Thai Journal of Mathematics Volume 13 (2015) Number 3: 653–672

http://thaijmath.in.cmu.ac.th

Approximation Method for Fixed Points of Nonlinear Mapping and Variational Inequalities with Application¹

Kanyarat Cheawchan and Atid Kangtunyakarn²

Department of Mathematics, Faculty of Science King Mongkut's Institute of Technology Ladkrabang Bangkok 10520, Thailand

e-mail: Kkanyarat.cheaw@gmail.com (K. Cheawchan) beawrock@hotmail.com (A. Kangtunyakarn)

Abstract: In this paper, we introduce the new method of iterative scheme $\{x_n\}$ for finding a common element of the set of fixed points of a quasi-nonexpansive mapping and the set of solutions of a modified system of variational inequalities without demiclose condition and $T_{\omega} := (1 - \omega)I + \omega T$, when T is a quasi-nonexpansive mapping and $\omega \in (0, \frac{1}{2})$ in a framework of Hilbert space. Using our main result, we obtain strong convergence theorems involving a finite family of nonspreading mapping and another corollary.

Keywords: quasi-nonexpansive mapping; variational inequality; fixed point; nonspreading mapping.

2010 Mathematics Subject Classification: 46C05; 47H09; 47H10.

1 Introduction

Let C be a nonempty closed convex subset of a real Hilbert space H. We denote F(T) by the set of all fixed points of T. Recall that the mapping $T: C \to C$ is

Copyright $\odot\,$ 2015 by the Mathematical Association of Thailand. All rights reserved.

¹This research was supported by the Research Administration Division of King Mongkut's Institute of Technology Ladkrabang.

²Corresponding author.

said to be quasi-nonexpansive if $F(T) \neq \emptyset$ and

$$||Tx - p|| \le ||x - p||,$$

for all $x \in C$ and $p \in F(T)$. Fixed point problems have been investigated in the following literature; see [1–3].

A mapping $A:C\to H$ is called α -inverse-strongly monotone if there exists a positive real number $\alpha>0$ such that

$$\langle Ax - Ay, x - y \rangle \ge \alpha \|Ax - Ay\|^2$$
,

for all $x, y \in C$.

Let $B: C \to H$. The variational inequality is to find a point $u \in C$ such that

$$\langle Bu, v - u \rangle \ge 0, \tag{1.1}$$

for all $v \in C$. The set of solutions of (1.1) is denoted by VI(C, B).

The variational inequalities were initially studied and introduced by Stampacchia [4, 5]. This problem is widely used in economics, social sciences and other fields, see for example [6–8].

Let $D_1, D_2 : C \to H$ be two mappings. In 2008, Ceng et al. [9] introduced a problem for finding $(x^*, z^*) \in C \times C$ such that

$$\begin{cases} \langle \lambda_1 D_1 z^* + x^* - z^*, x - x^* \rangle \ge 0, \forall x \in C, \\ \langle \lambda_2 D_2 x^* + z^* - x^*, x - z^* \rangle \ge 0, \forall x \in C, \end{cases}$$
(1.2)

which is called a system of variational inequalities where $\lambda_1, \lambda_2 > 0$.

In 2013, Kangtunyakarn [10] modified (1.2) for finding $(x^*, z^*) \in C \times C$ such that

$$\begin{cases} \langle x^* - (I - \lambda_1 D_1) (ax^* + (1 - a) z^*), x - x^* \rangle \ge 0, \forall x \in C, \\ \langle z^* - (I - \lambda_2 D_2) x^*, x - z^* \rangle \ge 0, \forall x \in C, \end{cases}$$
(1.3)

which is called a modification of system of variational inequalities, for every $\lambda_1, \lambda_2 > 0$ and $a \in [0, 1]$. If a = 0, (1.3) reduces to (1.2). He introduced the relation between solutions of (1.3) and fixed point of the mapping G as follows:

Lemma 1.1. Let C be a nonempty closed convex subset of a real Hilbert space H and let $D_1, D_2 : C \to H$ be mappings. For every $\lambda_1, \lambda_2 > 0$ and $a \in [0, 1]$, the following statements are equivalent:

- 1. $(x^*, z^*) \in C \times C$ is a solution of problem (1.3),
- 2. x^* is a fixed point of the mapping $G: C \to C$, i.e., $x^* \in F(G)$, defined by

$$G(x) = P_C(I - \lambda_1 D_1)(ax + (1 - a)P_C(I - \lambda_2 D_2)x),$$

where $z^* = P_C(I - \lambda_2 D_2)x^*$.

Moreover, he introduced a new iterative algorithm $\{x_n\}$ for finding a common element of the set of fixed points of a finite family of κ_i —strictly pseudo-contractive mappings and the set of solutions of problem (1.3) in Hilbert space. The sequence $\{x_n\}$ is generated by

$$\begin{cases} y_n = P_C(I - \lambda_2 D_2)x_n, \\ x_{n+1} = \alpha_n u + \beta_n x_n + \gamma_n SP_C(ax_n + (1-a)y_n - \lambda_1 D_1(ax_n + (1-a)y_n)), \forall n \ge 1, \end{cases}$$

where $D_1, D_2: C \to H$ are d_1, d_2 -inverse strongly monotone mappings, respectively, and $S: C \to C$ is S-mapping generated by a finite family of strictly pseudo-contractive mapping and finite real numbers. Under suitable conditions of the parameters $\{\alpha_n\}, \{\beta_n\}, \{\gamma_n\}, \lambda_1, \lambda_2, a$, he proved a strong convergence theorem of iterative scheme $\{x_n\}$.

In 2012, Tian and Jin [11] proved the following strong convergence theorem of iterative scheme $\{x_n\}$ generated by (1.4).

Theorem 1.2. Starting with an arbitrary chosen $x_1 \in H$, let the sequence $\{x_n\}$ be generated by

$$x_{n+1} = \alpha_n \gamma f(x_n) + (1 - \alpha_n A) T_{\omega} x_n, \qquad (1.4)$$

where the sequence $\{\alpha_n\} \subset (0,1)$ satisfies $\lim_{n\to\infty} \alpha_n = 0$, and $\sum_{n=1}^{\infty} \alpha_n = \infty$. Also $\omega \in (0,\frac{1}{2}), T_{\omega} := (1-\omega)I + \omega T$ with two conditions on T:

- 1. $||Tx q|| \le ||x q||$ for any $x \in H$, and $q \in F(T)$; this means that T is a quasi-nonexpansive mapping;
- 2. T is demiclosed on H; that is: if $\{y_k\} \subset H, y_k \rightharpoonup z$, and $(I-T)y_k \to 0$, then $z \in F(T)$.

Then $\{x_n\}$ converges strongly to the $x^* \in F(T)$ which is the unique solution of the VIP:

$$\langle (\gamma f - A)x^*, x - x^* \rangle \le 0, \forall x \in F(T).$$

Many authors proved strong convergence theorem involving a quasi-nonexpansive mapping T by assuming the following conditions:

- (1) $T_{\omega} := (1 \omega)I + \omega T$,
- (2) T is demiclosed on H.

see for example [12] and [13].

Motivated by [10], we introduced the new method for finding a common element of the set of fixed points of a quasi-nonexpansive mapping and the set of solutions of a modified system of variational inequalities without the conditions (1) and (2) in a framework of Hilbert space. Using our main result, we obtain strong convergence theorems involving a finite family of nonspreading mapping and another corollary.

2 Preliminaries

Let H be a real Hilbert space with inner product $\langle .,. \rangle$ and norm $\|.\|$. Throughout this paper, we denote weak and strong convergence by notations " \rightharpoonup " and " \rightarrow ", respectively. For every $x \in H$, there exists a unique nearest point $P_C x$ in C such that $\|x - P_C x\| \leq \|x - y\|$ for all $y \in C$. P_C is called the *metric projection* of H onto C.

Remark 2.1. It is well-known that metric projection P_C has the following properties:

1. P_C is firmly nonexpansive, i.e.,

$$||P_C x - P_C y||^2 \le \langle P_C x - P_C y, x - y \rangle, \ \forall x, y \in H.$$

2. For each $x \in H$,

$$z = P_C(x) \Leftrightarrow \langle x - z, z - y \rangle \ge 0, \ \forall y \in C.$$

Recall that H satisfies Opial's condition [14], i.e., for any sequence $\{x_n\}$ with $x_n \rightharpoonup x$, the inequality

$$\liminf_{n \to \infty} \|x_n - x\| < \liminf_{n \to \infty} \|x_n - y\|$$

holds for every $y \in H$ with $y \neq x$.

Lemma 2.2. Let H be a real Hilbert space. Then there holds the following well-known results:

- 1. $||x \pm y||^2 = ||x||^2 \pm 2 \langle x, y \rangle + ||y||^2$,
- 2. $||x + y||^2 \le ||x||^2 + 2\langle y, x + y \rangle$,

for all $x, y \in H$.

Lemma 2.3 ([15]). Let $(E, \langle ., . \rangle)$ be an inner product space. Then, for all $x, y, z \in E$ and $\alpha, \beta, \gamma \in [0, 1]$ with $\alpha + \beta + \gamma = 1$, we have

$$\|\alpha x + \beta y + \gamma z\|^{2} = \alpha \|x\|^{2} + \beta \|y\|^{2} + \gamma \|z\|^{2} - \alpha \beta \|x - y\|^{2} - \alpha \gamma \|x - z\|^{2} - \beta \gamma \|y - z\|^{2}.$$

Lemma 2.4 ([16]). Let E be a uniformly convex Banach space, let C be a nonempty closed convex subset of E and let $S: C \to C$ be a nonexpansive mapping. Then I-S is demi-closed at zero.

Lemma 2.5 ([17]). Let $\{s_n\}$ be a sequence of nonnegative real numbers satisfying

$$s_{n+1} \le (1 - \alpha_n) s_n + \delta_n, \forall n \ge 1$$

where $\{\alpha_n\}$ is a sequence in (0,1) and $\{\delta_n\}$ is a sequence such that

- (1) $\sum_{n=1}^{\infty} \alpha_n = \infty,$
- (2) $\limsup_{n\to\infty} \frac{\delta_n}{\alpha_n} \leq 0$ or $\sum_{n=1}^{\infty} |\delta_n| < \infty$.

Then, $\lim_{n\to\infty} s_n = 0$.

Lemma 2.6 ([10]). Let C be a nonempty closed convex subset of a real Hilbert space H and let $D_1, D_2 : C \to H$ be d_1, d_2 -inverse strongly monotone mappings, respectively, which $VI(C, D_1) \cap VI(C, D_2) \neq \emptyset$. Define a mapping $G: C \to C$ by

$$G(x) = P_C(I - \lambda_1 D_1) (ax + (1 - a) P_C(I - \lambda_2 D_2) x),$$

for every $\lambda_1 \in (0, 2d_1)$, $\lambda_2 \in (0, 2d_2)$ and $a \in (0, 1)$. Then $F(G) = VI(C, D_1) \cap VI(C, D_2)$.

Lemma 2.7 ([18]). Let H be a real Hilbert space, let C be a nonempty closed convex subset of H and let A be a mapping of C into H. Let $u \in C$. Then for $\lambda > 0$,

$$u = P_C (I - \lambda A) u \Leftrightarrow u \in VI (C, A)$$
,

where P_C is the metric projection of H onto C.

The next result is very important for our main result.

Lemma 2.8. Let C be a nonempty closed convex subset of a real Hilbert space H and let $T: C \to C$ be a quasi-nonexpansive mapping. Then VI(C, I - T) = F(T).

Proof. It is easy to see that $F\left(T\right)\subseteq VI\left(C,I-T\right)$. Let $u\in VI\left(C,I-T\right)$, then we have

$$\langle v - u, (I - T)u \rangle \ge 0, \ \forall v \in C.$$
 (2.1)

Let $v^* \in F(T)$, then we have

$$||Tu - v^*||^2 \le ||u - v^*||^2$$
. (2.2)

On the other hand

$$||Tu - v^*||^2 = ||(u - v^*) - (I - T)u||^2$$

$$= ||u - v^*||^2 - 2\langle u - v^*, (I - T)u\rangle + ||(I - T)u||^2.$$
 (2.3)

From (2.2) and (2.3), we have

$$\|u - v^*\|^2 - 2\langle u - v^*, (I - T)u\rangle + \|(I - T)u\|^2 \le \|u - v^*\|^2$$
.

From (2.1), we have

$$||(I-T)u||^2 \le 2\langle u-v^*, (I-T)u\rangle.$$

It follows that $u \in F(T)$. Hence $VI(C, I - T) \subseteq F(T)$.

Remark 2.9. From Lemma 2.7 and 2.8, we have

$$F(T) = VI(C, I - T) = F(P_C(I - \lambda(I - T))),$$

for all $\lambda > 0$.

3 Main Results

Theorem 3.1. Let C be a nonempty closed convex subset of a real Hilbert space H and let $T: C \to C$ be a quasi-nonexpansive mapping. Let $A, B: C \to H$ be α, β -inverse strongly monotone mappings, respectively. Define the mapping $G: C \to C$ by $Gx = P_C(I - \lambda_1 A)(ax + (1 - a)P_C(I - \lambda_2 B)x)$ for all $x \in C$. Assume $\mathcal{F} = VI(C, A) \cap VI(C, B) \cap F(T) \neq \emptyset$. Suppose that $x_1, u \in C$ and let $\{x_n\}$ be a sequence generated by

$$x_{n+1} = \alpha_n u + \beta_n P_C (I - \lambda_n (I - T)) x_n + \gamma_n G x_n, \ \forall n \ge 1,$$
(3.1)

where $\lambda_1 \in (0, 2\alpha), \lambda_2 \in (0, 2\beta)$ and $\{\alpha_n\}, \{\beta_n\}, \{\gamma_n\}$ are sequences in [0, 1]. Suppose the following conditions holds:

- (i) $\alpha_n + \beta_n + \gamma_n = 1$,
- (ii) $\lim_{n\to\infty} \alpha_n = 0$ and $\sum_{n=1}^{\infty} \alpha_n = \infty$,
- (iii) $0 < a \le \beta_n \le c < 1$ for all $n \ge 1$,
- (iv) $\sum_{n=1}^{\infty} \lambda_n < \infty$ and $0 < \lambda_n < 1$,
- (v) $\sum_{n=1}^{\infty} |\alpha_{n+1} \alpha_n| < \infty, \sum_{n=1}^{\infty} |\beta_{n+1} \beta_n| < \infty, \sum_{n=1}^{\infty} |\lambda_{n+1} \lambda_n| < \infty.$

Then $\{x_n\}$ converges strongly to $z_0 = P_{\mathcal{F}}u$.

Proof. We divide the proof into five steps.

Step 1. We show that $\{x_n\}$ is bounded.

Let $x, y \in C$. Since A is α -inverse strongly monotone and $\lambda_1 \in (0, 2\alpha)$, we have

$$\|(I - \lambda_1 A)x - (I - \lambda_1 A)y\|^2 = \|x - y\|^2 - 2\lambda_1 \langle x - y, Ax - Ay \rangle + \lambda_1^2 \|Ax - Ay\|^2$$

$$\leq \|x - y\|^2 - 2\alpha\lambda_1 \|Ax - Ay\|^2 + \lambda_1^2 \|Ax - Ay\|^2$$

$$= \|x - y\|^2 + \lambda_1 (\lambda_1 - 2\alpha) \|Ax - Ay\|^2$$

$$\leq \|x - y\|^2.$$

Therefore $(I-\lambda_1 A)$ is a nonexpansive mapping. Similarly, $(I-\lambda_2 B)$ is a nonexpansive mapping. Hence $P_C(I-\lambda_1 A)$ and $P_C(I-\lambda_2 B)$ are nonexpansive mappings. From definition of the mapping G, we have G is a nonexpansive mapping. Let $x^* \in \mathcal{F}$. From Remark 2.9, we have

$$x^* \in F\left(P_C(I - \lambda_n(I - T))\right).$$

By Lemma 2.6, we have

$$x^* = G(x^*) = P_C(I - \lambda_1 A)(ax^* + (1 - a)P_C(I - \lambda_2 B)x^*).$$

Observe that

$$||Tx_n - Tx^*||^2 = ||(x_n - x^*) - (I - T)x_n||^2$$
$$= ||x_n - x^*||^2 - 2\langle x_n - x^*, (I - T)x_n \rangle + ||(I - T)x_n||^2.$$

Since T is a quasi-nonexpansive mapping, we have

$$\|(I-T)x_n\|^2 \le 2\langle x_n - x^*, (I-T)x_n \rangle.$$
 (3.2)

From the nonexpansiveness of P_C and (3.2), we have

$$||P_{C}(I - \lambda_{n}(I - T))x_{n} - x^{*}||^{2} = ||P_{C}(I - \lambda_{n}(I - T))x_{n} - P_{C}(I - \lambda_{n}(I - T))x^{*}||^{2}$$

$$\leq ||(I - \lambda_{n}(I - T))x_{n} - (I - \lambda_{n}(I - T))x^{*}||^{2}$$

$$= ||(x_{n} - x^{*}) - \lambda_{n}((I - T)x_{n} - (I - T)x^{*})||^{2}$$

$$= ||x_{n} - x^{*}||^{2} - 2\lambda_{n}\langle x_{n} - x^{*}, (I - T)x_{n}\rangle$$

$$+ \lambda_{n}^{2} ||(I - T)x_{n}||^{2}$$

$$\leq ||x_{n} - x^{*}||^{2} - \lambda_{n} ||(I - T)x_{n}||^{2} + \lambda_{n}^{2} ||(I - T)x_{n}||^{2}$$

$$\leq ||x_{n} - x^{*}||^{2}.$$
(3.3)

Put $M_n = ax_n + (1-a)P_C(I - \lambda_2 B)x_n$ and $W_n = P_C(I - \lambda_1 A)M_n$. From (3.1), we have

$$x_{n+1} = \alpha_n u + \beta_n P_C (I - \lambda_n (I - T)) x_n + \gamma_n W_n.$$

From the definition of x_n , (3.3) and nonexpansiveness of G, we have

$$||x_{n+1} - x^*|| = ||\alpha_n(u - x^*) + \beta_n(P_C(I - \lambda_n(I - T))x_n - x^*) + \gamma_n(W_n - x^*)||$$

$$\leq \alpha_n ||u - x^*|| + \beta_n ||P_C(I - \lambda_n(I - T))x_n - x^*|| + \gamma_n ||W_n - x^*||$$

$$\leq \alpha_n ||u - x^*|| + \beta_n ||x_n - x^*||$$

$$+ \gamma_n ||P_C(I - \lambda_1 A)(ax_n + (1 - a)P_C(I - \lambda_2 B)x_n)$$

$$- P_C(I - \lambda_1 A)(ax^* + (1 - a)P_C(I - \lambda_2 B)x^*)||$$

$$= \alpha_n ||u - x^*|| + \beta_n ||x_n - x^*|| + \gamma_n ||G(x_n) - G(x^*)||$$

$$\leq \alpha_n ||u - x^*|| + \beta_n ||x_n - x^*|| + \gamma_n ||x_n - x^*||$$

$$= \alpha_n ||u - x^*|| + (1 - \alpha_n) ||x_n - x^*||$$

$$\leq \max\{||u - x^*||, ||x_n - x^*||\}.$$

By induction, we can conclude that

$$||x_n - x^*|| \le \max\{||u - x^*||, ||x_1 - x^*||\},$$

for all $n \ge 1$. This implies that the sequence $\{x_n\}$ is bounded and so is $\{(I-T)x_n\}$.

Step 2. We show that $\lim_{n\to\infty} ||x_{n+1} - x_n|| = 0$. From the definition of x_n and nonexpansiveness of G, we have

$$\begin{split} \|x_{n+1} - x_n\| &= \|(\alpha_n - \alpha_{n-1})u + (\beta_n - \beta_{n-1})P_C(I - \lambda_{n-1}(I - T))x_{n-1} \\ &+ \beta_n(P_C(I - \lambda_n(I - T))x_n - P_C(I - \lambda_{n-1}(I - T))x_{n-1}) \\ &+ \gamma_n(W_n - W_{n-1}) + (\gamma_n - \gamma_{n-1})W_{n-1}\| \\ &\leq |\alpha_n - \alpha_{n-1}| \|u\| + |\beta_n - \beta_{n-1}| \|P_C(I - \lambda_{n-1}(I - T))x_{n-1}\| \\ &+ \beta_n \|P_C(I - \lambda_n(I - T))x_n - P_C(I - \lambda_{n-1}(I - T))x_{n-1}\| \\ &+ \gamma_n \|W_n - W_{n-1}\| + |\gamma_n - \gamma_{n-1}| \|W_{n-1}\| \\ &\leq |\alpha_n - \alpha_{n-1}| \|u\| + |\beta_n - \beta_{n-1}| \|P_C(I - \lambda_{n-1}(I - T))x_{n-1}\| \\ &+ \beta_n \|(x_n - x_{n-1}) - \lambda_n(I - T)x_n + \lambda_{n-1}(I - T)x_{n-1}\| \\ &+ \gamma_n \|P_C(I - \lambda_1 A)(ax_n + (1 - a)P_C(I - \lambda_2 B)x_n) \\ &- P_C(I - \lambda_1 A)(ax_{n-1} + (1 - a)P_C(I - \lambda_2 B)x_{n-1})\| \\ &+ |\gamma_n - \gamma_{n-1}| \|W_{n-1}\| \\ &= |\alpha_n - \alpha_{n-1}| \|u\| + |\beta_n - \beta_{n-1}| \|P_C(I - \lambda_{n-1}(I - T))x_{n-1}\| \\ &+ \beta_n \|(x_n - x_{n-1}) - \lambda_n\left((I - T)x_n - (I - T)x_{n-1}\right) \\ &- (\lambda_n - \lambda_{n-1})\left(I - T\right)x_{n-1}\| + \gamma_n \|G(x_n) - G(x_{n-1})\| \\ &+ |\gamma_n - \gamma_{n-1}| \|W_{n-1}\| \\ &\leq |\alpha_n - \alpha_{n-1}| \|u\| + |\beta_n - \beta_{n-1}| \|P_C(I - \lambda_{n-1}(I - T))x_{n-1}\| \\ &+ |\beta_n \|x_n - x_{n-1}\| + \lambda_n \|(I - T)x_n - (I - T)x_{n-1}\| \\ &+ |\lambda_n - \lambda_{n-1}| \|(I - T)x_{n-1}\| + \gamma_n \|x_n - x_{n-1}\| + |\gamma_n - \gamma_{n-1}| \|W_{n-1}\| \\ &= (1 - \alpha_n)\|x_n - x_{n-1}\| + \lambda_n \|(I - T)x_n - (I - T)x_{n-1}\| \\ &+ |\gamma_n - \gamma_{n-1}| \|W_{n-1}\| + |\lambda_n - \lambda_{n-1}| \|(I - T)x_{n-1}\| \\ &+ |\gamma_n - \gamma_{n-1}| \|W_{n-1}\| + |\lambda_n - \lambda_{n-1}| \|(I - T)x_{n-1}\| \\ &+ |\gamma_n - \gamma_{n-1}| \|W_{n-1}\| + |\lambda_n - \lambda_{n-1}| \|(I - T)x_{n-1}\| \\ &+ |\gamma_n - \gamma_{n-1}| \|W_{n-1}\| + |\lambda_n - \lambda_{n-1}| M, \end{cases}$$

where
$$M := \max_{n \in \mathbb{N}} \{ \|(I - T)x_{n+1} - (I - T)x_n\|, \|u\|, \|P_C(I - \lambda_n(I - T))x_n\|, \|W_n\|, \|(I - T)x_n\| \}.$$

From the condition (ii), (iv), (v) and Lemma 2.5, we have

$$\lim_{n \to \infty} ||x_{n+1} - x_n|| = 0. (3.4)$$

Step 3. We show that
$$\lim_{n\to\infty} \|P_C(I-\lambda_n(I-T))x_n - x_n\| = 0$$
.
Since $x^* = P_C(I-\lambda_1 A) (ax^* + (1-a)P_C(I-\lambda_2 B)x^*)$ and $M^* = ax^* + (1-a)P_C(I-\lambda_2 B)x^*$, we have $x^* = P_C(I-\lambda_1 A)M^*$.

Since $x^* \in VI(C, B)$, we obtain

$$M^* - x^* = (1 - a) (P_C(I - \lambda_2 B)x^* - x^*)$$

= $(1 - a) (P_C(I - \lambda_2 B)x^* - P_C(I - \lambda_2 B)x^*)$
= $0.$ (3.5)

From the definition of M_n and M^* , we have

$$||M_{n} - M^{*}|| = ||a(x_{n} - x^{*}) + (1 - a) (P_{C}(I - \lambda_{2}B)x_{n} - P_{C}(I - \lambda_{2}B)x^{*})||$$

$$\leq a ||x_{n} - x^{*}|| + (1 - a) ||P_{C}(I - \lambda_{2}B)x_{n} - P_{C}(I - \lambda_{2}B)x^{*}||$$

$$\leq a ||x_{n} - x^{*}|| + (1 - a) ||x_{n} - x^{*}||$$

$$= ||x_{n} - x^{*}||.$$
(3.6)

From the definition of W_n , we have

$$||W_{n} - x^{*}||^{2} = ||P_{C}(I - \lambda_{1}A)M_{n} - P_{C}(I - \lambda_{1}A)M^{*}||^{2}$$

$$\leq \langle (I - \lambda_{1}A)M_{n} - (I - \lambda_{1}A)M^{*}, W_{n} - x^{*} \rangle$$

$$= \frac{1}{2} (||(I - \lambda_{1}A)M_{n} - (I - \lambda_{1}A)M^{*}||^{2} + ||W_{n} - x^{*}||^{2}$$

$$- ||(I - \lambda_{1}A)M_{n} - (I - \lambda_{1}A)M^{*} - W_{n} + x^{*}||^{2})$$

$$\leq \frac{1}{2} (||M_{n} - M^{*}||^{2} + ||W_{n} - x^{*}||^{2}$$

$$- ||(M_{n} - W_{n}) - \lambda_{1}(AM_{n} - AM^{*})||^{2}),$$

which implies that

$$||W_{n} - x^{*}||^{2} \le ||M_{n} - M^{*}||^{2} - ||(M_{n} - W_{n}) - \lambda_{1}(AM_{n} - AM^{*})||^{2}$$

$$= ||M_{n} - M^{*}||^{2} - ||M_{n} - W_{n}||^{2} + 2\lambda_{1}\langle M_{n} - W_{n}, AM_{n} - AM^{*}\rangle$$

$$- \lambda_{1}^{2} ||AM_{n} - AM^{*}||^{2}.$$
(3.7)

From the definition of W_n , we have

$$||W_{n} - x^{*}||^{2}$$

$$= ||P_{C}(I - \lambda_{1}A)M_{n} - P_{C}(I - \lambda_{1}A)M^{*}||^{2}$$

$$\leq ||(I - \lambda_{1}A)M_{n} - (I - \lambda_{1}A)M^{*}||^{2}$$

$$= ||(M_{n} - M^{*}) - \lambda_{1}(AM_{n} - AM^{*})||^{2}$$

$$= ||M_{n} - M^{*}||^{2} - 2\lambda_{1}\langle M_{n} - M^{*}, AM_{n} - AM^{*}\rangle + \lambda_{1}^{2}||AM_{n} - AM^{*}||^{2}$$

$$\leq ||M_{n} - M^{*}||^{2} - 2\lambda_{1}\alpha ||AM_{n} - AM^{*}||^{2} + \lambda_{1}^{2}||AM_{n} - AM^{*}||^{2}$$

$$= ||M_{n} - M^{*}||^{2} - \lambda_{1}(2\alpha - \lambda_{1})||AM_{n} - AM^{*}||^{2}.$$
(3.8)

From the definition of x_n , (3.3), (3.6) and (3.8), we have

$$||x_{n+1} - x^*||^2 \le \alpha_n ||u - x^*||^2 + \beta_n ||P_C(I - \lambda_n(I - T))x_n - x^*||^2$$

$$+ \gamma_n ||W_n - x^*||^2$$

$$\le \alpha_n ||u - x^*||^2 + \beta_n ||x_n - x^*||^2$$

$$+ \gamma_n \left(||M_n - M^*||^2 - \lambda_1(2\alpha - \lambda_1) ||AM_n - AM^*||^2 \right)$$

$$\le \alpha_n ||u - x^*||^2 + \beta_n ||x_n - x^*||^2 + \gamma_n ||x_n - x^*||^2$$

$$- \gamma_n \lambda_1(2\alpha - \lambda_1) ||AM_n - AM^*||^2$$

$$= \alpha_n ||u - x^*||^2 + (1 - \alpha_n) ||x_n - x^*||^2$$

$$- \gamma_n \lambda_1(2\alpha - \lambda_1) ||AM_n - AM^*||^2 .$$

It implies that

$$\gamma_{n}\lambda_{1}(2\alpha - \lambda_{1}) \|AM_{n} - AM^{*}\|^{2}$$

$$\leq \alpha_{n} \|u - x^{*}\|^{2} + \|x_{n} - x^{*}\|^{2} - \|x_{n+1} - x^{*}\|^{2}$$

$$\leq \alpha_{n} \|u - x^{*}\|^{2} + \|x_{n} - x_{n+1}\| (\|x_{n} - x^{*}\| + \|x_{n+1} - x^{*}\|). \quad (3.9)$$

From the condition (ii) and (3.4), we derive

$$\lim_{n \to \infty} ||AM_n - AM^*|| = 0. \tag{3.10}$$

From the definition of x_n , (3.3), (3.6) and (3.7), we have

$$||x_{n+1} - x^*||^2 \le \alpha_n ||u - x^*||^2 + \beta_n ||P_C(I - \lambda_n (I - T))x_n - x^*||^2 + \gamma_n ||W_n - x^*||^2$$

$$\le \alpha_n ||u - x^*||^2 + \beta_n ||x_n - x^*||^2$$

$$+ \gamma_n (||M_n - M^*||^2 - ||M_n - W_n||^2 + 2\lambda_1 \langle M_n - W_n, AM_n - AM^* \rangle$$

$$- \lambda_1^2 ||AM_n - AM^*||^2)$$

$$\le \alpha_n ||u - x^*||^2 + \beta_n ||x_n - x^*||^2 + \gamma_n ||x_n - x^*||^2 - \gamma_n ||M_n - W_n||^2$$

$$+ 2\lambda_1 ||M_n - W_n|| ||AM_n - AM^*||$$

$$= \alpha_n ||u - x^*||^2 + (1 - \alpha_n) ||x_n - x^*||^2 - \gamma_n ||M_n - W_n||^2$$

$$+ 2\lambda_1 ||M_n - W_n|| ||AM_n - AM^*||.$$

It follows that

$$\gamma_{n} \| M_{n} - W_{n} \|^{2} \leq \alpha_{n} \| u - x^{*} \|^{2} + \| x_{n} - x^{*} \|^{2} - \| x_{n+1} - x^{*} \|^{2}
+ 2\lambda_{1} \| M_{n} - W_{n} \| \| AM_{n} - AM^{*} \|
\leq \alpha_{n} \| u - x^{*} \|^{2} + \| x_{n} - x_{n+1} \| (\| x_{n} - x^{*} \| + \| x_{n+1} - x^{*} \|)
+ 2\lambda_{1} \| M_{n} - W_{n} \| \| AM_{n} - AM^{*} \| .$$
(3.11)

From the condition (ii), (3.4) and (3.10), we derive

$$\lim_{n \to \infty} ||M_n - W_n|| = 0. (3.12)$$

From the property of P_C , we have

$$\begin{aligned} \|P_{C}(I - \lambda_{2}B)x_{n} - x^{*}\|^{2} &= \|P_{C}(I - \lambda_{2}B)x_{n} - P_{C}(I - \lambda_{2}B)x^{*}\|^{2} \\ &\leq \langle (I - \lambda_{2}B)x_{n} - (I - \lambda_{2}B)x^{*}, P_{C}(I - \lambda_{2}B)x_{n} - x^{*} \rangle \\ &= \frac{1}{2} \left(\|(I - \lambda_{2}B)x_{n} - (I - \lambda_{2}B)x^{*}\|^{2} \right. \\ &+ \|P_{C}(I - \lambda_{2}B)x_{n} - x^{*}\|^{2} \\ &- \|(I - \lambda_{2}B)x_{n} - (I - \lambda_{2}B)x^{*} - P_{C}(I - \lambda_{2}B)x_{n} + x^{*}\|^{2}) \\ &\leq \frac{1}{2} \left(\|x_{n} - x^{*}\|^{2} + \|P_{C}(I - \lambda_{2}B)x_{n} - x^{*}\|^{2} \right. \\ &- \|(x_{n} - P_{C}(I - \lambda_{2}B)x_{n}) - \lambda_{2}(Bx_{n} - Bx^{*})\|^{2} \right). \end{aligned}$$

This implies that

$$\|P_{C}(I - \lambda_{2}B)x_{n} - x^{*}\|^{2} \leq \|x_{n} - x^{*}\|^{2}$$

$$- \|(x_{n} - P_{C}(I - \lambda_{2}B)x_{n}) - \lambda_{2}(Bx_{n} - Bx^{*})\|^{2}$$

$$= \|x_{n} - x^{*}\|^{2} - \|x_{n} - P_{C}(I - \lambda_{2}B)x_{n}\|^{2}$$

$$+ 2\lambda_{2}\langle x_{n} - P_{C}(I - \lambda_{2}B)x_{n}, Bx_{n} - Bx^{*}\rangle$$

$$- \lambda_{2}^{2} \|Bx_{n} - Bx^{*}\|^{2}.$$
(3.13)

By using the same method as (3.8), we have

$$\|P_C(I - \lambda_2 B)x_n - x^*\|^2 \le \|x_n - x^*\|^2 - \lambda_2(2\beta - \lambda_2) \|Bx_n - Bx^*\|^2.$$
 (3.14)

Since $x^* \in VI(C, A)$, we have

$$||W_{n} - x^{*}||^{2} = ||P_{C}(I - \lambda_{1}A)M_{n} - P_{C}(I - \lambda_{1}A)x^{*}||^{2}$$

$$\leq ||ax_{n} + (1 - a)P_{C}(I - \lambda_{2}B)x_{n} - x^{*}||^{2}$$

$$= ||a(x_{n} - x^{*}) + (1 - a)(P_{C}(I - \lambda_{2}B)x_{n} - x^{*})||^{2}$$

$$\leq a ||x_{n} - x^{*}||^{2} + (1 - a)||P_{C}(I - \lambda_{2}B)x_{n} - x^{*}||^{2}.$$
(3.15)

From the definition of x_n , (3.3), (3.14) and (3.15), we have

$$\begin{aligned} & \|x_{n+1} - x^*\|^2 \\ & \leq \alpha_n \|u - x^*\|^2 + \beta_n \|P_C(I - \lambda_n (I - T))x_n - x^*\|^2 + \gamma_n \|W_n - x^*\|^2 \\ & \leq \alpha_n \|u - x^*\|^2 + \beta_n \|P_C(I - \lambda_n (I - T))x_n - x^*\|^2 \\ & + \gamma_n \left(a \|x_n - x^*\|^2 + (1 - a) \|P_C(I - \lambda_2 B)x_n - x^*\|^2\right) \end{aligned}$$

$$\leq \alpha_{n} \|u - x^{*}\|^{2} + \beta_{n} \|P_{C}(I - \lambda_{n}(I - T))x_{n} - x^{*}\|^{2}$$

$$+ \gamma_{n} \left(a \|x_{n} - x^{*}\|^{2} + (1 - a) \left(\|x_{n} - x^{*}\|^{2} - \lambda_{2}(2\beta - \lambda_{2}) \|Bx_{n} - Bx^{*}\|^{2} \right) \right)$$

$$\leq \alpha_{n} \|u - x^{*}\|^{2} + \beta_{n} \|x_{n} - x^{*}\|^{2} + \gamma_{n}(a \|x_{n} - x^{*}\|^{2} + (1 - a) \|x_{n} - x^{*}\|^{2}$$

$$- (1 - a)\lambda_{2}(2\beta - \lambda_{2}) \|Bx_{n} - Bx^{*}\|^{2})$$

$$= \alpha_n \|u - x^*\|^2 + (1 - \alpha_n) \|x_n - x^*\|^2 - (1 - a)\lambda_2 \gamma_n (2\beta - \lambda_2) \|Bx_n - Bx^*\|^2.$$

This implies that

$$(1-a)\lambda_{2}\gamma_{n}(2\beta - \lambda_{2}) \|Bx_{n} - Bx^{*}\|^{2}$$

$$\leq \alpha_{n} \|u - x^{*}\|^{2} + \|x_{n} - x^{*}\|^{2} - \|x_{n+1} - x^{*}\|^{2}$$

$$\leq \alpha_{n} \|u - x^{*}\|^{2} + \|x_{n} - x_{n+1}\| (\|x_{n} - x^{*}\| + \|x_{n+1} - x^{*}\|).$$
 (3.16)

From the condition (ii) and (3.4), we have

$$\lim_{n \to \infty} ||Bx_n - Bx^*|| = 0. \tag{3.17}$$

From the definition of x_n , (3.3) and (3.13), we have

$$||x_{n+1} - x^*||^2 \le \alpha_n ||u - x^*||^2 + \beta_n ||P_C(I - \lambda_n (I - T))x_n - x^*||^2$$

$$+ \gamma_n \left(a ||x_n - x^*||^2 + (1 - a) ||P_C(I - \lambda_2 B)x_n - x^*||^2 \right)$$

$$\le \alpha_n ||u - x^*||^2 + \beta_n ||x_n - x^*||^2 + \gamma_n (a ||x_n - x^*||^2$$

$$+ (1 - a)(||x_n - x^*||^2 - ||x_n - P_C(I - \lambda_2 B)x_n||^2$$

$$+ 2\lambda_2 \langle x_n - P_C(I - \lambda_2 B)x_n, Bx_n - Bx^* \rangle - \lambda_2^2 ||Bx_n - Bx^*||^2))$$

$$\le \alpha_n ||u - x^*||^2 + (1 - \alpha_n) ||x_n - x^*||^2$$

$$- \gamma_n (1 - a) ||x_n - P_C(I - \lambda_2 B)x_n||^2$$

$$+ 2\lambda_2 \gamma_n (1 - a) \langle x_n - P_C(I - \lambda_2 B)x_n, Bx_n - Bx^* \rangle$$

$$\le \alpha_n ||u - x^*||^2 + ||x_n - x^*||^2 - \gamma_n (1 - a) ||x_n - P_C(I - \lambda_2 B)x_n||^2$$

$$+ 2\lambda_2 \gamma_n (1 - a) ||x_n - P_C(I - \lambda_2 B)x_n|| ||Bx_n - Bx^*||.$$

This implies that

$$\gamma_{n}(1-a) \|x_{n} - P_{C}(I - \lambda_{2}B)x_{n}\|^{2}
\leq \alpha_{n} \|u - x^{*}\|^{2} + \|x_{n} - x^{*}\|^{2} - \|x_{n+1} - x^{*}\|^{2}
+ 2\lambda_{2}\gamma_{n}(1-a) \|x_{n} - P_{C}(I - \lambda_{2}B)x_{n}\| \|Bx_{n} - Bx^{*}\|
\leq \alpha_{n} \|u - x^{*}\|^{2} + \|x_{n} - x_{n+1}\| (\|x_{n} - x^{*}\| + \|x_{n+1} - x^{*}\|)
+ 2\lambda_{2}\gamma_{n}(1-a) \|x_{n} - P_{C}(I - \lambda_{2}B)x_{n}\| \|Bx_{n} - Bx^{*}\|.$$
(3.18)

From the condition (ii), (3.4) and (3.17), we derive

$$\lim_{n \to \infty} ||x_n - P_C(I - \lambda_2 B)x_n|| = 0.$$

Since

$$||M_n - x_n|| = ||ax_n + (1 - a)P_C(I - \lambda_2 B)x_n - x_n||$$

= $(1 - a) ||P_C(I - \lambda_2 B)x_n - x_n||$

and $||P_C(I - \lambda_2 B)x_n - x_n|| \to 0$ as $n \to \infty$, we have

$$\lim_{n \to \infty} ||M_n - x_n|| = 0. (3.19)$$

From (3.12) and (3.19), we have

$$\lim_{n \to \infty} ||W_n - x_n|| = 0. (3.20)$$

Since

$$x_{n+1} - x_n = \alpha_n(u - x_n) + \beta_n(P_C(I - \lambda_n(I - T))x_n - x_n) + \gamma_n(W_n - x_n),$$

it implies by the condition (ii), the condition (iii), (3.4) and (3.20) that

$$\lim_{n \to \infty} ||P_C(I - \lambda_n(I - T))x_n - x_n|| = 0.$$
 (3.21)

Step 4. We show that $\limsup_{n\to\infty} \langle u-z_0, x_n-z_0 \rangle \leq 0$, where $z_0 = P_{\mathcal{F}}u$. To show this inequality, take a subsequence $\{x_{n_i}\}$ of $\{x_n\}$ such that

$$\limsup_{n \to \infty} \langle u - z_0, x_n - z_0 \rangle = \lim_{j \to \infty} \langle u - z_0, x_{n_j} - z_0 \rangle.$$

Without loss of generality, we may assume that $x_{n_j} \rightharpoonup \omega$ as $j \to \infty$, where $\omega \in C$. First, we show that $\omega \in F(T)$. From Remark 2.9, we have $F(T) = VI(C, I - T) = F(P_C(I - \lambda_{n_j}(I - T)))$. Assume that $\omega \notin F(T)$, that $\omega \neq P_C(I - \lambda_{n_j}(I - T))\omega$. By $x_{n_j} \rightharpoonup \omega$ as $j \to \infty$, (3.21) and Opial's property, we have

$$\begin{aligned} & \liminf_{j \to \infty} \left\| x_{n_j} - \omega \right\| < \liminf_{j \to \infty} \left\| x_{n_j} - P_C(I - \lambda_{n_j}(I - T)) \omega \right\| \\ & \leq \liminf_{j \to \infty} (\left\| x_{n_j} - P_C(I - \lambda_{n_j}(I - T)) x_{n_j} \right\| \\ & + \left\| P_C(I - \lambda_{n_j}(I - T)) x_{n_j} - P_C(I - \lambda_{n_j}(I - T)) \omega \right\|) \\ & \leq \liminf_{j \to \infty} (\left\| x_{n_j} - P_C(I - \lambda_{n_j}(I - T)) x_{n_j} \right\| \\ & + \left\| x_{n_j} - \omega \right\| + \lambda_{n_j} \left\| (I - T) x_{n_j} - (I - T) \omega \right\|) \\ & \leq \liminf_{j \to \infty} \left\| x_{n_j} - \omega \right\|. \end{aligned}$$

This is a contradiction, we have

$$\omega \in F(T). \tag{3.22}$$

Next, we show that $\omega \in VI(C,A) \cap VI(C,B)$. From Lemma 2.6, we have $VI(C,A) \cap VI(C,B) = F(G)$. From (3.20), we have $W_{n_j} \rightharpoonup \omega$ as $j \to \infty$.

$$||W_n - G(W_n)|| = ||P_C(I - \lambda_1 A) (ax_n + (1 - a)P_C(I - \lambda_2 B)x_n) - G(W_n)||$$

= ||G(x_n) - G(W_n)||
\leq ||x_n - W_n||.

From (3.20), we have

$$\lim_{n \to \infty} ||W_n - G(W_n)|| = 0.$$

From $W_{n_j} \rightharpoonup \omega$ as $j \to \infty$ and Lemma 2.4, we have

$$\omega \in F(G) = VI(C, A) \cap VI(C, B). \tag{3.23}$$

From (3.22) and (3.23), we have $\omega \in \mathcal{F}$. Since $x_{n_j} \rightharpoonup \omega$ as $j \to \infty$, we have

$$\limsup_{n \to \infty} \langle u - z_0, x_n - z_0 \rangle = \lim_{j \to \infty} \langle u - z_0, x_{n_j} - z_0 \rangle$$
$$= \langle u - z_0, \omega - z_0 \rangle \le 0. \tag{3.24}$$

Step 5. Finally, we show that the sequence $\{x_n\}$ converges strongly to $z_0 = P_{\mathcal{F}}u$. From the definition of x_n and $z_0 = P_{\mathcal{F}}u$, we have

$$||x_{n+1} - z_{0}||^{2} = ||\alpha_{n}(u - z_{0}) + \beta_{n}(P_{C}(I - \lambda_{n}(I - T))x_{n} - z_{0}) + \gamma_{n}(W_{n} - z_{0})||^{2}$$

$$\leq ||\beta_{n}(P_{C}(I - \lambda_{n}(I - T))x_{n} - z_{0}) + \gamma_{n}(W_{n} - z_{0})||^{2}$$

$$+ 2\alpha_{n}\langle u - z_{0}, x_{n+1} - z_{0}\rangle$$

$$\leq \beta_{n} ||P_{C}(I - \lambda_{n}(I - T))x_{n} - z_{0}||^{2} + \gamma_{n} ||W_{n} - z_{0}||^{2}$$

$$+ 2\alpha_{n}\langle u - z_{0}, x_{n+1} - z_{0}\rangle$$

$$\leq \beta_{n} ||x_{n} - z_{0}||^{2} + \gamma_{n} ||x_{n} - z_{0}||^{2} + 2\alpha_{n}\langle u - z_{0}, x_{n+1} - z_{0}\rangle$$

$$= (1 - \alpha_{n}) ||x_{n} - z_{0}||^{2} + 2\alpha_{n}\langle u - z_{0}, x_{n+1} - z_{0}\rangle.$$

From the condition (ii), (3.24) and Lemma 2.5, we can conclude that the sequence $\{x_n\}$ converges strongly to $z_0 = P_{\mathcal{F}}u$. This completes the proof.

From our main result, Lemma 1.1 and Lemma 2.6, we have the following corollary:

Corollary 3.2. Let C be a nonempty closed convex subset of a real Hilbert space H and let $T: C \to C$ be a quasi-nonexpansive mapping. Let $A, B: C \to H$ be α, β -inverse strongly monotone mappings, respectively. Define the mapping $G: C \to C$ by $Gx = P_C(I - \lambda_1 A)(ax + (1 - a)P_C(I - \lambda_2 B)x)$ for all $x \in C$. Assume $\mathcal{F} = F(G) \cap F(T) \neq \emptyset$. Suppose that $x_1, u \in C$ and let $\{x_n\}$ be a sequence generated by

$$x_{n+1} = \alpha_n u + \beta_n P_C (I - \lambda_n (I - T)) x_n + \gamma_n G x_n, \ \forall n \ge 1,$$

where $\lambda_1 \in (0, 2\alpha), \lambda_2 \in (0, 2\beta)$ and $\{\alpha_n\}, \{\beta_n\}, \{\gamma_n\}$ are sequences in [0, 1]. Suppose the following conditions holds:

- (i) $\alpha_n + \beta_n + \gamma_n = 1$,
- (ii) $\lim_{n\to\infty} \alpha_n = 0$ and $\sum_{n=1}^{\infty} \alpha_n = \infty$,
- (iii) $0 < a \le \beta_n \le c < 1$ for all $n \ge 1$,
- (iv) $\sum_{n=1}^{\infty} \lambda_n < \infty$ and $0 < \lambda_n < 1$,
- (v) $\sum_{n=1}^{\infty} |\alpha_{n+1} \alpha_n| < \infty, \sum_{n=1}^{\infty} |\beta_{n+1} \beta_n| < \infty, \sum_{n=1}^{\infty} |\lambda_{n+1} \lambda_n| < \infty.$

Then $\{x_n\}$ converges strongly to $z_0 = P_{\mathcal{F}}u$ and (z_0, y_0) is a solution of (1.3), where $y_0 = P_C(I - \lambda_2 B) z_0$.

4 Application

In this section, we prove strong convergence theorems involving the set of fixed points of nonspreading mapping.

A mapping $T: C \to C$ is called nonspreading if

$$2||Tx - Ty||^2 \le ||Tx - y||^2 + ||Ty - x||^2, \ \forall x, y \in C.$$

The such mapping is defined by Kohsaka and Takahashi [19].

The following lemma is needed to prove in application.

Lemma 4.1 ([19]). Let H be a Hilbert space, let C be a nonempty closed convex subset of H, and let S be a nonspreading mapping of C into itself. Then F(S) is closed and convex.

In 2009, Kangtunyakarn and Suantai [20] introduced the S-mapping generated by $T_1, T_2, ..., T_N$ and $\lambda_1, \lambda_2, ..., \lambda_N$ as following. Let C be a nonempty convex subset of a real Banach space. Let $\{T_i\}_{i=1}^N$ be a finite family of (nonexpansive) mappings of C into itself. For each j=1,2,...,N, let $\alpha_j=(\alpha_1^j,\alpha_2^j,\alpha_3^j)\in I\times I\times I$, where $I\in[0,1]$ and $\alpha_1^j+\alpha_2^j+\alpha_3^j=1$. Define the mapping $S:C\to C$ as follows:

$$\begin{split} U_0 &= I, \\ U_1 &= \alpha_1^1 T_1 U_0 + \alpha_2^1 U_0 + \alpha_3^1 I, \\ U_2 &= \alpha_1^2 T_2 U_1 + \alpha_2^2 U_1 + \alpha_3^2 I, \\ U_3 &= \alpha_1^3 T_3 U_2 + \alpha_2^3 U_2 + \alpha_3^3 I, \\ & \cdot \\ & \cdot \\ & \cdot \\ U_{N-1} &= \alpha_1^{N-1} T_{N-1} U_{N-2} + \alpha_2^{N-1} U_{N-2} + \alpha_3^{N-1} I, \\ S &= U_N &= \alpha_1^N T_N U_{N-1} + \alpha_2^N U_{N-1} + \alpha_3^N I. \end{split}$$

This mapping is called an S-mapping generated by $T_1, T_2, ..., T_N$ and $\alpha_1, \alpha_2, ..., \alpha_N$.

For every i=1,2,...,N. Put $\alpha_3^i=0$ in Definition 4.1, then the S-mapping is reduced to the K-mapping defined by Kangtunyakarn and Suantai [21] as following. Let C be a nonempty convex subset of a real Banach space. Let $\{T_i\}_{i=1}^N$ be a finite family of mappings of C into itself, and let $\lambda_1, \lambda_2, ..., \lambda_N$ be real numbers such that $0 \le \lambda_i \le 1$ for every i=1,2,...,N. We define a mapping $K: C \to C$ as follows:

$$\begin{split} U_0 &= I, \\ U_1 &= \lambda_1 T_1 + (1 - \lambda_1) I, \\ U_2 &= \lambda_2 T_2 U_1 + (1 - \lambda_2) U_1, \\ U_3 &= \lambda_3 T_3 U_2 + (1 - \lambda_3) U_2, \\ & \cdot \\ & \cdot \\ U_{N-1} &= \lambda_{N-1} T_{N-1} U_{N-2} + (1 - \lambda_{N-1}) U_{N-2}, \\ K &= U_N &= \lambda_N T_N U_{N-1} + (1 - \lambda_N) U_{N-1}. \end{split}$$

Such a mapping K is called the K-mapping generated by $T_1, T_2, ..., T_N$ and $\lambda_1, \lambda_2, ..., \lambda_N$.

Lemma 4.2 ([22]). Let C be a nonempty closed convex subset of a real Hilbert space H. Let $\{T_i\}_{i=1}^N$ be a finite family of nonspreading mappings of C into C with $\bigcap_{i=1}^N F(T_i) \neq \emptyset$, and let $\alpha_j = (\alpha_1^j, \alpha_2^j, \alpha_3^j) \in I \times I \times I$, j = 1, 2, ..., N, where I = [0,1], $\alpha_1^j + \alpha_2^j + \alpha_3^j = 1$, α_1^j , $\alpha_3^j \in (0,1)$ for all j = 1, 2, ..., N - 1 and $\alpha_1^N \in (0,1], \alpha_3^N \in [0,1)$ $\alpha_2^j \in [0,1)$ for all j = 1, 2, ..., N. Let S be the mapping generated by $T_1, T_2, ..., T_N$ and $\alpha_1, \alpha_2, ..., \alpha_N$. Then $F(S) = \bigcap_{i=1}^N F(T_i)$ and S is a quasinonexpansive mapping.

Lemma 4.3 ([23]). Let C be a nonempty closed convex subset of a real Hilbert space H. Let $\{T_i\}_{i=1}^N$ be a finite family of nonspreading mappings of C into itself with $\bigcap_{i=1}^N F(T_i) \neq \emptyset$ and let $\lambda_1, \lambda_2, ..., \lambda_N$ be real numbers such that $0 < \lambda_i < 1$ for every i = 1, 2, ..., N-1 and $0 < \lambda_N \leq 1$. Let K be the K-mapping generated by $T_1, T_2, ..., T_N$ and $\lambda_1, \lambda_2, ..., \lambda_N$. Then $F(K) = \bigcap_{i=1}^N F(T_i)$ and K is quasinonexpansive mapping.

By using these results, we obtain the following theorems

Theorem 4.4. Let C be a nonempty closed convex subset of a real Hilbert space H. Let $\{T_i\}_{i=1}^N$ be a finite family of nonspreading mappings of C into C with $\bigcap_{i=1}^N F(T_i) \neq \emptyset$, and let $\alpha_j = (\alpha_1^j, \alpha_2^j, \alpha_3^j) \in I \times I \times I$, j = 1, 2, ..., N, where I = [0, 1], $\alpha_1^j + \alpha_2^j + \alpha_3^j = 1$, α_1^j , $\alpha_3^j \in (0, 1)$ for all j = 1, 2, ..., N - 1 and $\alpha_1^N \in I$

 $(0,1], \alpha_3^N \in [0,1)$ $\alpha_2^j \in [0,1)$ for all j=1,2,...,N. Let S be the mapping generated by $T_1,T_2,...,T_N$ and $\alpha_1,\alpha_2,...,\alpha_N$. Let $A,B:C\to H$ be α,β -inverse strongly monotone mappings, respectively. Define the mapping $G:C\to C$ by $Gx=P_C(I-\lambda_1A)(ax+(1-a)P_C(I-\lambda_2B)x)$ for all $x\in C$. Assume $\mathcal{F}=VI(C,A)\cap VI(C,B)\cap \bigcap_{i=1}^N F(T_i)\neq \emptyset$. Suppose that $x_1,u\in C$ and let $\{x_n\}$ be sequence generated by

$$x_{n+1} = \alpha_n u + \beta_n P_C (I - \lambda_n (I - S)) x_n + \gamma_n G x_n, \ \forall n \ge 1,$$

where $\lambda_1 \in (0, 2\alpha), \lambda_2 \in (0, 2\beta)$ and $\{\alpha_n\}, \{\beta_n\}, \{\gamma_n\}$ are sequences in [0, 1]. Suppose the following conditions hold:

- (i) $\alpha_n + \beta_n + \gamma_n = 1$,
- (ii) $\lim_{n\to\infty} \alpha_n = 0$ and $\sum_{n=1}^{\infty} \alpha_n = \infty$,
- (iii) $0 < a \le \beta_n \le c < 1 \text{ for all } n \ge 1$,
- (iv) $\sum_{n=1}^{\infty} \lambda_n < \infty$ and $0 < \lambda_n < 1$,
- (v) $\sum_{n=1}^{\infty} |\alpha_{n+1} \alpha_n| < \infty, \sum_{n=1}^{\infty} |\beta_{n+1} \beta_n| < \infty, \sum_{n=1}^{\infty} |\lambda_{n+1} \lambda_n| < \infty.$

Then $\{x_n\}$ converges strongly to $z_0 = P_{\mathcal{F}}u$.

Proof. By using Theorem 3.1 and Lemma 4.2, we obtain the conclusion. \Box

Theorem 4.5. Let C be a nonempty closed convex subset of a real Hilbert space H. Let $\{T_i\}_{i=1}^N$ be a finite family of nonspreading mappings of C into itself with $\bigcap_{i=1}^N F(T_i) \neq \emptyset$ and let $\lambda_1, \lambda_2, ..., \lambda_N$ be real numbers such that $0 < \lambda_i < 1$ for every i = 1, 2, ..., N-1 and $0 < \lambda_N \leq 1$. Let K be the K-mapping generated by $T_1, T_2, ..., T_N$ and $\lambda_1, \lambda_2, ..., \lambda_N$. Let $A, B : C \to H$ be α, β -inverse strongly monotone mappings, respectively. Define the mapping $G : C \to C$ by $Gx = P_C(I - \lambda_1 A)(ax + (1-a)P_C(I - \lambda_2 B)x)$ for all $x \in C$. Assume $\mathcal{F} = VI(C, A) \cap VI(C, B) \cap \bigcap_{i=1}^N F(T_i) \neq \emptyset$. Suppose that $x_1, u \in C$ and let $\{x_n\}$ be sequence generated by

$$x_{n+1} = \alpha_n u + \beta_n P_C(I - \lambda_n (I - K)) x_n + \gamma_n G x_n, \ \forall n \ge 1,$$

where $\lambda_1 \in (0, 2\alpha), \lambda_2 \in (0, 2\beta)$ and $\{\alpha_n\}, \{\beta_n\}, \{\gamma_n\}$ are sequences in [0, 1]. Suppose the following conditions hold:

- (i) $\alpha_n + \beta_n + \gamma_n = 1$,
- (ii) $\lim_{n\to\infty} \alpha_n = 0$ and $\sum_{n=1}^{\infty} \alpha_n = \infty$,
- (iii) $0 < a \le \beta_n \le c < 1 \text{ for all } n \ge 1$,
- (iv) $\sum_{n=1}^{\infty} \lambda_n < \infty$ and $0 < \lambda_n < 1$,
- (v) $\sum_{n=1}^{\infty} |\alpha_{n+1} \alpha_n| < \infty, \sum_{n=1}^{\infty} |\beta_{n+1} \beta_n| < \infty, \sum_{n=1}^{\infty} |\lambda_{n+1} \lambda_n| < \infty.$

Then $\{x_n\}$ converges strongly to $z_0 = P_{\mathcal{F}}u$.

Proof. By using Theorem 3.1 and Lemma 4.3, we obtain the conclusion. \Box

The following result is direct proved from Theorem 4.4. Therefore, we omit the prove.

Corollary 4.6. Let C be a nonempty closed convex subset of a real Hilbert space. Let T be a nonspreading mappings of C into itself with $F(T) \neq \emptyset$. Let $A, B : C \to H$ be α, β -inverse strongly monotone mappings, respectively. Define the mapping $G: C \to C$ by $Gx = P_C(I - \lambda_1 A)(ax + (1 - a)P_C(I - \lambda_2 B)x)$ for all $x \in C$. Assume $\mathcal{F} = VI(C, A) \cap VI(C, B) \cap F(T) \neq \emptyset$. Suppose that $x_1, u \in C$ and let $\{x_n\}$ be sequence generated by

$$x_{n+1} = \alpha_n u + \beta_n P_C (I - \lambda_n (I - T)) x_n + \gamma_n G x_n, \ \forall n \ge 1,$$

where $\lambda_1 \in (0, 2\alpha), \lambda_2 \in (0, 2\beta)$ and $\{\alpha_n\}, \{\beta_n\}, \{\gamma_n\}$ are sequences in [0, 1]. Suppose the following conditions hold:

- (i) $\alpha_n + \beta_n + \gamma_n = 1$,
- (ii) $\lim_{n\to\infty} \alpha_n = 0$ and $\sum_{n=1}^{\infty} \alpha_n = \infty$,
- (iii) $0 < a \le \beta_n \le c < 1$ for all $n \ge 1$,
- (iv) $\sum_{n=1}^{\infty} \lambda_n < \infty$ and $0 < \lambda_n < 1$,
- (v) $\sum_{n=1}^{\infty} |\alpha_{n+1} \alpha_n| < \infty, \sum_{n=1}^{\infty} |\beta_{n+1} \beta_n| < \infty, \sum_{n=1}^{\infty} |\lambda_{n+1} \lambda_n| < \infty.$

Then $\{x_n\}$ converges strongly to $z_0 = P_{\mathcal{F}}u$.

References

- [1] H. Iiduka, Fixed point optimization algorithm and its application to network bandwidth allocation, J. Comp. Appl. Math. 236 (2012) 1733–1742.
- [2] G.T. Herman, Fundamentals of Computerized Tomography: Image Reconstruction from Projections, Springer, New York, 2009.
- [3] A. Beck, M. Teboulle, Fast gradient-based algorithms for constrained total variation de-noising and deblurring problems, IEEE Trans Image Process 18 (2009) 2419–2434.
- [4] J.L. Lions, G. Stampacchia, Variational inequalities, Comm. Pure Appl. Math. 20 (1967) 493–517.
- [5] D. Kinderlehrer, G. Stampaccia, An Iteration to Variational Inequalities and Their Applications, Academic Press, New York, 1990.
- [6] N. Nadezhkina, W. Takahashi, Weak convergence theorem by an extragradientmethod for nonexpansive mappings and monotone mappings, J. Optim. Theory Appl. 128 (2006) 191–201.

- [7] J.C. Yao, O. Chadli, Pseudomonotone complementarity problems and variational inequalities, Handbook of generalized convexity and monotonicity, Springer New York 76 (2005) 501–558.
- [8] Y. Yao, J.C. Yao, On modified iterative method for nonexpansive mappings and monotone mappings, Appl. Math. Comput. 186 (2007) 1551–1558.
- [9] L.C. Ceng, C.Y. Wang, J.C. Yao, Strong convergence theorems by a relaxed extragradient method for a general system of variational inequalities, Math. Methods Oper. Res. 67 (2008) 357–390.
- [10] A. Kangtunyakarn, An iterative algorithm to approximate a common element of the set of common fixed points for a finite family of strict pseudo-contractions and of the set of solutions for a modified system of variational inequalities, Fixed Point Theory and Applications 143 (2013).
- [11] M. Tian, X. Jin, A general iterative method for quasi-nonexpansive mappings in Hilbert space, Journal of Inequalities and Applications, 38 (2012).
- [12] P.E. Mainge, The viscosity approximation process for quasi-nonexpansive mappings in Hilbert spaces, Comp. Math. Appl. 59 (2010) 74–79.
- [13] M. Tian, X. Jin, Strong convergent result for quasi-nonexpansive mappings in Hilbert spaces, Fixed Point Theory and Applications 88 (2011).
- [14] Z. Opial, Weak convergence of the sequence of successive approximation of nonexpansive mappings, Bull. Amer. Math. Soc. 73 (1967) 591–597.
- [15] M.O. Osilike, D.I. Igbokwe, Weak and strong convergence theorems for fixed points of pseudocontractions and solutions of monotone type operator equations, Comp. Math. Appl. 40 (2000) 559–567.
- [16] F.E. Browder, Nonlinear operators and nonlinear equations of evolution in Banach spaces, Proc. Sympos. Pure. Math. 18 (1976) 78–81.
- [17] H.K. Xu, An iterative approach to quadric optimization, J. Optim. Theory Appl. 116 (2003) 659–678.
- [18] W. Takahashi, Nonlinear Functional Analysis, Yokohama Publishers, Yokohama, 2000.
- [19] F. Kohsaka, W.Takahashi, Fixed point theorems for a class of nonlinear mappings related to maximal monotone operators in Banach spaces, Arch. Math. 91 (2008) 166–177.
- [20] A. Kangtunyakarn, S. Suantai, Hybrid iterative scheme for generalized equilibrium problems and fixed point problems of finite family of nonexpansive mappings, Nonlinear Analysis: Hybrid Systems 3 (2009) 296–309.
- [21] A. Kangtunyakarn, S. Suantai, A new mapping for finding common solutions of equilibrium problems and fixed point problems of finite family of nonexpansive mappings, Nonlinear Anal. 71 (2009) 4448–4460.

- [22] A. Kangtunyakarn, Strong convergence of the hybrid method for a finite family of nonspreading mappings and variational inequality problem, Fixed Point Theory and Applications 188 (2012).
- [23] A. Kangtunyakarn, S. Suantai, Convergence theorem of common fixed points for a family of nonspreading mapping in Hilbert space, Optim. Lett. 6 (2012) 957–961.

(Received 6 March 2014) (Accepted 7 May 2014)

 ${f T}$ HAI ${f J.}$ ${f M}$ ATH. Online @ http://thaijmath.in.cmu.ac.th