

www.math.science.cmu.ac.th/thaijournal

Regular Generalized Star Closed Sets in Bitopological Spaces

K. Chandrasekhara Rao and K. Kannan

Abstract : The aim of this paper is to introduce the concepts of $\tau_1 \tau_2$ - regular generalized star closed sets , $\tau_1 \tau_2$ - regular generalized star open sets and study their basic properties in bitopological spaces.

Keywords : $\tau_1\tau_2$ - regular generalized star closed sets; $\tau_1\tau_2$ - regular generalized star open sets; $\tau_1\tau_2$ - regular closed sets; $\tau_1\tau_2$ - regular open sets; $\tau_1\tau_2$ - regular generalized closed sets; $\tau_1\tau_2$ - regular generalized open sets. **2000 Mathematics Subject Classification :** 54E55.

1 Introduction

The concept of bitopological space was introduced by J. C. Kelly [4]. On the other hand K. Chandrasekhara Rao and N. Palaniappan [1] introduced the concepts of regular generalized star closed sets and regular generalized star open sets in a topological space.

In this paper, we introduce the concepts of $\tau_1 \tau_2$ - regular generalized star closed sets ($\tau_1 \tau_2 - rg^*$ closed sets) and $\tau_1 \tau_2$ - regular generalized star open sets ($\tau_1 \tau_2 - rg^*$ open sets) and study their basic properties in bitopological spaces.

2 Preliminaries

Let (X, τ_1, τ_2) or simply X denote a bitopological space. The intersection (resp. union) of all τ_i - semi closed sets containing A (resp. τ_i - semi open sets contained in A) is called the τ_i - semi closure (resp. τ_i - semi interior) of A, denoted by τ_i - scl(A) {resp. τ_i - sint(A)}. For any subset $A \subseteq X$, τ_i - int(A) and τ_i - cl(A) denote the interior and closure of a set A with respect to the topology τ_i respectively. The closure and interior of B relative to A with respect to the topology τ_i are written as τ_i - cl_A(B) and τ_i - int_A(B) respectively. For any subset $A \subseteq X$, τ_i - rint(A) and τ_i - rcl(A) denote the regular interior and regular closure of a set A with respect to the topology τ_i respectively. The regular closure and regular interior of B relative to A with respect to the topology τ_i are written as τ_i - rcl_A(B) and τ_i - rint_A(B) respectively. The regular closure and regular interior of B relative to A with respect to the topology τ_i are written as τ_i - rcl_A(B) and τ_i - rint_A(B) respectively. The set of all τ_2 - regular closed sets in X is denoted by τ_2 - R.C (X, τ_1, τ_2). The set of all $\tau_1 \tau_2$ - regular open sets in X is denoted by $\tau_1 \tau_2$ - R.O (X, τ_1, τ_2) . A^C denotes the complement of A in X unless explicitly stated.

We shall require the following known definitions :

Definition 2.1 ([3], [5], [2]) A set A of a bitopological space (X, τ_1, τ_2) is called

- (a) $\tau_1 \tau_2$ semi open if there exists a τ_1 open set U such that $U \subseteq A \subseteq \tau_2$ cl(U).
- (b) $\tau_1 \tau_2$ semi closed if X A is $\tau_1 \tau_2$ semi open.

Equivalently, a set A of a bitopological space (X, τ_1, τ_2) is called $\tau_1 \tau_2$ - semi closed if there exists a τ_1 - closed set F such that τ_2 - int $(F) \subseteq A \subseteq F$.

- (c) $\tau_1 \tau_2$ regular closed if τ_1 cl[τ_2 int(A)] =A.
- (d) $\tau_1 \tau_2$ regular open if τ_1 int $[\tau_2$ cl(A)] = A.
- (e) $\tau_1\tau_2$ regular generalized closed ($\tau_1\tau_2 rg$ closed) in X if τ_2 cl(A) $\subseteq U$ whenever $A \subseteq U$ and U is $\tau_1\tau_2$ regular open in X.
- (f) $\tau_1\tau_2$ regular generalized open $(\tau_1\tau_2 rg \text{ open})$ in X if $F \subseteq \tau_2$ int(A) whenever $F \subseteq A$ and F is $\tau_1\tau_2$ regular closed in X.

3 $au_1 au_2$ - Regular Generalized Star Closed Sets

Definition 3.1 A subset A of a bitopological space (X, τ_1, τ_2) is called $\tau_1\tau_2$ - regular generalized star closed $(\tau_1\tau_2 - rg^* \text{ closed})$ in X if and only if τ_2 - rcl $(A) \subseteq U$ whenever $A \subseteq U$ and U is $\tau_1\tau_2$ - regular open in X.

Example 3.2 Let $X = \{a, b, c\}, \tau_1 = \{\phi, X, \{a\}\}, \tau_2 = \{\phi, X, \{a\}, \{b, c\}\}$. Then all subsets in P(X) are $\tau_1 \tau_2 - rg^*$ closed sets in (X, τ_1, τ_2) .

Theorem 3.3 Let A be a subset of a bitopological space (X, τ_1, τ_2) . If A is $\tau_1\tau_2 - rg^*$ closed then $\tau_2 - rcl(A) - A$ does not contain non empty $\tau_1\tau_2$ - regular closed sets.

Proof. Suppose that A is $\tau_1\tau_2 - rg^*$ closed. Let F be a $\tau_1\tau_2$ - regular closed set such that $F \subseteq \tau_2$ - $\operatorname{rcl}(A) - A$. We shall show that $F = \phi$. Since $F \subseteq \tau_2$ - $\operatorname{rcl}(A) - A$, we have $F \subseteq [\tau_2 - rcl(A)] \cap A^C$. Consequently $F \subseteq A^C$ and $F \subseteq \tau_2$ - $\operatorname{rcl}(A)$. Since $F \subseteq A^C$, we have $A \subseteq F^C$. Since F is $\tau_1\tau_2$ - regular closed set, we have F^C is $\tau_1\tau_2$ - regular open. Since A is $\tau_1\tau_2 - rg^*$ closed, we have τ_2 - $\operatorname{rcl}(A) \subseteq F^C$. Thus, $F \subseteq [\tau_2 - rcl(A)]^C = X - [\tau_2 - rcl(A)]$. Hence $F \subseteq \phi$. But $\phi \subseteq F$. Therefore, $F = \phi$.

342

Theorem 3.4

- (a) Suppose that a subset A is $\tau_1\tau_2 rg$ closed and it is $\tau_1\tau_2$ semi open. i.e) $A \subseteq \tau_2 - cl[\tau_1 - int(A)]$. Then A is $\tau_2\tau_1$ - regular closed in X if and only if $\tau_2 - cl[\tau_1 - int(A)] - A$ is $\tau_1\tau_2$ - regular closed in X.
- (b) Let a subset A be a $\tau_1\tau_2 rg^*$ closed set. Then A is τ_2 closed in X if and only if τ_2 cl(A) A is $\tau_1\tau_2$ regular closed in X.

Proof. (a) Suppose that A is $\tau_2\tau_1$ - regular closed in X. Then $A = \tau_2 - cl[\tau_1 - int(A)]$. Consequently $\tau_2 - cl[\tau_1 - int(A)] - A = \phi$. Therefore, $\tau_2 - cl[\tau_1 - int(A)] - A$ is $\tau_1\tau_2$ - regular closed in X.

Conversely, suppose that $\tau_2 - \operatorname{cl}[\tau_1 - \operatorname{int}(A)] - A$ is $\tau_1\tau_2 - \operatorname{regular}$ closed in X. We shall show that A is $\tau_2\tau_1$ - regular closed in X. Obviously, $\tau_1 - \operatorname{int}(A) \subseteq A$. Consequently $\tau_2 - \operatorname{cl}[\tau_1 - \operatorname{int}(A)] \subseteq \tau_2 - \operatorname{cl}(A)$. Hence $\tau_2 - \operatorname{cl}[\tau_1 - \operatorname{int}(A)] - A \subseteq \tau_2$ - $\operatorname{cl}(A) - A$. Since A is $\tau_1\tau_2 - rg$ closed in X, we have $\tau_2 - \operatorname{cl}(A) - A$ does not contain non empty $\tau_1\tau_2$ - regular closed set. Hence $\tau_2 - \operatorname{cl}[\tau_1 - \operatorname{int}(A)] - A = \phi$. Therefore, $\tau_2 - \operatorname{cl}[\tau_1 - \operatorname{int}(A)] \subseteq A$. Since A is $\tau_1\tau_2$ - semi open, we have $A \subseteq \tau_2 - \operatorname{cl}[\tau_1 - \operatorname{int}(A)]$. Hence $\tau_2 - \operatorname{cl}[\tau_1 - \operatorname{int}(A)] = A$. Therefore, A is $\tau_2\tau_1$ - regular closed.

(b) Suppose that A is $\tau_1\tau_2 - rg^*$ closed. Let A be τ_2 - closed. We shall show that τ_2 - cl (A) - A is $\tau_1\tau_2$ - regular closed in X. Since A is τ_2 - closed, we have τ_2 - cl(A) = A. Consequently, τ_2 - cl $(A) - A = \phi$. Therefore, τ_2 - cl(A) - A is $\tau_1\tau_2$ - regular closed in X.

Conversely, suppose that $\tau_2 - \operatorname{cl}(A) - A$ is $\tau_1\tau_2$ - regular closed in X. We shall show that A is τ_2 - closed. Since $\tau_2 - \operatorname{cl}(A) \subseteq \tau_2 - \operatorname{rcl}(A)$, we have $\tau_2 - \operatorname{cl}(A) - A \subseteq \tau_2 - \operatorname{rcl}(A) - A$ for any subset A of X. Since A is $\tau_1\tau_2 - rg^*$ closed, we have $\tau_2 - \operatorname{cl}(A) - A = \phi$. Hence $\tau_2 - \operatorname{cl}(A) = A$. Consequently, A is τ_2 - closed. \Box

Remark 3.5 The semi openess on A can not be removed from Theorem 3.4 (a) in general as can be seen from the following example.

Example 3.6 Let $X = \{a, b, c\}, \tau_1 = \{\phi, X, \{a\}, \{a, b\}\}, \tau_2 = \{\phi, X, \{b\}, \{b, c\}\}$. Then $A = \{a, c\}$ is $\tau_1 \tau_2$ - rg closed but not $\tau_1 \tau_2$ - semi open in X. Also τ_2 - cl $[\tau_1$ - int $(A)] - A = \phi$ is $\tau_1 \tau_2$ - regular closed. But A is not $\tau_2 \tau_1$ - regular closed set in X.

Theorem 3.7 If A and B are $\tau_1\tau_2 - rg^*$ closed sets then $A \cup B$ is $\tau_1\tau_2 - rg^*$ closed.

Proof. Suppose that A and B are $\tau_1\tau_2 - rg^*$ closed sets. We shall show that $A \cup B$ is $\tau_1\tau_2 - rg^*$ closed. Let $A \cup B \subseteq U$ and U is $\tau_1\tau_2$ - regular open. Since $A \cup B \subseteq U$, we have $A \subseteq U$ and $B \subseteq U$. Since $A \subseteq U$ and U is $\tau_1\tau_2$ - regular open, we have τ_2 - rcl $(A) \subseteq U$. {since A is $\tau_1\tau_2 - rg^*$ closed}. Since $B \subseteq U$ and U is $\tau_1\tau_2$ - regular open, we have τ_2 - rcl $(B) \subseteq U$. {since B is $\tau_1\tau_2 - rg^*$ closed}. Since $B \subseteq U$ and U is $\tau_1\tau_2$ - regular open, we have τ_2 - rcl $(B) \subseteq U$. {since B is $\tau_1\tau_2 - rg^*$ closed}. Therefore, { $\tau_2 - \text{rcl}(A) \} \cup {\tau_2 - \text{rcl}(B) } \subseteq U \cup U$. Since [$\tau_2 - \text{rcl}(A)] \cup [\tau_2 - \text{rcl}(B)]$ = $\tau_2 - \text{rcl}(A \cup B)$, we have $\tau_2 - \text{rcl}(A \cup B) \subseteq U$. Hence $A \cup B$ is $\tau_1\tau_2 - rg^*$ closed. **Remark 3.8** The intersection of two $\tau_1\tau_2 - rg^*$ closed sets is not a $\tau_1\tau_2 - rg^*$ closed set in general as can be seen from the following example.

Example 3.9 In Example 3.6, $A = \{a, b\}, B = \{a, c\}$ are $\tau_1 \tau_2 - rg^*$ closed sets, but $A \cap B = \{a\}$ is not $\tau_1 \tau_2 - rg^*$ closed set in X.

Lemma 3.10 Let A be a τ_1 - open set in (X, τ_1, τ_2) and let U be $\tau_1\tau_2$ - regular open in A. Then $U = A \cap W$ for some $\tau_1\tau_2$ - regular open set W in X.

Proof. Let A be a τ_1 - open set in (X, τ_1, τ_2) and let U be $\tau_1\tau_2$ - regular open in A. We shall show that $U = A \cap W$ for some $\tau_1\tau_2$ - regular open set W in X. Since U is $\tau_1\tau_2$ - regular open in A, we have

$$\begin{split} U &= \tau_1 - \operatorname{int}_A [\tau_2 - \operatorname{cl}_A(U)] \\ &= \tau_1 - \operatorname{int}_A [A \cap \tau_2 - \operatorname{cl}(U)] \\ &= A \cap \{\tau_1 - \operatorname{int} [A \cap \tau_2 - \operatorname{cl}(U)]\} \\ &= A \cap \{\tau_1 - \operatorname{int}(A) \cap [\tau_1 - \operatorname{int}\{\tau_2 - \operatorname{cl}(U)\}]\} \\ &= A \cap \{A \cap [\tau_1 - \operatorname{int}\{\tau_2 - \operatorname{cl}(U)\}]\}, \text{since } A \text{ is } \tau_1 \text{ - open} \\ &= A \cap A \cap [\tau_1 - \operatorname{int}\{\tau_2 - \operatorname{cl}(U)\}] \\ &= A \cap [\tau_1 - \operatorname{int}\{\tau_2 - \operatorname{cl}(U)\}] \\ &= A \cap [\tau_1 - \operatorname{int}\{\tau_2 - \operatorname{cl}(U)\}] \\ &= A \cap [\tau_1 - \operatorname{int}\{\tau_2 - \operatorname{cl}(U)\}] \\ &= A \cap W. \end{split}$$

where $W = [\tau_1 - \inf\{\tau_2 - \operatorname{cl}(U)\}]$. Then $U = A \cap W$ for some $\tau_1 \tau_2$ - regular open set W in X.

Lemma 3.11 $x \in \tau_2$ - rcl (A) if and only if $U \cap A \neq \phi$ for every $\tau_1 \tau_2$ - regular open set U containing x.

Proof. Suppose that $x \in \tau_2$ - rcl (A). We shall show that $U \cap A \neq \phi$ for every $\tau_1 \tau_2$ - regular open set U containing x. Suppose that there exists a $\tau_1 \tau_2$ - regular open set U containing x such that $U \cap A = \phi$. Then $A \subseteq U^C$ and U^C is $\tau_1 \tau_2$ - regular closed set. Since $A \subseteq U^C, \tau_2$ - rcl (A) $\subseteq \tau_2$ - rcl (U^C). Since $x \in \tau_2$ - rcl (A), we have $x \in \tau_2$ - rcl (U^C). Since U^C is $\tau_1 \tau_2$ - regular closed set, we have $x \in U^C$. Hence $x \notin U$, which is a contradiction that $x \in U$. Therefore, $U \cap A \neq \phi$. Hence $U \cap A \neq \phi$. For every $\tau_1 \tau_2$ - regular open set U containing x.

Conversely, suppose that $U \cap A \neq \phi$. for every $\tau_1 \tau_2$ - regular open set U containing x. We shall show that $x \in \tau_2$ - rcl (A). Suppose that $x \notin \tau_2$ - rcl (A). Then there exists a $\tau_1 \tau_2$ - regular open set U containing x such that $U \cap A = \phi$. This is a contradiction to $U \cap A \neq \phi$. Hence $x \in \tau_2$ - rcl (A).

Lemma 3.12 If A is $\tau_1\tau_2$ - open and U is $\tau_1\tau_2$ - regular open in X then $U \cap A$ is $\tau_1\tau_2$ - regular open in A.

Proof. Let A be $\tau_1\tau_2$ - open and U is $\tau_1\tau_2$ - regular open in X. We shall show that $U \cap A$ is $\tau_1\tau_2$ - regular open in A.

344

Now,

$$\tau_{1} - \operatorname{int}_{A}[\tau_{2} - \operatorname{cl}_{A}(U \cap A)] = \tau_{1} - \operatorname{int}[\tau_{2} - \operatorname{cl}_{A}(U \cap A)] \cap A$$

$$\supseteq \tau_{1} - \operatorname{int}[\tau_{2} - \operatorname{cl}_{A}(U \cap A) \cap A] \cap A$$

$$= \tau_{1} - \operatorname{int}[\tau_{2} - \operatorname{cl}(U \cap A)] \cap A$$

$$\supseteq \tau_{1} - \operatorname{int}[\tau_{2} - \operatorname{cl}(U) \cap A] \cap A$$

$$= \tau_{1} - \operatorname{int}[\tau_{2} - \operatorname{cl}(U)] \cap \tau_{1} - \operatorname{int}(A) \cap$$

$$= \tau_{1} - \operatorname{int}[\tau_{2} - \operatorname{cl}(U)] \cap A \cap A$$

$$= U \cap A$$

since $U = \tau_1 - \operatorname{int}[\tau_2 - \operatorname{cl}(U)]$. Hence $U \cap A \subseteq \tau_1 - \operatorname{int}_A[\tau_2 - \operatorname{cl}_A(U \cap A)]$. Now,

$$U \cap A = \tau_1 - \operatorname{int}[\tau_2 - \operatorname{cl}(U)] \cap \tau_1 - \operatorname{int}(A)$$

= $\tau_1 - \operatorname{int}[\tau_2 - \operatorname{cl}(U) \cap A)]$
 $\supseteq \tau_1 - \operatorname{int}[\tau_2 - \operatorname{cl}(U \cap A) \cap A] \{ \text{ since } U \cap A \subseteq A \}$
= $\tau_1 - \operatorname{int}[\tau_2 - \operatorname{cl}_A(U \cap A)]$
 $\supseteq \tau_1 - \operatorname{int}[\tau_2 - \operatorname{cl}_A(U \cap A)] \cap A$
= $\tau_1 - \operatorname{int}_A[\tau_2 - \operatorname{cl}(U \cap A)]$

Hence $\tau_1 - \operatorname{int}_A[\tau_2 - \operatorname{cl}_A(U \cap A)] \subseteq U \cap A$. Therefore, $\tau_1 - \operatorname{int}_A[\tau_2 - \operatorname{cl}_A(U \cap A)] = U \cap A$. Hence $U \cap A$ is $\tau_1 \tau_2$ - regular open in A.

Lemma 3.13 If A is $\tau_1\tau_2$ - open in (X, τ_1, τ_2) , then τ_2 - $rcl_A(B) \subseteq A \cap \tau_2$ - rcl(B) for any subset B of A.

Proof. Let A be $\tau_1\tau_2$ - open in (X, τ_1, τ_2) . We shall show that $\tau_2 - \operatorname{rcl}_A(B) \subseteq A \cap \tau_2$ - $\operatorname{rcl}(B)$ for any subset B of A. Let $B \subseteq A$ and $x \in \tau_2$ - $\operatorname{rcl}_A(B)$. Since τ_2 - $\operatorname{rcl}_A(B) \subseteq A$, we have $x \in A$. Let U be a $\tau_1\tau_2$ - regular open in X such that $x \in U$. Then by Lemma 3.12, we have $A \cap U$ is $\tau_1\tau_2$ - regular open in A such that $x \in U \cap A$. Since $x \in \tau_2$ - $\operatorname{rcl}_A(B)$, we have $(U \cap A) \cap B \neq \phi$ {by Lemma 3.11}. Hence $U \cap B \neq \phi$. {since $B \subseteq A$ }. Therefore, $U \cap B \neq \phi$ for every $\tau_1\tau_2$ - regular open in U of X containing x. Hence $x \in \tau_2$ - $\operatorname{rcl}(B)$. Therefore $x \in A \cap \tau_2$ - $\operatorname{rcl}(B)$. Consequently, τ_2 - $\operatorname{rcl}_A(B) \subseteq A \cap \tau_2$ - $\operatorname{rcl}(B)$ for any subset B of A.

Lemma 3.14 If A is $\tau_1\tau_2$ - open in (X, τ_1, τ_2) , then $A \cap \tau_2$ - $rcl(B) \subseteq \tau_2$ - $rcl_A(B)$ for any subset B of A.

Proof. Let A be $\tau_1\tau_2$ - open in (X, τ_1, τ_2) . We shall show that $A \cap \tau_2 - \operatorname{rcl}(B) \subseteq \tau_2$ - $\operatorname{rcl}_A(B)$ for any subset B of A. Let $B \subseteq A$ and $x \in A \cap \tau_2$ - $\operatorname{rcl}(B)$. Then $x \in A$ and $x \in \tau_2$ - $\operatorname{rcl}(B)$. Let U be a $\tau_1\tau_2$ - regular open subset of A such that $x \in U$. Then by Lemma 3.10, there exists a $\tau_1\tau_2$ - regular open subset W of X such that $U = A \cap W$. Since $x \in U$, we have $x \in A \cap W$. Hence, $x \in A$ and $x \in W$. Since $x \in \tau_2$ - $\operatorname{rcl}(B)$ and W is $\tau_1\tau_2$ - regular open subset in X, we have $W \cap B \neq \phi$. Now, $U \cap B = (A \cap W) \cap B = W \cap (A \cap B) = W \cap B \neq \phi$. { since $B \subseteq A$ }. Hence $U \cap B \neq \phi$ for any $\tau_1\tau_2$ - regular open subset U of A such that $x \in U$. Therefore, $x \in \tau_2$ - $\operatorname{rcl}_A(B)$. Hence $A \cap \tau_2$ - $\operatorname{rcl}(B) \subseteq \tau_2$ - $\operatorname{rcl}_A(B)$ for any subset B of A. \Box

A

Theorem 3.15 Let $B \subseteq A$ where A is $\tau_1\tau_2$ - regular open, $\tau_2\tau_1$ - regular open and $\tau_1\tau_2 - rg^*$ closed. Then B is $\tau_1\tau_2 - rg^*$ closed relative to A if and only if Bis $\tau_1\tau_2 - rg^*$ closed in X.

Proof. Let $B \subseteq A$ where A is $\tau_1\tau_2$ - regular open, $\tau_2\tau_1$ - regular open and $\tau_1\tau_2 - rg^*$ closed. Suppose that B is $\tau_1\tau_2 - rg^*$ closed relative to A. We shall show that B is $\tau_1\tau_2 - rg^*$ closed in X. Let $B \subseteq U$ and U is $\tau_1\tau_2$ - regular open in X. Since A is $\tau_1\tau_2$ - regular open and $\tau_2\tau_1$ - regular open in X, we have A is $\tau_1\tau_2$ - open in X. Since U is $\tau_1\tau_2$ - regular open in X, we have $A \cap U$ is $\tau_1\tau_2$ - regular open in A (by Lemma 3.12). Since $B \subseteq U$ and $B \subseteq A$, we have $B = B \cap B \subseteq U \cap A$. Hence $B \subseteq U \cap A$ and $A \cap U$ is $\tau_1\tau_2$ - regular open in A. Since B is $\tau_1\tau_2 - rg^*$ closed relative to A, we have

$$\tau_2 - \operatorname{rcl}_A(B) \subseteq A \cap U \tag{3.1}$$

Since $A \subseteq A$ and A is $\tau_1 \tau_2$ - regular open in X, we have

$$\tau_2 - \operatorname{rcl}(A) \subseteq A \tag{3.2}$$

, since A is $\tau_1 \tau_2 - rg^*$ closed in X. Since $B \subseteq A$, we have $\tau_2 - \operatorname{rcl}(B) \subseteq \tau_2 - \operatorname{rcl}(A)$. Hence $\tau_2 - \operatorname{rcl}(B) \subseteq A$ {by (3.2)}. Therefore,

$$\tau_2 - \operatorname{rcl}(B) \cap A = \tau_2 - \operatorname{rcl}(B). \tag{3.3}$$

Since A is $\tau_1\tau_2$ - open in X, we have τ_2 - rcl $(B) \cap A = \tau_2$ - rcl_A(B) {by Lemma 3.13, Lemma 3.14}. Therefore, τ_2 - rcl $(B) = \tau_2$ - rcl_A(B). Hence τ_2 - rcl $(B) \subseteq A \cap U$ {by (3.5)}. Therefore, B is $\tau_1\tau_2 - rg^*$ closed in X.

Conversely, suppose that B is $\tau_1\tau_2 - rg^*$ closed in X. We shall show that B is $\tau_1\tau_2 - rg^*$ closed relative to A. Let $B \subseteq U$ and U is $\tau_1\tau_2$ - regular open in A. Since A is $\tau_1\tau_2$ - regular open and $\tau_2\tau_1$ - regular open in X, we have A is $\tau_1\tau_2$ - open in X. Since A is τ_1 - open in X and U is $\tau_1\tau_2$ - regular open in A, we have $U = A \cap W$ for some $\tau_1\tau_2$ - regular open set W in X {By Lemma 3.10}. Since A is $\tau_1\tau_2$ - open in X and W is $\tau_1\tau_2$ - regular open in X, we have $U = A \cap W$ for some $\tau_1\tau_2$ - regular open set W in X (By Lemma 3.10}. Since A is $\tau_1\tau_2$ - regular open in X, we have $U = A \cap W$ is $\tau_1\tau_2$ - regular open set in X (by Lemma 3.12}. Hence $B \subseteq U$ and U is $\tau_1\tau_2$ - regular open set in X. Since B is $\tau_1\tau_2 - rg^*$ closed in X, we have τ_2 - rcl $(B) \subseteq U$. Therefore τ_2 - rcl $(B) \cap A \subseteq A \cap U$. Since $U \subseteq A$, we have

$$\tau_2 - \operatorname{rcl}(B) \cap A \subseteq U. \tag{3.4}$$

Since A is $\tau_1\tau_2$ - open in X, we have $\tau_2 - \operatorname{rcl}(B) \cap A = \tau_2 - \operatorname{rcl}_A(B)$ { by Lemma 3.13, Lemma 3.14}. Hence $\tau_2 - \operatorname{rcl}_A(B) \subseteq U$ {by (4)}. Therefore B is $\tau_1\tau_2 - rg^*$ closed relative to A.

Theorem 3.16 Let A and B be subsets such that $A \subseteq B \subseteq \tau_2$ - rcl(A). If A is $\tau_1\tau_2 - rg^*$ closed, then B is $\tau_1\tau_2 - rg^*$ closed.

Proof. Let A and B be subsets such that $A \subseteq B \subseteq \tau_2$ - rcl(A). Suppose that A is $\tau_1\tau_2 - rg^*$ closed. We shall show that B is $\tau_1\tau_2 - rg^*$ closed. Let $B \subseteq U$ and

U is $\tau_1\tau_2$ - regular open in X. Since $A \subseteq B$ and $B \subseteq U$, we have $A \subseteq U$. Hence $A \subseteq U$ and U is $\tau_1\tau_2$ - regular open in X. Since A is $\tau_1\tau_2 - rg^*$ closed, we have

$$\tau_2 - \operatorname{rcl}(A) \subseteq U. \tag{3.5}$$

Since $B \subseteq \tau_2$ - rcl(A), we have τ_2 - rcl (B) $\subseteq \tau_2$ - rcl $[\tau_2$ - rcl (A)] = τ_2 - rcl (A) $\subseteq U$ { by (3.5)}. Hence τ_2 - rcl (B) $\subseteq U$. Therefore, B is $\tau_1\tau_2 - rg^*$ closed. \Box

Theorem 3.17 Suppose that $\tau_1\tau_2 - R.O(X, \tau_1, \tau_2) \subseteq \tau_2 - R.C(X, \tau_1, \tau_2)$. Then every subset of X is $\tau_1\tau_2 - rg^*$ closed.

Proof. Suppose that $\tau_1\tau_2 - \text{R.O}(X, \tau_1, \tau_2) \subseteq \tau_2 - \text{R.C}(X, \tau_1, \tau_2)$. Let A be a subset of X. We shall show that A is $\tau_1\tau_2 - rg^*$ closed. Let $A \subseteq U$ and U is $\tau_1\tau_2$ - regular open in X. Since $\tau_1\tau_2$ - R.O $(X, \tau_1, \tau_2) \subseteq \tau_2$ - R.C (X, τ_1, τ_2) , we have U is τ_2 - regular closed in X. Then τ_2 - rcl (U) = U. Since $A \subseteq U$, we have τ_2 - rcl $(A) \subseteq \tau_2$ - rcl (U) = U. Therefore, τ_2 - rcl $(A) \subseteq U$. Hence A is $\tau_1\tau_2 - rg^*$ closed. \Box

4 $\tau_1 \tau_2$ - Regular Generalized Star Open Sets

Definition 4.1 A subset A of a bitopological space (X, τ_1, τ_2) is called $\tau_1 \tau_2$ regular generalized star open $(\tau_1 \tau_2 - rg^* \text{ open})$ in X if and only if its complement is $\tau_1 \tau_2$ - regular generalized star closed $(\tau_1 \tau_2 - rg^* \text{ closed})$ in X.

Example 4.2 Let $X = \{a, b, c\}, \tau_1 = \{\phi, X, \{a\}\}, \tau_2 = \{\phi, X, \{a\}, \{b, c\}\}$. Then all subsets in P(X) are $\tau_1 \tau_2 - rg^*$ open sets in (X, τ_1, τ_2) .

Theorem 4.3 A subset A of a bitopological space (X, τ_1, τ_2) is $\tau_1\tau_2 - rg^*$ open if and only if $F \subseteq \tau_2$ - rint (A) whenever $F \subseteq A$ and F is $\tau_1\tau_2$ - regular closed in X.

Proof. Suppose that A is $\tau_1\tau_2 - rg^*$ open. We shall show that $F \subseteq \tau_2$ - rint (A) whenever $F \subseteq A$ and F is $\tau_1\tau_2$ - regular closed in X. Let $A \subseteq F$ and F is $\tau_1\tau_2$ - regular closed in X. Then $A^C \subseteq F^C$ and F^C is $\tau_1\tau_2$ - regular open in X. Since A is $\tau_1\tau_2 - rg^*$ open, we have A^C is $\tau_1\tau_2 - rg^*$ closed. Hence τ_2 - rcl $(A^C) \subseteq F^C$. Consequently, $[\tau_2 - \text{rint } (A)]^C \subseteq F^C$. Therefore $F \subseteq \tau_2$ - rint (A).

Conversely, suppose that $F \subseteq \tau_2$ - rint (A) whenever $F \subseteq A$ and F is $\tau_1\tau_2$ regular closed in X. We shall show that A is $\tau_1\tau_2 - rg^*$ open. Let $A^C \subseteq U$ and U is $\tau_1\tau_2$ - regular open in X. Then $U^C \subseteq A$ and U^C is $\tau_1\tau_2$ - regular closed in X. By our assumption, we have $U^C \subseteq \tau_2$ - rint (A). Hence $[\tau_2 - \text{rint } (A)]^C \subseteq U$. Therefore τ_2 - rcl $(A^C) \subseteq U$. Consequently A^C is $\tau_1\tau_2 - rg^*$ closed. Hence A is $\tau_1\tau_2 - rg^*$ open.

Theorem 4.4 Let A and B be subsets such that τ_2 - rint $(A) \subseteq B \subseteq A$. If A is $\tau_1 \tau_2 - rg^*$ open, then B is $\tau_1 \tau_2 - rg^*$ open.

Proof. Suppose that A and B are subsets such that $\tau_2 - \operatorname{rint} (A) \subseteq B \subseteq A$. Let A be $\tau_1 \tau_2 - rg^*$ open. We shall show that B is $\tau_1 \tau_2 - rg^*$ open. Let $F \subseteq B$ and F is $\tau_1 \tau_2$ - regular closed in X. Since $F \subseteq B$ and $B \subseteq A$, we have $F \subseteq A$. Therefore, $F \subseteq \tau_2$ - rint (A) {Since A is $\tau_1 \tau_2 - rg^*$ open}. Since τ_2 - rint (A) $\subseteq B$, we have τ_2 - rint $[\tau_2 - \operatorname{rint} (A)] \subseteq \tau_2$ - rint (B) $\Rightarrow \tau_2$ - rint (A) $\subseteq \tau_2$ - rint (B). $\Rightarrow B$ is $\tau_1 \tau_2 - rg^*$ open.

Theorem 4.5 If a subset A is $\tau_1\tau_2 - rg^*$ closed, then $\tau_2 - rcl(A) - A$ is $\tau_1\tau_2 - rg^*$ open.

Proof. Suppose that A is $\tau_1\tau_2 - rg^*$ closed. We shall show that $\tau_2 - \operatorname{rcl}(A) - A$ is $\tau_1\tau_2 - rg^*$ open. Let $F \subseteq \tau_2 - \operatorname{rcl}(A) - A$ and F is $\tau_1\tau_2$ - regular closed. Since A is $\tau_1\tau_2 - rg^*$ closed, we have $\tau_2 - \operatorname{rcl}(A) - A$ does not contain nonempty $\tau_1\tau_2$ regular closed {by Theorem 3.3} $\Rightarrow F = \phi$. $\Rightarrow \phi \subseteq \tau_2 - \operatorname{rcl}(A) - A$ $\Rightarrow \tau_2 - \operatorname{rint}(\phi) \subseteq \tau_2 - \operatorname{rint}[\tau_2 - \operatorname{rcl}(A) - A]$ $\Rightarrow \phi \subseteq \tau_2 - \operatorname{rint}[\tau_2 - \operatorname{rcl}(A) - A]$ $\Rightarrow F \subseteq \tau_2 - \operatorname{rint}[\tau_2 - \operatorname{rcl}(A) - A]$ $\Rightarrow \tau_2 - \operatorname{rcl}(A) - A$ is $\tau_1\tau_2 - rg^*$ open. \Box

References

- K. Chandrasekhara Rao and N. Palaniappan, Regular generalized star closed sets, Bulletin of Pure and Applied Sciences, 19(2)(2000), 291–306.
- [2] K. Chandrasekhara Rao and N. Palaniappan, Regular generalized closed sets, Kyungpook Mathematical Journal, 33(2)(1993), 211–219.
- [3] T. Fukutake, Semi open sets on bitopological spaces, Bull. Fukuoka Uni. Education, 38(3)(1989), 1–7.
- [4] J. C. Kelly, Bitopological spaces, Proc. London Math. Society, 13(1963),71– 89.
- [5] M. K. Singal and Asha Rani Singal, On some pairwise normality conditions in bitopological spaces, *Publications Mathematicae*, 21(1974), 71–81

(Received 12 March 2006)

348

Regular Generalized Star Closed Sets in Bitopological Spaces

K. Chandrasekhara Rao and K. Kannan Department of Mathematics Srinivasa Ramanujan Centre SASTRA University Kumbakonam - 612 001 India. e-mail : k.chandrasekhara@rediffmail.com,anbukkannan@rediffmail.com