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1 Introduction

Let C' be a nonempty closed convex subset of a real Hilbert space H. We denote
F(T) by the set of all fixed points of T'. Recall that the mapping 7' : C — C'is
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said to be quasi-nonexpansive if F(T) # () and
[Tz = pl| < [l —pl,

for all z € C and p € F(T). Fixed point problems have been investigated in the
following literature; see [1-3].

A mapping A : C — H is called a-inverse-strongly monotone if there exists a
positive real number « > 0 such that

(Av — Ay,z — y) > a| Az — Ay|,

for all z,y € C.
Let B : C'— H. The variational inequality is to find a point u € C such that

(Bu,v —u) >0, (1.1)

for all v € C. The set of solutions of (I.1]) is denoted by VI(C, B).

The variational inequalities were initially studied and introduced by Stampac-
chia [4 [5]. This problem is widely used in economics, social sciences and other
fields, see for example [6-8].

Let Dy, D5 : C — H be two mappings. In 2008, Ceng et al. [9] introduced a
problem for finding (z*,2*) € C' x C such that

{ (MDiz*+a2* — 25z —a*) >0,Vz e C, (12)

(Ao Dox* + 2* —a* x — 2*) > 0,Vz € C,
which is called a system of variational inequalities where A1, A2 > 0.

In 2013, Kangtunyakarn [10] modified (I.2) for finding (z*,2*) € C' x C such
that

{ (* = (I —=MDy)(az*+(1—a)2z*),z —x*) > 0,Vz € C, (13)

(z* — (I = AoDo) x*,x — 2*) > 0,Vx € C,

which is called a modification of system of variational inequalities, for every
M, A2 > 0 and a € [0,1]. If a = 0, (L3) reduces to (IZ). He introduced the
relation between solutions of (3] and fixed point of the mapping G as follows:

Lemma 1.1. Let C be a nonempty closed convex subset of a real Hilbert space H
and let D1,Ds : C — H be mappings. For every A1, 2 > 0 and a € [0,1], the
following statements are equivalent:

1. (z*,2*) € C x C is a solution of problem (I.3),
2. x* is a fixved point of the mapping G : C — C, i.e., x* € F(QG), defined by

G(x) = Pc(I — /\1D1)(CLI + (1 — a)Pc(I — /\QDQ):E),
where z* = Po(I — Ao Dg)x*.
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Moreover, he introduced a new iterative algorithm {x,,} for finding a common
element of the set of fixed points of a finite family of k;—strictly pseudo-contractive
mappings and the set of solutions of problem (L3)) in Hilbert space. The sequence
{zn} is generated by

Yn = PC(I - )\2D2)xn7
Tnt1 = AnU + Bnn + mSPc (azn + (1 — a)yn — M1D1 (azn + (1 — a)yn)),Vn > 1,

where D1, Dy : C — H are dj,ds-inverse strongly monotone mappings, respec-
tively, and S : C' — C is S-mapping generated by a finite family of strictly pseudo-
contractive mapping and finite real numbers. Under suitable conditions of the
parameters {a, }, {Bn}, {7n}, A1, A2, a, he proved a strong convergence theorem of
iterative scheme {z,}.

In 2012, Tian and Jin [I1] proved the following strong convergence theorem of
iterative scheme {z,} generated by (4.

Theorem 1.2. Starting with an arbitrary chosen x1 € H, let the sequence {x,}
be generated by

Tn+1 = anﬂ)/f (In) + (1 - anA)wanv (14)

where the sequence {a,} C (0,1) satisfies lim,_oo aty, = 0, and >_7 | a, = 00.
Also w € (0,1), T, := (1 — w)I 4+ wT with two conditions on T:

1. [Tz —q| < ||z —ql|| for any x € H, and g € F(T); this means that T is a
quasi-noneTpansive mapping;

2. T is demiclosed on H; that is: if {yx} C H,yr — 2z, and (I — T)yr — 0,
then z € F(T).

Then {x,} converges strongly to the x* € F(T) which is the unique solution of the
VIP:

(vf = A)ax*,x —x*) <0,Vz € F(T).

Many authors proved strong convergence theorem involving a quasi-nonexpansive
mapping 7" by assuming the following conditions:

(1) T, := (1 —w)I + T,
(2) T is demiclosed on H.

see for example [12] and [13].

Motivated by [I0], we introduced the new method for finding a common el-
ement of the set of fixed points of a quasi-nonexpansive mapping and the set of
solutions of a modified system of variational inequalities without the conditions
(1) and (2) in a framework of Hilbert space. Using our main result, we obtain
strong convergence theorems involving a finite family of nonspreading mapping
and another corollary.
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2 Preliminaries

Let H be a real Hilbert space with inner product (.,.) and norm ||.||. Through-
out this paper, we denote weak and strong convergence by notations  —" and
“ —”" respectively. For every x € H, there exists a unique nearest point Pcz in C
such that ||z — Pox|| < ||z —y|| for all y € C. Pc is called the metric projection
of H onto C.

Remark 2.1. It is well-known that metric projection Po has the following prop-
erties:

1. P is firmly nonexpansive, i.e.,
|Pcx — Peyl|® < (Pex — Poy,x —y), Yo,y € H.
2. For each x € H,
z=Po(x) e (x—2,2—y)>0, VyeC.

Recall that H satisfies Opial’s condition [14], i.e., for any sequence {z,} with
T, — x, the inequality

liminf ||z, — 2| < liminf ||z, — y||
n—oo n—oo
holds for every y € H with y # x.

Lemma 2.2. Let H be a real Hilbert space. Then there holds the following well-
known results:

2 2 2
Loz £ yl” = llolI” £ 2z, y) + [y~
2 2
2z +yll” < =lI” +2(y, 2 +y),
forall x,y € H.

Lemma 2.3 ([I5]). Let (E,(.,.)) be an inner product space. Then, for all x,y,z €
E and o, 8,7 € [0,1] with a« + 8+~ = 1, we have

2 2 2 2 2
lax+ By + vz = allz|”+ B lyll" +~l|lzI° —aB |z -yl
2 2
—ayllz—z||” = Bylly — 2|I”.

Lemma 2.4 ([16]). Let E be a uniformly convex Banach space, let C' be a nonempty
closed conver subset of E and let S : C' — C be a nonexpansive mapping. Then
I — S is demi-closed at zero.

Lemma 2.5 ([I7]). Let {s,} be a sequence of nonnegative real numbers satisfying
Sn+1 S (1 - an) Sn + 5n7vn Z 1

where {ay,} is a sequence in (0,1) and {d,} is a sequence such that
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(1) oty an =00,
(2) limsup,,_, 2—2 <0 or Y07 [0 < .
Then, lim,, oo s, = 0.

Lemma 2.6 ([I0]). Let C be a nonempty closed convex subset of a real Hilbert
space H and let D1, D5 : C — H be dy,ds-inverse strongly monotone mappings,
respectively, which VI (C,D1)NVI(C,Dy) # (). Define a mapping G : C — C by

G (z) = Pc (I — M\D1) (ax 4+ (1 —a) Po (I — AoDs) x)

for every A1 € (0,2d1), A2 € (0,2d3) and a € (0,1). Then F(G) = VI (C,D1)N
VI(C,Ds).

Lemma 2.7 ([18]). Let H be a real Hilbert space, let C' be a nonempty closed
convex subset of H and let A be a mapping of C into H. Let uw € C. Then for
A >0,

u=Poc(I-A)usueVI(CA),

where P is the metric projection of H onto C.
The next result is very important for our main result.

Lemma 2.8. Let C be a nonempty closed convex subset of a real Hilbert space
H and let T : C — C be a quasi-nonexpansive mapping. Then VI (C,I —T) =
F(T).

Proof. Tt is easy to see that F (T) CVI(C,I1-T).
Let u € VI(C,I —T), then we have
(v—u,(I —=T)u) >0, Yv e C. (2.1)
Let v* € F (T, then we have
1T —o*[* < flu = o*||*. (2.2)
On the other hand
ITw = o*|* = | (u—v*) = (I = T)ul®
= Jlu—o*||* = 2(u —v*, (I = T)u) + ||(I = T)ul]*. (2.3)
From (Z2) and 23), we have
l = o*|* = 2(u = 0", (I = T)w) + [|( = T)ul|* < JJu—v"|*
From (Z1)), we have
(1 = T)ul® < 2(u—v*, (I = T)u).
It follows that u € F'(T'). Hence VI (C,I —T) C F (T). O
Remark 2.9. From Lemma[27 and 2.8, we have
F(T)=VI(C,I —T)=F(Po(I-\I-T))),
for all A > 0.
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3 Main Results

Theorem 3.1. Let C be a nonempty closed convex subset of a real Hilbert space
H and let T : C — C be a quasi-nonexpansive mapping. Let A,B : C — H be
«, B-inverse strongly monotone mappings, respectively. Define the mapping G :
C— CbyGr=Pe(I—-MA)(ax+ (1 —a)Pc(I — X eB)x) for all x € C. Assume
F=VIC,A)NVI(C,B)NF(T) # 0 . Suppose that x1,u € C and let {z,} be a

sequence generated by
Tnt1 = aptt + B Po(I — A\(I — T))xp + Gy, Yn > 1, (3.1)

where A1 € (0,2a), A2 € (0,28) and {an}, {Bn}, {1} are sequences in [0,1]. Sup-
pose the following conditions holds:

(1) an+Bn+vm =1,

(i) limp—oo p =0 and Y7 | o, = o0,

(iii) 0<a<B,<c<1foralln>1,

(iv) D02 A <ooand 0 < A, <1,

(v) it lantt —an| <00, 3707 1 [But1 — Bal < 00,3207 A1 — An| < 0.

Then {x,} converges strongly to zy = Pru.
Proof. We divide the proof into five steps.
Step 1. We show that {z,} is bounded.
Let x,y € C. Since A is a-inverse strongly monotone and A; € (0,2«), we have
(T = MA)z — (T =M Ay =]z — yl” — 22 (z — y, Az — Ay) + A7 [|Ax — Ay||”
< lz = yl* = 200 || Az — Ay|® + A} | Az — Ay|)?
= [lz = y[I* + M (M1 = 20) Az — Ay]|*
<[l —yll*.
Therefore (I — A1 A) is a nonexpansive mapping. Similarly, (I —A2B) is a nonexpan-
sive mapping. Hence Po(I — A1 A) and Po (I — A2 B) are nonexpansive mappings.

From definition of the mapping G, we have G is a nonexpansive mapping.
Let z* € F. From Remark 2.9 we have

€ F(Po(I—M (I -T))).
By Lemma 2.6, we have

¥ =G(x*) = Po(I — MA)(az* 4+ (1 —a)Pe(I — Mo B)x™).
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Observe that

T2 = Ta"||* = |[(2n —27) = (I = D)zl
= ||z — 27" = 2(z — 2%, (I = T)an) + (T = Tz

Since T is a quasi-nonexpansive mapping, we have
(I = T)znl® < 2(zn — 2*, (I — T)xy). (3.2)
From the nonexpansiveness of Po and (8:2]), we have

|Pc(I = A = T))ay — 2*||> =||Pc(I = Au(I = T))2n — Pe(I = Au(I = T))z*|?
< = AT = T))zn — (I = Ma(I = T))2"|?
=||(zn — 2%) = Mn((I = )z — (I = T)z*)||”
=lzn — 2*|)° = 220 (20 — 2", (I — T)x)
+ A2 [(I = T)an|?
<z — 2| = M [|(1 = T)anl” + A2 |(I = Tz
<wn — 2¥]2. (3.3)
Put M,, = ax, + (1 — a)Pc(I — Ao B)xy,, and W,, = Po(I — A\ A)M,,. From @1,

we have

Tnt1 = apt+ B Po(l — Ay(I = T))p + v Wh.

From the definition of x,,, (33) and nonexpansiveness of G, we have

ns1 — 27 = lan(u — 2 + Bu(Poll = Al = T))irn — 2°) + 9 (Wa — 27|
< ap||lu=a" + B [Pc( = AL = T))xpn — || + 70 (Wi — 27|
< an flu— 2| + Bnllwn — 27|
+ || Po(I — M1 A)(axy, + (1 — a)Po(I — Mo B)xy,)
— Po(I — M A)(az™ + (1 —a)Po(I — Ao B)z™)||
= an [lu = 2" + Bn 20 — 2" + Y [|[G(an) — G(z")|
< o flu =2 + B llon — || + vn |l2n — 27
= oy |u—z"| + (1 —an) [z, — 27

< max{||u — 2|, [lxn — 2"}
By induction, we can conclude that
[n — 2" < max{|ju —z*||, lz1 — 2|},

for all n > 1. This implies that the sequence {x,,} is bounded and so is {(I — Tz, }.
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Step 2. We show that lim, o0 [|[Zn+1 — zn| = 0.
From the definition of x,, and nonexpansiveness of G, we have

lznt1 — 2ol =[l(an — an—1)u+ (Bn = Bo—1)Pc(l = An—1(I = T))zp—1
+ BulPo(I = Mol = D)) = PoI = Auea (I = T))an)
+ Y (Wo = Wie1) + (Y — Yn—1)Wa-1 ||
<Jom — anrlllul) + B — Fu sl Pl = Anr(I = T))rn s
T BallPe(T = Al = T))n — Pe(l = Aa(I = T))an |
T WlWhn = Waall + Iy = Y1l [Wa— |
<lan = an—1lllull + B = Ba-1l|PeI = An-1(I = T))zn-1]|
+ Ball(@n = an-1) = An(I = T)xp + An—1(I = T)zp—1|
+ YllPc(I — MA)(axy, + (1 —a)Po(I — Mo B)xy)
— Po(I — MA)(axzp—1+ (1 —a)Pc(I — XeB)xp_1)|
+ 1V = Y1 [[[Wa—1]|
—Jan — anallull + 180 — BuallPe(I = Anoa(T = Tz
+ Bnll(@n = 2n-1) = An (I = T)n, — (I = T)wp—1)
= (An = Anm1) (I = D1l + WllG(2n) — Glzn-1)||
+ 1V = Y1 [ [[Wa—1]|
<l — anrlllul) + 18 — Bu sl Pl = Aur(I = T))ra s
+ Ballzn — Zuall+ A (T = T)n — (I = Tz
+1An = Al [ = Tapal + mllzn — zn-1ll + [0 — V-1 |[[Wn-1ll
=(1 = an)l|zn — znal + Al = T)an — (I = T)an—||
+ fatn = analllull + 1B = B 1[I Po(T = A r(I = T))n 1]
+1n = Y=t [Wa-ll + [An = Ana| 11 = T)ap—1]|
<(I = an)l|zn = Tp-1ll + MM + | — an—1|M + | — Bn—1|M
+ 1V = Y1 M + [An — An—1| M,

where M := max{|[|(I - T)zn+1 — (I = T)anll, lull, [Pe(] = Aa(l = T))znll, [Wall,
(I = T)an]|}.

From the condition (i%), (iv), (v) and Lemma 2.5 we have

nll)rrgo |zt — 2nl = 0. (3.4)

Step 3. We show that ILm [Pc(I —Ap(I —T))xn —xn| =0.

Since z* = Po(I — M A) (ax* + (1 —a)Po(I — A2 B)z*) and
M* =az* 4+ (1 — a)Pc(I — A2 B)x*, we have a* = Po(I — A\ A)M™.
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Since z* € VI(C, B), we obtain

—a)(Po(I — X\aB)z™ — a™)
—a) (Po(I = XoB)x* — Po(I — \aB)x™)

=0. (3.5)
From the definition of M,, and M*, we have

My — M*|| = [la(zn —2%) + (1 — a) (Po(I = A2B)an — Po(I — A2 Bz
<al|x, — x|+ (1 —a)l||[Pc(I — XeB)xy, — Po(I — Mo B)z™||
<alzp — " + (1 —a) |lzn — 27|
= ||z, — ¥ . (3.6)

From the definition of W,,, we have
|W,, — 2*||> = | Po(I — My A)M,, — Po(I — M A)M*|?
<((I = MA)YM,, — (I =\ A)M*, W, — z*)
:% (1T = M A)M,, — (I = MAYM*|* + W, — 2*||?
—I(I = M A)M,, — (I = MAYM* =W, + z*[]*)
<5 (I, = M 4 [ W, — |
— |(My, — W) — A (AM,, — AM™)|*)

which implies that

Wy, — 2% )|* < || My — M*||* = (M, — W) — M (AM,, — AM™)||®
=||M,, — M*||* = | My, — Wa|® + 2\ (M,, — Wy, AM,, — AM*)
— M\ || AM,, — AM*|]%. (3.7)

From the definition of W,,, we have

Wy, — a*|?
=|[Po(I = M A)M,, — Po(I — M A)M*||?
< = MA)M, — (T =\ A)M*|*
=[|(M,, — M*) = Xy (AM,, — AM™)||?
= || M, — M*||* = 2\, (M,, — M*, AM,, — AM*) + X2 |AM,, — AM*|*
< || My — M*||* = 2X\1a | AM,, — AM*||*> + A2 | AM,, — AM*|?
=M, — M*||* = A (20 — A1) || AM,, — AM*||?. (3.8)
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From the definition of x,, (33]), B.6) and [B.8]), we have

[#n+1 — x*||2 < o flu— x*||2 + Bn I1Pe(I = An(I = T))an — x*||2
+ 0 W —2"|)”
< anllu ="+ Bu llzn —2*

+ 9 (IMa = M** = X(20 = ) [ AM,, — AM*|?)

2
I

< ap Ju— 2|+ B 20 — ¥ + 3 |20 — 2|
A (20— Ar) [ AM, — AN
* 2 * 2
= apflu—z"["+ (1 — ay) lzn — 27|

— A1 (20— Ay) |AM,, — AM*|?.
It implies that

A1 (200 — M) |AM,, — AM*||?
< o lu—2** + |20 — 2% = |2ns1 — 2%

< ag Ju—2*|* + |20 = @il (20 — 2" + l@nrs —2*[]) . (3.9)
From the condition (i7) and (B4, we derive

lim [|AM, — AM*|| =0. (3.10)

From the definition of z,,, (33)), B.0) and B.71), we have
Jonss — 17 < = 212 + B | Pl = An(I = T))n — 21> + 3 [ Wi — 2
< o u— 2| + Bn [z — 2|
+ v (|My, = M*||> = | My, — Wa||? 4 201 (M, — Wy, AM,, — AM*)
— M ||AM,, — AM*|)?)
* (12 * (12 * |12 2
< an||u—x || +ﬁn||xn_x || +7n||xn_$ || — Tn ||Mn_Wn||
+2X1 [|[ My, — W[ [|[AM, — AM™||
.12 .12 2
= Qn ||U_33 || +(1_0‘n) ||$n_$ || —Tn ”Mn_WnH
+ 2)\1 ||Mn - Wn” HAMn - AM*” .
It follows that
2 * 12 %12 * (12
Yo ([ My = W™ < an flu— 2" + [[zn — 2|7 — (|21 — 27|
+ 2)\1 ||Mn - Wn” ||AMn - AM*H

%12 * *
< apflu =277 + llzn — nsall (lzn — 27| + [[2n41 — 7))
+2M\ | M, — W, || |AM,, — AM™||. (3.11)



Approximation Method for Fixed Points of Nonlinear Mapping ... 663

From the condition (i), B.4]) and BI0), we derive
lim [|M, — W,| = 0. (3.12)
n— o0
From the property of P, we have
|Pc(I = XoB)xy — 2*||> =||Pe(I — Ao B)an — Po(I — \aB)z*|)?
<((I = MaB)x,, — (I — MaB)z*, Po(I — Ao B)zy, — ™)
1
=5 (I = A2B)z — (I — Ao B)a*||?
+ |Po(I = Ao By — z*|?
— (I = XaB)zn — (I — AoB)a* — Po(I — Ao B)xy + z*|°)
1 .
<5 (lzn - o |* + | Po(I = \oB)zy — 2*||?
— [(zn — Po(I = XoB)xy) — Aa(Bxn, — Bz*)||?).
This implies that
|Po(I = XoB)y — 2*||* < |[|lzn — 27|
— |[(zn — Pe(I = XaB)xy) — Ao(Ban, — Bx*)|?
=|lzn — 2*|* = |n — Po(I = XaB)an |
+2Xo(xy, — Pc(I — NoB)xy,, Bx,, — Bx™)
— M || Bz, — Bz*|. (3.13)
By using the same method as (3.8]), we have
|Po(I — Ao By — 2*||* < |lam — 2*]|* — X2(28 — X2) | Bz — Bz*||>.  (3.14)
Since z* € VI(C, A), we have
Wy, — 2*)|* = | Po(I = M A)M,, — Po(I = M A)z*||?
<|lazyn + (1 — a)Po(I — AgB)xy — z*|)°
=lla(zn — 2*) + (1 — a)(Po(I = XeB)z, — )|
<allzn —2*)° + (1 —a) |Pe(I = \aB)zn — 2*|°. (3.15)
From the definition of z,, (83), (814) and BI5), we have
[Zng1 — 27|
<o flu— 2"+ Bu | Pe(I = Mn(I = D))z — 2P+ 3 [[We — 272
< apfju— x*||2 + Bnl[Po(I = An(I = T))xy — x*||2
+n (allzn = 2" |* + (1 = @) |Pe(I = AaB)o, — ")
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< ap [lu— x*”Q + BullPe(d = Ap(I = T))zy — x*”Q
9 (allen = "I + (1= 0) (llzn = 2| = X2(28 = o) | Ban — Ba*|?))
< ap llu—a*|* + B lzn = 2*[* + yulallzn — a*|* + (1 = @) lz, — 2|
— (1= a)A2(28 — Xo) || Bxy — Bz™||?)
= llu— 27+ (1 = ) llo — 22 = (1~ @)A27 (28 — Xa) | B — B[
This implies that
(1 = a)A27a(28 = X2) || Bz, — Ba*||”
< ap flu—a|* + lon — 2*|* = ey — 2"
< ap lu—a|* + o0 = zoral| (len = 2 + 201 —27]). (3.16)
From the condition (i7) and (B4, we have
nhﬁngo |Bx,, — Bz*|| = 0. (3.17)
From the definition of x,,, (33) and BI3), we have
20+t = @*|* < an llu— 2" + B | Po(I = A1 = T))an — 2"
+n (alln = 2*|* + (1 = @) || Pe(I = XaB)a, — ")
< ap lu =2 + Bu lwn = 2" + yala |z — 2"
+ (1= a)(|lzn = &"[* = ||z — Pe(I = AeB)aa |
+ 2X(xy, — Po(I — Ay B)ay,, By, — Bx*) — A2 | Bx,, — Bz*|))
< an = P + (1 — an) [lzn — |
— (1= ) [i0n — Po(I — N B)zal?
+ 2207, (1 — a){zy, — Po(I — Mo B)zy, Bx,, — Bx™)
< ap u—a*|* + |20 — &*|* = (1 = @) |20 — Po(I = A2 B)an|”
+ 2070 (1 — a) ||xn — Po(I — Ao B)zy || || Bz, — Bx™||.
This implies that
B0l — a) 2 — Po(I - Bz |
< ap flu—a|* + lon — 2*|* = ey — 2"
42X (1 — a) ||z, — Po(I — A2 B)ay|| | Bxn, — Bz™||
< ap llu =" + on = Tosi|| (e = || + l|2nsn —a|))
+ 2207 (1 — a) ||xn — Po(I — A2B)zy,|| || Bxn — Bx™||. (3.18)
From the condition (i7), 4] and BIT), we derive
nhﬁngo |z, — Po(I — A2B)xy|| = 0.
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Since

[ M, — zn || = llazn + (1 — a)Po(I — AaB)zn — n |
=(1—=a)||Pc(I = XaB)xy, — ay||

and ||Po(I — A\aB)xy, — xy|| — 0 as n — oo, we have

nhﬁngo | M, — x| = 0. (3.19)

From (312) and BI9), we have
nll)rrgo IW,, — x| = 0. (3.20)
Since
Tp4+1 — Tp = an(u - xn) + ﬁn(PC(I - )\n(I - T))xn - xn) + 'Yn(Wn - .’Iin),
it implies by the condition (i7), the condition (i77), (3.4) and ([3.20) that

lim ||[Pe(I — (I = T))an — || = 0. (3.21)

n—oo

Step 4. We show that lim sup(u — 2q, z, — 20) < 0, where zg = Pru. To show this

n—00
inequality, take a subsequence {z,,} of {x,} such that

lim sup(u — 20, 2, — 20) = lim (u — 20, 2; — 20).
n—oo J—0

Without loss of generality, we may assume that z,;, — w as j — oo, where w € C.
First, we show that w € F(T). From Remark 2.9, we have F(T) =VI(C,I-T) =
F(Pc(I — My, (I =T))). Assume that w ¢ F/(T), that w # Pc(I — A, (I = T))w.
By z,, = w as j — oo, (B.2I)) and Opial’s property, we have
liminf ||z,, —w|| <lminf ||2,, — Po(I = An,(I = T))w||
Jj—oo j—oo
Sl%nigf(‘|xnj — Po(I = Any(I = T))an, ||
+ |Pe(I = A, (I = T))an, — Pc(I = A, (I = T))w|))
<liminf(||zn, — Po(I — A, (I = T))an, ||

j—o0
+[[on; = wll 4 A, (|7 = T)an; = (1 = T)]])

SlijIgg)lf Han — wH .

This is a contradiction, we have

w e F(T). (3.22)
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Next, we show that w € VI(C, A)NVI(C, B). From Lemmal[2.6] we have VI(C, A)
NVI(C,B) = F(G). From B.20), we have W,,, — w as j — oo.

W = GWa)ll = [[Pe(I = M) (azn + (1 = a)Pe(l = A B)ay) — G(W,)]|
= [|G(2n) = G(W)|
< lzn — Wall.
From (320), we have
lim |W,, — G(W,)| =0.
n—oo
From W,,, = w as j — oo and Lemma 24 we have
we F(G)=VI(C,A)NVI(C,B). (3.23)
From (3:22) and (B.23)), we have w € F. Since x,, — w as j — 0o, we have

limsup(u — 20, 7n, — 20) = lim (u — 20, Zn, — 20)
n— o0 J—00

= (u— zo,w—29) <0 (3.24)

Step 5. Finally, we show that the sequence {z,} converges strongly to zo = Pru.
From the definition of z,, and zy = Pru, we have

|Znt1 — 2oll* = llom (u — 20) + Bu(Po(I — An(I = T))an — 20) + Yn(Wa — 20)|I”
<1 Bu(Pe(I = An(I = T))zn — 20) + V(W — 20)|?
+ 200 (U — 20, Try1 — 20)
< Bul[Po(I = AT =Tz — 20/ + 9 [ Wi = 20|
+ 20, (u — 20, Tnt+1 — 20)
< Bullen — ZO||2 + Y |20 — ZO||2 + 2an(u — 20, Tng1 — 20)
=(1—-ap)llzn — 2'0||2 + 20 (u — 20, Tnt1 — 20)-

From the condition (i¢), (824) and Lemma[Z3] we can conclude that the sequence
{z,} converges strongly to zp = Pru. This completes the proof. O

From our main result, Lemma [[[I and Lemma 2.6 we have the following
corollary:

Corollary 3.2. Let C be a nonempty closed convex subset of a real Hilbert space
H andletT : C — C be a quasi-nonexpansive mapping. Let A, B : C — H be «, 3-
inverse strongly monotone mappings, respectively. Define the mapping G : C' — C
by Gz = Po(I — MA)(ax + (1 — a)Pc(I — Ao B)x) for all x € C. Assume F =
F(G)NF(T) # 0. Suppose that x1,u € C and let {x,} be a sequence generated by

Tnt1 = apu+ B Pl — A(I = T))xn + Gy, Yn > 1,

where A1 € (0,2a), A2 € (0,28) and {an}, {Bn}, {1} are sequences in [0,1]. Sup-
pose the following conditions holds:
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(1) an+ Bn+vm =1,

(ii) lim, oo =0 and 3,7 ay = o0,

(iii) 0<a< B, <c<1 foraln>1,

(iv) Yo A <ooand 0 < A, <1,

(V) 2oty g1 = anl < 00,3007 |Bat1 — Bl < 00,3707 [Ant1 — An| < 00,

Then {xn} converges strongly to zo = Pru and (20, Yo) s a solution of (I.3), where
Yo = PC (I — )\QB) Z0-

4 Application

In this section, we prove strong convergence theorems involving the set of fixed
points of nonspreading mapping.
A mapping T : C' — C is called nonspreading if

2| T — Tyl < |Te - y|* + |Ty — z||?, Va,y € C.
The such mapping is defined by Kohsaka and Takahashi [19].

The following lemma is needed to prove in application.

Lemma 4.1 ([19]). Let H be a Hilbert space, let C be a nonempty closed convex
subset of H, and let S be a nonspreading mapping of C into itself. Then F(S) is
closed and convex.

In 2009, Kangtunyakarn and Suantai [20] introduced the S-mapping generated
by T1,T5,....,Tny and A1, Ao, ..., Ay as following. Let C' be a nonempty convex
subset of a real Banach space. Let {T;}, be a finite family of (nonexpansive)
mappings of C' into itself. For each j =1,2,...,N, let o; = (a{, a‘;, ag) elIxIxI,
where I € [0,1] and of + o + o} = 1. Define the mapping S : C — C as follows:

Uy =1,

U, = a%Ton + a%Uo + a%[,
Us; = a%TQUl + agUl + agl,
Us = a3T3Us + a3Us + a1,

N-1 N-1 N-1
Un-1=0a) In_1Un_2+0ay "Un_2+a3 1,

S=Un= Oé{vTNUN_l + OéévUN—l + Oéévf.
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This mapping is called an S-mapping generated by 11,15, ..., T and o, @z, ..., an.

For every i = 1,2,..., N. Put a4 = 0 in Definition 4.1, then the S-mapping is
reduced to the K-mapping defined by Kangtunyakarn and Suantai [21] as follow-
ing. Let C be a nonempty convex subset of a real Banach space. Let {T;} ;| be
a finite family of mappings of C into itself, and let A1, A2, ..., Ay be real numbers
such that 0 < \; <1 for every ¢ = 1,2, ..., N. We define a mapping K : C' — C as
follows:

Uy =1,
Up = MTi+ (1 M),

Uz = XoToUs + (1 — Ao)Un,
Us = A3T3Us + (1 — A3)Us,

Unv-1=Anv-1Tn-1Un—2+ (1 = An—1)Un—2,
K=Uyny =AMTNUn_1+ (1 — )\N)UNfl.

Such a mapping K is called the K-mapping generated by 11,715, ..., T and A1, Ao, ...,
AN

Lemma 4.2 ([22]). Let C be a nonempty closed convex subset of a real Hilbert
space H. Let {T;}N., be a finite family of nonspreading mappings of C into C
with ﬂfil F(T;) # 0, and let o = (a{,aé,ag) elIxIxI, j=1,2,...,N, where
I=10,1] ,a{—i—aé—i—ag =1, a{, ag € (0,1) forall j =1,2,... N —1 and oY €
(0,1],ad €10,1) o € 0,1) for all j =1,2,...,N. Let S be the mapping generated
by Th, T, ..., Tn and a1, 9, ...,an. Then F(S) = ﬂf\;l F(T;) and S is a quasi-
nonerpansive mapping.

Lemma 4.3 ([23]). Let C be a nonempty closed convex subset of a real Hilbert
space H. Let {T;}X | be a finite family of nonspreading mappings of C into itself
with ﬂf\il F(T;) # 0 and let A\, A2, ..., AN be real numbers such that 0 < \; < 1
for everyi=1,2,... N —1 and 0 < Ay < 1. Let K be the K-mapping generated
by T, To, ... T and A1, Aa,...,An. Then F(K) = ﬂi\il F(T;) and K is quasi-

NONETPaAnsive mapping.
By using these results, we obtain the following theorems

Theorem 4.4. Let C be a nonempty closed convex subset of a real Hilbert space
H. Let {T;}Y| be a finite family of nonspreading mappings of C into C with
ﬂlN:lF(Ti) # 0, and let o = (a{,aé,ag) elIxIxI,j=12.. N, where
I=100,1 ,al+ad+ak=1, o], o€ (0,1) forallj =1,2,...,N -1 and ¥ €
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0,1],ad €[0,1) ag €[0,1) for all j =1,2,...,N. Let S be the mapping generated
by T1,Ts,....,Tny and aq,Qs,...,any. Let A,B : C — H be «,B-inverse strongly
monotone mappings, respectively. Define the mapping G : C — C by Gx =
Po(I — MA)(ax + (1 —a)Pc(I — XaB)x) for all x € C. Assume F =VI(C,A)N
VI(C,B)n ﬂfil F(T;) # 0. Suppose that x1,u € C and let {x,} be sequence
generated by

Tnt1 = apu+ B Po(I — A (I — S)zn + 1 Gan, Yn > 1,

where A1 € (0,2a), A2 € (0,28) and {an}, {Bn}, {1} are sequences in [0,1]. Sup-
pose the following conditions hold:

(i) an+B8n+mm =1,

(ii) limp—oon =0 and Y07 | oy, = o0,

(iii) 0<a< B, <c<1lforalln>1,

(iv) D02 A <ooand 0 <\, <1,

(v) 2ol lantt —an| <00, 35071 [Bus1 — Bal <00, 35,71 [Ang1 — An| < o0

Then {x,} converges strongly to zo = Pru.
Proof. By using Theorem [B.I] and Lemma [£2] we obtain the conclusion. O

Theorem 4.5. Let C be a nonempty closed convexr subset of a real Hilbert space
H. Let {T;}Y.| be a finite family of nonspreading mappings of C into itself with
ﬂi]\il F(T;) # 0 and let A1, Ag, ..., ANy be real numbers such that 0 < \; < 1 for
every t = 1,2,... N —1 and 0 < Ay < 1. Let K be the K-mapping generated
by T1,Ts,....TN and A1, Aa,...,An. Let A,B : C — H be «,B-inverse strongly
monotone mappings, respectively. Define the mapping G : C — C by Gx =
Po(I = MA)(ax+ (1 —a)Po(I — AoB)z) for allx € C. Assume F =VI(C,A)N
VI(C,B)n ﬂfil F(T;) # 0. Suppose that x1,u € C and let {x,} be sequence
generated by

Tn+1 = apu + B Po(I — M\y(I — K))zy, + vGxp, Y > 1,

where A1 € (0,2a), Az € (0,28) and {an}, {Bn}, {1} are sequences in [0,1]. Sup-
pose the following conditions hold:

(1) an+Bn+v =1,

(ii) limp—oon =0 and Y07 | o, = 00,

(iii) 0<a<fBp,<c<1lforaln>1,

(iv) D02 A <ocoand 0< A, <1,

(V) 2oty g1 = anl < 00,3007 [Bat1 — Bl < 00,3707 [Ant1 — An| < 00,

Then {x,} converges strongly to zo = Pru.
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Proof. By using Theorem B.1] and Lemma [£.3] we obtain the conclusion. O

The following result is direct proved from Theorem 4l Therefore, we omit
the prove.

Corollary 4.6. Let C be a nonempty closed convex subset of a real Hilbert space.
Let T be a nonspreading mappings of C into itself with F(T) # 0. Let A,B:C —
H be «a, B-inverse strongly monotone mappings, respectively. Define the mapping
G:C — CbyGz=Po(I—-MA(ax+ (1 —a)Pc(I — X eB)zx) for all x € C.
Assume F = VI(C,A)NVI(C,B) N F(T) # (. Suppose that x1,u € C and let

{z,} be sequence generated by
Tpt1 = apu+ B Pl — A(I = T))xn + Gy, Yn > 1,

where A1 € (0,2a), A2 € (0,28) and {an}, {Bn}, {1} are sequences in [0,1]. Sup-
pose the following conditions hold:

(1) an+Bn+vm =1,

(i) limp—oo p =0 and Y07 o, = o0,

(iii) 0<a<B,<c<1 foraln>1,

(iv) 220:1 A <ooand 0 < A\, <1,

(v) 2olilantt —an| <00, 35071 Bt — Bal < 00,3507 A1 — An| < 0.

Then {x,} converges strongly to zy = Pru.

References

[1] H. Iliduka, Fixed point optimization algorithm and its application to network
bandwidth allocation, J. Comp. Appl. Math. 236 (2012) 1733-1742.

[2] G.T. Herman, Fundamentals of Computerized Tomography: Image Recon-
struction from Projections, Springer, New York, 2009.

[3] A. Beck, M. Teboulle, Fast gradient-based algorithms for constrained total
variation de-noising and deblurring problems, IEEE Trans Image Process 18
(2009) 2419-2434.

[4] J.L. Lions, G. Stampacchia, Variational inequalities, Comm. Pure Appl.
Math. 20 (1967) 493-517.

[5] D. Kinderlehrer, G. Stampaccia, An Iteration to Variational Inequalities and
Their Applications, Academic Press, New York, 1990.

[6] N. Nadezhkina, W. Takahashi, Weak convergence theorem by an extragra-
dientmethod for nonexpansive mappings and monotone mappings, J. Optim.
Theory Appl. 128 (2006) 191-201.



Approximation Method for Fixed Points of Nonlinear Mapping ... 671

[7]

8]
[9]

[10]

J.C. Yao, O. Chadli, Pseudomonotone complementarity problems and vari-
ational inequalities, Handbook of generalized convexity and monotonicity,
Springer New York 76 (2005) 501-558.

Y. Yao, J.C. Yao, On modified iterative method for nonexpansive mappings
and monotone mappings, Appl. Math. Comput. 186 (2007) 1551-1558.

L.C. Ceng, C.Y. Wang, J.C. Yao, Strong convergence theorems by a relaxed
extragradient method for a general system of variational inequalities, Math.
Methods Oper. Res. 67 (2008) 357-390.

A. Kangtunyakarn, An iterative algorithm to approximate a common ele-
ment of the set of common fixed points for a finite family of strict pseudo-
contractions and of the set of solutions for a modified system of variational
inequalities, Fixed Point Theory and Applications 143 (2013).

M. Tian, X. Jin, A general iterative method for quasi-nonexpansive mappings
in Hilbert space, Journal of Inequalities and Applications, 38 (2012).

P.E. Mainge, The viscosity approximation process for quasi-nonexpansive
mappings in Hilbert spaces, Comp. Math. Appl. 59 (2010) 74-79.

M. Tian, X. Jin, Strong convergent result for quasi-nonexpansive mappings
in Hilbert spaces, Fixed Point Theory and Applications 88 (2011).

Z. Opial, Weak convergence of the sequence of successive approximation of
nonexpansive mappings, Bull. Amer. Math. Soc. 73 (1967) 591-597.

M.O. Osilike, D.I. Igbokwe, Weak and strong convergence theorems for fixed
points of pseudocontractions and solutions of monotone type operator equa-
tions, Comp. Math. Appl. 40 (2000) 559-567.

F.E. Browder, Nonlinear operators and nonlinear equations of evolution in
Banach spaces, Proc. Sympos. Pure. Math. 18 (1976) 78-81.

H.K. Xu, An iterative approach to quadric optimization, J. Optim. Theory
Appl. 116 (2003) 659-678.

W. Takahashi, Nonlinear Functional Analysis, Yokohama Publishers, Yoko-
hama, 2000.

F. Kohsaka, W.Takahashi, Fixed point theorems for a class of nonlinear map-
pings related to maximal monotone operators in Banach spaces, Arch. Math.
91 (2008) 166-177.

A. Kangtunyakarn, S. Suantai, Hybrid iterative scheme for generalized equi-
librium problems and fixed point problems of finite family of nonexpansive
mappings, Nonlinear Analysis: Hybrid Systems 3 (2009) 296-3009.

A. Kangtunyakarn, S. Suantai, A new mapping for finding common solutions
of equilibrium problems and fixed point problems of finite family of nonex-
pansive mappings, Nonlinear Anal. 71 (2009) 4448-4460.



672 Thai J. Math. 13 (2015)/ K. Cheawchan and A. Kangtunyakarn

[22] A. Kangtunyakarn, Strong convergence of the hybrid method for a finite fam-
ily of nonspreading mappings and variational inequality problem, Fixed Point
Theory and Applications 188 (2012).

[23] A. Kangtunyakarn, S. Suantai, Convergence theorem of common fixed points
for a family of nonspreading mapping in Hilbert space, Optim. Lett. 6 (2012)
957-961.

(Received 6 March 2014)
(Accepted 7 May 2014)

THAI J. MATH. Online @ |http://thaijmath.in.cmu.ac.th


http://thaijmath.in.cmu.ac.th

	Introduction
	Preliminaries
	Main Results
	Application

