological space (X, τ1, τ2)is called τ1τ2 - reg-
ular generalized star closed (τ1τ2 − rg∗ closed) in X if and only if τ2 - rcl(A) ⊆ U
whenever A ⊆ U and U is τ1τ2 - regular open in X.

Example 3.2 Let X = {a, b, c}, τ1 = {φ,X, {a}}, τ2 = {φ,X, {a}, {b, c}}. Then
all subsets in P(X) are τ1τ2 − rg∗ closed sets in (X, τ1, τ2).

Theorem 3.3 Let A be a subset of a bitopological space (X, τ1, τ2). If A is τ1τ2 -
rg∗ closed then τ2 - rcl (A)− A does not contain non empty τ1τ2 - regular closed
sets.

Proof. Suppose that A is τ1τ2 − rg∗ closed. Let F be a τ1τ2 - regular closed set
such that F ⊆ τ2 - rcl(A)−A. We shall show that F = φ. Since F ⊆ τ2 - rcl(A)−A,
we have F ⊆ [τ2− rcl(A)]∩AC . Consequently F ⊆ AC and F ⊆ τ2 - rcl(A). Since
F ⊆ AC , we have A ⊆ FC . Since F is τ1τ2 - regular closed set, we have FC is
τ1τ2 - regular open. Since A is τ1τ2 − rg∗ closed, we have τ2 - rcl(A) ⊆ FC . Thus,
F ⊆ [τ2 − rcl(A)]C = X − [τ2 − rcl(A)]. Hence F ⊆ φ. But φ ⊆ F. Therefore,
F = φ. ¤
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Theorem 3.4

(a) Suppose that a subset A is τ1τ2 − rg closed and it is τ1τ2 - semi open. i.e)
A ⊆ τ2 - cl[τ1 - int(A)]. Then A is τ2τ1 - regular closed in X if and only if
τ2 -cl[τ1 - int(A)]−A is τ1τ2 - regular closed in X.

(b) Let a subset A be a τ1τ2 − rg∗ closed set. Then A is τ2 - closed in X if and
only if τ2 - cl(A)−A is τ1τ2 - regular closed in X.

Proof. (a) Suppose that A is τ2τ1 - regular closed in X. Then A = τ2 - cl[τ1 -
int(A)]. Consequently τ2 - cl[τ1 - int(A)]−A = φ. Therefore, τ2 - cl[τ1 - int(A)]−A
is τ1τ2 - regular closed in X.

Conversely, suppose that τ2 - cl[τ1 - int(A)]− A is τ1τ2 - regular closed in X.
We shall show that A is τ2τ1 - regular closed in X. Obviously, τ1 - int (A) ⊆ A.
Consequently τ2 - cl[τ1 - int(A)] ⊆ τ2 - cl(A). Hence τ2 - cl[τ1 - int(A)] − A ⊆ τ2

- cl(A) − A. Since A is τ1τ2 − rg closed in X, we have τ2 - cl(A) − A does not
contain non empty τ1τ2 - regular closed set. Hence τ2 - cl [τ1 - int(A)] − A = φ.
Therefore, τ2 - cl [τ1 - int(A)] ⊆ A. Since A is τ1τ2 - semi open, we have A ⊆ τ2 -
cl[τ1 - int(A)]. Hence τ2 - cl [τ1 - int(A)] = A. Therefore, A is τ2τ1 - regular closed.

(b) Suppose that A is τ1τ2 − rg∗ closed. Let A be τ2 - closed. We shall show
that τ2 - cl (A)−A is τ1τ2 - regular closed in X. Since A is τ2 - closed, we have τ2

- cl(A) = A. Consequently, τ2 - cl(A)− A = φ. Therefore, τ2 - cl(A)− A is τ1τ2 -
regular closed in X.

Conversely, suppose that τ2 - cl(A) − A is τ1τ2 - regular closed in X. We
shall show that A is τ2 - closed. Since τ2 - cl(A) ⊆ τ2 - rcl(A), we have τ2 -
cl(A)−A ⊆ τ2 - rcl(A)−A for any subset A of X. Since A is τ1τ2− rg∗ closed, we
have τ2 - cl(A)−A = φ. Hence τ2 - cl(A) = A. Consequently, A is τ2 - closed. ¤

Remark 3.5 The semi openess on A can not be removed from Theorem 3.4 (a)
in general as can be seen from the following example.

Example 3.6 Let X = {a, b, c}, τ1 = {φ,X, {a}, {a, b}}, τ2 = {φ,X, {b}, {b, c}}.
Then A = {a, c} is τ1τ2 - rg closed but not τ1τ2 - semi open in X. Also τ2 - cl [τ1

- int (A)] − A = φ is τ1τ2 - regular closed. But A is not τ2τ1 - regular closed set
in X.

Theorem 3.7 If A and B are τ1τ2 − rg∗ closed sets then A ∪ B is τ1τ2 − rg∗

closed.

Proof. Suppose that A and B are τ1τ2 − rg∗ closed sets. We shall show that
A ∪ B is τ1τ2 − rg∗ closed. Let A ∪ B ⊆ U and U is τ1τ2 - regular open. Since
A ∪ B ⊆ U, we have A ⊆ U and B ⊆ U. Since A ⊆ U and U is τ1τ2 - regular
open, we have τ2 - rcl(A) ⊆ U. {since A is τ1τ2 − rg∗ closed}. Since B ⊆ U and
U is τ1τ2 - regular open, we have τ2 - rcl(B) ⊆ U. {since B is τ1τ2 − rg∗ closed}.
Therefore, {τ2 - rcl(A)} ∪ {τ2 - rcl(B)} ⊆ U ∪ U. Since [τ2 - rcl(A)] ∪ [τ2 - rcl(B)]
= τ2 - rcl(A ∪B), we have τ2 - rcl(A ∪B) ⊆ U. Hence A ∪B is τ1τ2 − rg∗ closed.
¤



344 Thai J. Math. 4(2006)/ K. Chandrasekhara Rao and K. Kannan

Remark 3.8 The intersection of two τ1τ2 − rg∗ closed sets is not a τ1τ2 − rg∗

closed set in general as can be seen from the following example.

Example 3.9 In Example 3.6, A = {a, b}, B = {a, c} are τ1τ2 − rg∗ closed sets,
but A ∩B = {a} is not τ1τ2 − rg∗ closed set in X.

Lemma 3.10 Let A be a τ1 - open set in (X, τ1, τ2) and let U be τ1τ2 - regular
open in A. Then U = A ∩W for some τ1τ2 - regular open set W in X.

Proof. Let A be a τ1 - open set in (X, τ1, τ2) and let U be τ1τ2 - regular open in
A. We shall show that U = A∩W for some τ1τ2 - regular open set W in X. Since
U is τ1τ2 - regular open in A, we have

U = τ1 − intA[τ2 − clA(U)]
= τ1 − intA[A ∩ τ2 − cl(U)]
= A ∩ {τ1 − int[A ∩ τ2 − cl(U)]}
= A ∩ {τ1 − int(A) ∩ [τ1 − int{τ2 − cl(U)}]}
= A ∩ {A ∩ [τ1 − int{τ2 − cl(U)}]}, since A is τ1 - open
= A ∩A ∩ [τ1 − int{τ2 − cl(U)}]
= A ∩ [τ1 − int{τ2 − cl(U)}]
= A ∩W.

where W = [τ1 − int{τ2 − cl(U)}]. Then U = A ∩W for some τ1τ2 - regular open
set W in X. ¤

Lemma 3.11 x ∈ τ2 - rcl (A) if and only if U ∩ A 6= φ for every τ1τ2 - regular
open set U containing x.

Proof. Suppose that x ∈ τ2 - rcl (A). We shall show that U ∩A 6= φ for every τ1τ2

- regular open set U containing x. Suppose that there exists a τ1τ2 - regular open
set U containing x such that U ∩ A = φ. Then A ⊆ UC and UC is τ1τ2 - regular
closed set. Since A ⊆ UC , τ2 - rcl (A) ⊆ τ2 - rcl (UC). Since x ∈ τ2 - rcl (A), we
have x ∈ τ2 - rcl (UC). Since UC is τ1τ2 - regular closed set, we have x ∈ UC .
Hence x /∈ U, which is a contradiction that x ∈ U. Therefore, U ∩ A 6= φ. Hence
U ∩A 6= φ. for every τ1τ2 - regular open set U containing x.

Conversely, suppose that U ∩ A 6= φ. for every τ1τ2 - regular open set U
containing x. We shall show that x ∈ τ2 - rcl (A). Suppose that x /∈ τ2 - rcl (A).
Then there exists a τ1τ2 - regular open set U containing x such that U ∩ A = φ.
This is a contradiction to U ∩A 6= φ. Hence x ∈ τ2 - rcl (A). ¤

Lemma 3.12 If A is τ1τ2 - open and U is τ1τ2 - regular open in X then U ∩ A
is τ1τ2 - regular open in A.

Proof. Let A be τ1τ2 - open and U is τ1τ2 - regular open in X. We shall show
that U ∩A is τ1τ2 - regular open in A.
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Now,

τ1 − intA[τ2 − clA(U ∩A)] = τ1 − int[τ2 − clA(U ∩A)] ∩A

⊇ τ1 − int[τ2 − clA(U ∩A) ∩A] ∩A

= τ1 − int[τ2 − cl(U ∩A)] ∩A

⊇ τ1 − int[τ2 − cl(U) ∩A] ∩A

= τ1 − int[τ2 − cl(U)] ∩ τ1 − int(A) ∩A

= τ1 − int[τ2 − cl(U)] ∩A ∩A

= U ∩A

since U = τ1 − int[τ2 − cl(U)]. Hence U ∩A ⊆ τ1 - intA[τ2 - clA(U ∩A)]. Now,

U ∩A = τ1 − int[τ2 − cl(U)] ∩ τ1 − int(A)
= τ1 − int[τ2 − cl(U) ∩A)]
⊇ τ1 − int[τ2 − cl(U ∩A) ∩A]{ since U ∩A ⊆ A}
= τ1 − int[τ2 − clA(U ∩A)]
⊇ τ1 − int[τ2 − clA(U ∩A)] ∩A

= τ1 − intA[τ2 − cl(U ∩A)]

Hence τ1 - intA[τ2 - clA(U ∩ A)] ⊆ U ∩ A. Therefore, τ1 - intA[τ2 - clA(U ∩ A)] =
U ∩A. Hence U ∩A is τ1τ2 - regular open in A. ¤

Lemma 3.13 If A is τ1τ2 - open in (X, τ1, τ2), then τ2 - rclA(B) ⊆ A∩τ2 - rcl(B)
for any subset B of A.

Proof. Let A be τ1τ2 - open in (X, τ1, τ2). We shall show that τ2 - rclA(B) ⊆ A∩τ2

- rcl(B) for any subset B of A. Let B ⊆ A and x ∈ τ2 - rclA(B). Since τ2 -
rclA(B) ⊆ A, we have x ∈ A. Let U be a τ1τ2 - regular open in X such that
x ∈ U. Then by Lemma 3.12, we have A ∩ U is τ1τ2 - regular open in A such that
x ∈ U ∩ A. Since x ∈ τ2 - rclA(B), we have (U ∩ A) ∩ B 6= φ {by Lemma 3.11}.
Hence U ∩ B 6= φ. {since B ⊆ A}. Therefore, U ∩ B 6= φ for every τ1τ2 - regular
open in U of X containing x. Hence x ∈ τ2 - rcl(B). Therefore x ∈ A∩ τ2 - rcl(B).
Consequently, τ2 - rclA(B) ⊆ A ∩ τ2 - rcl(B) for any subset B of A. ¤

Lemma 3.14 If A is τ1τ2 - open in (X, τ1, τ2), then A∩τ2 - rcl(B) ⊆ τ2 - rclA(B)
for any subset B of A.

Proof. Let A be τ1τ2 - open in (X, τ1, τ2). We shall show that A∩τ2 - rcl(B) ⊆ τ2

- rclA(B) for any subset B of A. Let B ⊆ A and x ∈ A ∩ τ2 - rcl(B). Then x ∈ A
and x ∈ τ2 - rcl(B). Let U be a τ1τ2 - regular open subset of A such that x ∈ U.
Then by Lemma 3.10, there exists a τ1τ2 - regular open subset W of X such that
U = A ∩ W. Since x ∈ U, we have x ∈ A ∩ W. Hence, x ∈ A and x ∈ W. Since
x ∈ τ2 - rcl(B) and W is τ1τ2 - regular open subset in X, we have W ∩ B 6= φ.
Now, U ∩B = (A∩W )∩B = W ∩ (A∩B) = W ∩B 6= φ. { since B ⊆ A}. Hence
U ∩ B 6= φ for any τ1τ2 - regular open subset U of A such that x ∈ U. Therefore,
x ∈ τ2 - rclA(B). Hence A ∩ τ2 - rcl(B) ⊆ τ2 - rclA(B) for any subset B of A. ¤
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Theorem 3.15 Let B ⊆ A where A is τ1τ2 - regular open, τ2τ1 - regular open
and τ1τ2 − rg∗ closed. Then B is τ1τ2 − rg∗ closed relative to A if and only if B
is τ1τ2 − rg∗ closed in X.

Proof. Let B ⊆ A where A is τ1τ2 - regular open, τ2τ1 - regular open and τ1τ2−rg∗

closed. Suppose that B is τ1τ2 − rg∗ closed relative to A. We shall show that B
is τ1τ2 − rg∗ closed in X. Let B ⊆ U and U is τ1τ2 - regular open in X. Since A
is τ1τ2 - regular open and τ2τ1 - regular open in X, we have A is τ1τ2 - open in
X. Since U is τ1τ2 - regular open in X, we have A ∩ U is τ1τ2 - regular open in A
{by Lemma 3.12}. Since B ⊆ U and B ⊆ A, we have B = B ∩B ⊆ U ∩A. Hence
B ⊆ U ∩ A and A ∩ U is τ1τ2 - regular open in A. Since B is τ1τ2 − rg∗ closed
relative to A, we have

τ2 − rclA(B) ⊆ A ∩ U (3.1)

Since A ⊆ A and A is τ1τ2 - regular open in X, we have

τ2 − rcl(A) ⊆ A (3.2)

, since A is τ1τ2− rg∗ closed in X. Since B ⊆ A, we have τ2 - rcl(B) ⊆ τ2 - rcl(A).
Hence τ2 - rcl(B) ⊆ A {by (3.2)}. Therefore,

τ2 − rcl(B) ∩A = τ2 − rcl(B). (3.3)

Since A is τ1τ2 - open in X, we have τ2 - rcl (B) ∩ A = τ2 - rclA(B) {by Lemma
3.13, Lemma 3.14}. Therefore, τ2- rcl(B) = τ2 - rclA(B). Hence τ2 - rcl(B) ⊆ A∩U
{by (3.5)}. Therefore, B is τ1τ2 − rg∗ closed in X.

Conversely, suppose that B is τ1τ2 − rg∗ closed in X. We shall show that B
is τ1τ2 − rg∗ closed relative to A. Let B ⊆ U and U is τ1τ2 - regular open in A.
Since A is τ1τ2 - regular open and τ2τ1 - regular open in X, we have A is τ1τ2 -
open in X. Since A is τ1 - open in X and U is τ1τ2 - regular open in A, we have
U = A ∩ W for some τ1τ2 - regular open set W in X {By Lemma 3.10}. Since
A is τ1τ2 - open in X and W is τ1τ2 - regular open in X, we have U = A ∩ W
is τ1τ2 - regular open set in X {by Lemma 3.12}. Hence B ⊆ U and U is τ1τ2 -
regular open set in X. Since B is τ1τ2 − rg∗ closed in X, we have τ2 - rcl(B) ⊆ U.
Therefore τ2 - rcl(B) ∩A ⊆ A ∩ U. Since U ⊆ A, we have

τ2 − rcl(B) ∩A ⊆ U. (3.4)

Since A is τ1τ2 - open in X, we have τ2 - rcl(B) ∩ A = τ2 - rclA(B) { by Lemma
3.13, Lemma 3.14}. Hence τ2 - rclA(B) ⊆ U {by (4)}. Therefore B is τ1τ2 − rg∗

closed relative to A. ¤

Theorem 3.16 Let A and B be subsets such that A ⊆ B ⊆ τ2 - rcl(A). If A is
τ1τ2 − rg∗ closed, then B is τ1τ2 − rg∗ closed.

Proof. Let A and B be subsets such that A ⊆ B ⊆ τ2 - rcl(A). Suppose that A
is τ1τ2 − rg∗ closed. We shall show that B is τ1τ2 − rg∗ closed. Let B ⊆ U and
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U is τ1τ2 - regular open in X. Since A ⊆ B and B ⊆ U, we have A ⊆ U. Hence
A ⊆ U and U is τ1τ2 - regular open in X. Since A is τ1τ2 − rg∗ closed, we have

τ2 − rcl(A) ⊆ U. (3.5)

Since B ⊆ τ2 - rcl(A), we have τ2 - rcl (B) ⊆ τ2 - rcl [τ2 - rcl (A)] = τ2 - rcl
(A) ⊆ U { by (3.5)}. Hence τ2 - rcl (B) ⊆ U. Therefore, B is τ1τ2 − rg∗ closed. ¤

Theorem 3.17 Suppose that τ1τ2 - R.O (X, τ1, τ2) ⊆ τ2 - R.C (X, τ1, τ2). Then
every subset of X is τ1τ2 − rg∗ closed.

Proof. Suppose that τ1τ2 - R.O (X, τ1, τ2) ⊆ τ2 - R.C (X, τ1, τ2). Let A be a
subset of X. We shall show that A is τ1τ2 − rg∗ closed. Let A ⊆ U and U is τ1τ2

- regular open in X. Since τ1τ2 - R.O (X, τ1, τ2) ⊆ τ2 - R.C (X, τ1, τ2), we have U
is τ2 - regular closed in X. Then τ2 - rcl (U) = U. Since A ⊆ U, we have τ2 - rcl
(A) ⊆ τ2 - rcl (U) = U. Therefore, τ2 - rcl (A) ⊆ U. Hence A is τ1τ2 − rg∗ closed.
¤

4 τ1τ2 - Regular Generalized Star Open Sets

Definition 4.1 A subset A of a bitopological space (X, τ1, τ2) is called τ1τ2 -
regular generalized star open (τ1τ2 − rg∗ open) in X if and only if its complement
is τ1τ2 - regular generalized star closed (τ1τ2 − rg∗ closed) in X.

Example 4.2 Let X = {a, b, c}, τ1 = {φ,X, {a}}, τ2 = {φ, X, {a}, {b, c}}. Then
all subsets in P (X) are τ1τ2 − rg∗ open sets in (X, τ1, τ2).

Theorem 4.3 A subset A of a bitopological space (X, τ1, τ2) is τ1τ2 − rg∗ open if
and only if F ⊆ τ2 - rint (A) whenever F ⊆ A and F is τ1τ2 - regular closed in
X.

Proof. Suppose that A is τ1τ2 − rg∗ open. We shall show that F ⊆ τ2 - rint (A)
whenever F ⊆ A and F is τ1τ2 - regular closed in X. Let A ⊆ F and F is τ1τ2 -
regular closed in X. Then AC ⊆ FC and FC is τ1τ2 - regular open in X. Since A
is τ1τ2 − rg∗ open, we have AC is τ1τ2 − rg∗ closed. Hence τ2 - rcl (AC) ⊆ FC .
Consequently, [τ2 - rint (A)]C ⊆ FC . Therefore F ⊆ τ2 - rint (A).

Conversely, suppose that F ⊆ τ2 - rint (A) whenever F ⊆ A and F is τ1τ2 -
regular closed in X. We shall show that A is τ1τ2 − rg∗ open. Let AC ⊆ U and
U is τ1τ2 - regular open in X. Then UC ⊆ A and UC is τ1τ2 - regular closed in
X. By our assumption, we have UC ⊆ τ2 - rint (A). Hence [τ2 - rint (A)]C ⊆ U.
Therefore τ2 - rcl (AC) ⊆ U. Consequently AC is τ1τ2 − rg∗ closed. Hence A is
τ1τ2 − rg∗ open. ¤

Theorem 4.4 Let A and B be subsets such that τ2 - rint (A) ⊆ B ⊆ A. If A is
τ1τ2 − rg∗ open, then B is τ1τ2 − rg∗ open.
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Proof. Suppose that A and B are subsets such that τ2 - rint (A) ⊆ B ⊆ A. Let
A be τ1τ2− rg∗ open. We shall show that B is τ1τ2− rg∗ open. Let F ⊆ B and F
is τ1τ2 - regular closed in X. Since F ⊆ B and B ⊆ A, we have F ⊆ A. Therefore,
F ⊆ τ2 - rint (A) {Since A is τ1τ2 − rg∗ open}. Since τ2 - rint (A) ⊆ B, we have
τ2 - rint [τ2 - rint (A)] ⊆ τ2 - rint (B)
⇒ τ2 - rint (A) ⊆ τ2 - rint (B).
⇒ F ⊆ τ2 - rint (B).
⇒ B is τ1τ2 − rg∗ open. ¤

Theorem 4.5 If a subset A is τ1τ2−rg∗ closed, then τ2 - rcl (A)−A is τ1τ2−rg∗

open.

Proof. Suppose that A is τ1τ2 − rg∗ closed. We shall show that τ2 - rcl (A)− A
is τ1τ2 − rg∗ open. Let F ⊆ τ2 - rcl (A)−A and F is τ1τ2 - regular closed . Since
A is τ1τ2 − rg∗ closed, we have τ2 - rcl (A)−A does not contain nonempty τ1τ2 -
regular closed {by Theorem 3.3}
⇒ F = φ.
⇒ φ ⊆ τ2 - rcl (A)−A
⇒ τ2 - rint (φ) ⊆ τ2 - rint [τ2 - rcl (A)−A]
⇒ φ ⊆ τ2 - rint [τ2 - rcl (A)−A]
⇒ F ⊆ τ2 - rint [τ2 - rcl (A)−A]
⇒ τ2 - rcl (A)−A is τ1τ2 − rg∗ open. ¤
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