Approximation Method for Fixed Points of Nonlinear Mapping and Variational Inequalities with Application

Kanyarat Cheawchan and Atid Kangtunyakarn²
Department of Mathematics, Faculty of Science
King Mongkut's Institute of Technology Ladkrabang
Bangkok 10520, Thailand
e-mail : Kkanyarat.cheaw@gmail.com (K. Cheawchan)
beawrock@hotmail.com (A. Kangtunyakarn)

Abstract

In this paper, we introduce the new method of iterative scheme $\left\{x_{n}\right\}$ for finding a common element of the set of fixed points of a quasi-nonexpansive mapping and the set of solutions of a modified system of variational inequalities without demiclose condition and $T_{\omega}:=(1-\omega) I+\omega T$, when T is a quasinonexpansive mapping and $\omega \in\left(0, \frac{1}{2}\right)$ in a framework of Hilbert space. Using our main result, we obtain strong convergence theorems involving a finite family of nonspreading mapping and another corollary.

Keywords : quasi-nonexpansive mapping; variational inequality; fixed point; nonspreading mapping.
2010 Mathematics Subject Classification : 46C05; 47H09; 47H10.

1 Introduction

Let C be a nonempty closed convex subset of a real Hilbert space H. We denote $F(T)$ by the set of all fixed points of T. Recall that the mapping $T: C \rightarrow C$ is

[^0]said to be quasi-nonexpansive if $F(T) \neq \emptyset$ and
$$
\|T x-p\| \leq\|x-p\|,
$$
for all $x \in C$ and $p \in F(T)$. Fixed point problems have been investigated in the following literature; see [1-3].

A mapping $A: C \rightarrow H$ is called α-inverse-strongly monotone if there exists a positive real number $\alpha>0$ such that

$$
\langle A x-A y, x-y\rangle \geq \alpha\|A x-A y\|^{2},
$$

for all $x, y \in C$.
Let $B: C \rightarrow H$. The variational inequality is to find a point $u \in C$ such that

$$
\begin{equation*}
\langle B u, v-u\rangle \geq 0, \tag{1.1}
\end{equation*}
$$

for all $v \in C$. The set of solutions of (1.1) is denoted by $V I(C, B)$.
The variational inequalities were initially studied and introduced by Stampacchia [4, 5. This problem is widely used in economics, social sciences and other fields, see for example [6-8].

Let $D_{1}, D_{2}: C \rightarrow H$ be two mappings. In 2008, Ceng et al. 9 introduced a problem for finding $\left(x^{*}, z^{*}\right) \in C \times C$ such that

$$
\left\{\begin{array}{l}
\left\langle\lambda_{1} D_{1} z^{*}+x^{*}-z^{*}, x-x^{*}\right\rangle \geq 0, \forall x \in C, \tag{1.2}\\
\left\langle\lambda_{2} D_{2} x^{*}+z^{*}-x^{*}, x-z^{*}\right\rangle \geq 0, \forall x \in C,
\end{array}\right.
$$

which is called a system of variational inequalities where $\lambda_{1}, \lambda_{2}>0$.
In 2013, Kangtunyakarn [10] modified (1.2) for finding $\left(x^{*}, z^{*}\right) \in C \times C$ such that

$$
\left\{\begin{array}{l}
\left\langle x^{*}-\left(I-\lambda_{1} D_{1}\right)\left(a x^{*}+(1-a) z^{*}\right), x-x^{*}\right\rangle \geq 0, \forall x \in C, \tag{1.3}\\
\left\langle z^{*}-\left(I-\lambda_{2} D_{2}\right) x^{*}, x-z^{*}\right\rangle \geq 0, \forall x \in C,
\end{array}\right.
$$

which is called a modification of system of variational inequalities, for every $\lambda_{1}, \lambda_{2}>0$ and $a \in[0,1]$. If $a=0$, (1.3) reduces to (1.2). He introduced the relation between solutions of (1.3) and fixed point of the mapping G as follows:

Lemma 1.1. Let C be a nonempty closed convex subset of a real Hilbert space H and let $D_{1}, D_{2}: C \rightarrow H$ be mappings. For every $\lambda_{1}, \lambda_{2}>0$ and $a \in[0,1]$, the following statements are equivalent:

1. $\left(x^{*}, z^{*}\right) \in C \times C$ is a solution of problem (1.3),
2. x^{*} is a fixed point of the mapping $G: C \rightarrow C$, i.e., $x^{*} \in F(G)$, defined by

$$
G(x)=P_{C}\left(I-\lambda_{1} D_{1}\right)\left(a x+(1-a) P_{C}\left(I-\lambda_{2} D_{2}\right) x\right),
$$

where $z^{*}=P_{C}\left(I-\lambda_{2} D_{2}\right) x^{*}$.

Moreover, he introduced a new iterative algorithm $\left\{x_{n}\right\}$ for finding a common element of the set of fixed points of a finite family of κ_{i}-strictly pseudo-contractive mappings and the set of solutions of problem (1.3) in Hilbert space. The sequence $\left\{x_{n}\right\}$ is generated by
$\left\{\begin{array}{l}y_{n}=P_{C}\left(I-\lambda_{2} D_{2}\right) x_{n}, \\ x_{n+1}=\alpha_{n} u+\beta_{n} x_{n}+\gamma_{n} S P_{C}\left(a x_{n}+(1-a) y_{n}-\lambda_{1} D_{1}\left(a x_{n}+(1-a) y_{n}\right)\right), \forall n \geq 1,\end{array}\right.$
where $D_{1}, D_{2}: C \rightarrow H$ are d_{1}, d_{2}-inverse strongly monotone mappings, respectively, and $S: C \rightarrow C$ is S-mapping generated by a finite family of strictly pseudocontractive mapping and finite real numbers. Under suitable conditions of the parameters $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\},\left\{\gamma_{n}\right\}, \lambda_{1}, \lambda_{2}, a$, he proved a strong convergence theorem of iterative scheme $\left\{x_{n}\right\}$.

In 2012, Tian and Jin [11] proved the following strong convergence theorem of iterative scheme $\left\{x_{n}\right\}$ generated by (1.4).

Theorem 1.2. Starting with an arbitrary chosen $x_{1} \in H$, let the sequence $\left\{x_{n}\right\}$ be generated by

$$
\begin{equation*}
x_{n+1}=\alpha_{n} \gamma f\left(x_{n}\right)+\left(1-\alpha_{n} A\right) T_{\omega} x_{n} \tag{1.4}
\end{equation*}
$$

where the sequence $\left\{\alpha_{n}\right\} \subset(0,1)$ satisfies $\lim _{n \rightarrow \infty} \alpha_{n}=0$, and $\sum_{n=1}^{\infty} \alpha_{n}=\infty$. Also $\omega \in\left(0, \frac{1}{2}\right), T_{\omega}:=(1-\omega) I+\omega T$ with two conditions on T :

1. $\|T x-q\| \leq\|x-q\|$ for any $x \in H$, and $q \in F(T)$; this means that T is a quasi-nonexpansive mapping;
2. T is demiclosed on H; that is: if $\left\{y_{k}\right\} \subset H, y_{k} \rightharpoonup z$, and $(I-T) y_{k} \rightarrow 0$, then $z \in F(T)$.

Then $\left\{x_{n}\right\}$ converges strongly to the $x^{*} \in F(T)$ which is the unique solution of the VIP:

$$
\left\langle(\gamma f-A) x^{*}, x-x^{*}\right\rangle \leq 0, \forall x \in F(T)
$$

Many authors proved strong convergence theorem involving a quasi-nonexpansive mapping T by assuming the following conditions:
(1) $T_{\omega}:=(1-\omega) I+\omega T$,
(2) T is demiclosed on H.
see for example [12] and [13].
Motivated by [10], we introduced the new method for finding a common element of the set of fixed points of a quasi-nonexpansive mapping and the set of solutions of a modified system of variational inequalities without the conditions (1) and (2) in a framework of Hilbert space. Using our main result, we obtain strong convergence theorems involving a finite family of nonspreading mapping and another corollary.

2 Preliminaries

Let H be a real Hilbert space with inner product $\langle.,$.$\rangle and norm \|$.$\| . Through-$ out this paper, we denote weak and strong convergence by notations " - " and " \rightarrow ", respectively. For every $x \in H$, there exists a unique nearest point $P_{C} x$ in C such that $\left\|x-P_{C} x\right\| \leq\|x-y\|$ for all $y \in C$. P_{C} is called the metric projection of H onto C.

Remark 2.1. It is well-known that metric projection P_{C} has the following properties:

1. P_{C} is firmly nonexpansive, i.e.,

$$
\left\|P_{C} x-P_{C} y\right\|^{2} \leq\left\langle P_{C} x-P_{C} y, x-y\right\rangle, \forall x, y \in H
$$

2. For each $x \in H$,

$$
z=P_{C}(x) \Leftrightarrow\langle x-z, z-y\rangle \geq 0, \forall y \in C
$$

Recall that H satisfies Opial's condition [14], i.e., for any sequence $\left\{x_{n}\right\}$ with $x_{n} \rightharpoonup x$, the inequality

$$
\liminf _{n \rightarrow \infty}\left\|x_{n}-x\right\|<\liminf _{n \rightarrow \infty}\left\|x_{n}-y\right\|
$$

holds for every $y \in H$ with $y \neq x$.
Lemma 2.2. Let H be a real Hilbert space. Then there holds the following wellknown results:

1. $\|x \pm y\|^{2}=\|x\|^{2} \pm 2\langle x, y\rangle+\|y\|^{2}$,
2. $\|x+y\|^{2} \leq\|x\|^{2}+2\langle y, x+y\rangle$,
for all $x, y \in H$.
Lemma 2.3 (15). Let $(E,\langle.,\rangle$.$) be an inner product space. Then, for all x, y, z \in$ E and $\alpha, \beta, \gamma \in[0,1]$ with $\alpha+\beta+\gamma=1$, we have

$$
\begin{aligned}
\|\alpha x+\beta y+\gamma z\|^{2}= & \alpha\|x\|^{2}+\beta\|y\|^{2}+\gamma\|z\|^{2}-\alpha \beta\|x-y\|^{2} \\
& -\alpha \gamma\|x-z\|^{2}-\beta \gamma\|y-z\|^{2}
\end{aligned}
$$

Lemma 2.4 (【16). Let E be a uniformly convex Banach space, let C be a nonempty closed convex subset of E and let $S: C \rightarrow C$ be a nonexpansive mapping. Then $I-S$ is demi-closed at zero.

Lemma 2.5 ([17]). Let $\left\{s_{n}\right\}$ be a sequence of nonnegative real numbers satisfying

$$
s_{n+1} \leq\left(1-\alpha_{n}\right) s_{n}+\delta_{n}, \forall n \geq 1
$$

where $\left\{\alpha_{n}\right\}$ is a sequence in $(0,1)$ and $\left\{\delta_{n}\right\}$ is a sequence such that
(1) $\sum_{n=1}^{\infty} \alpha_{n}=\infty$,
(2) $\lim \sup _{n \rightarrow \infty} \frac{\delta_{n}}{\alpha_{n}} \leq 0$ or $\sum_{n=1}^{\infty}\left|\delta_{n}\right|<\infty$.

Then, $\lim _{n \rightarrow \infty} s_{n}=0$.
Lemma 2.6 (10). Let C be a nonempty closed convex subset of a real Hilbert space H and let $D_{1}, D_{2}: C \rightarrow H$ be d_{1}, d_{2}-inverse strongly monotone mappings, respectively, which $V I\left(C, D_{1}\right) \cap V I\left(C, D_{2}\right) \neq \emptyset$. Define a mapping $G: C \rightarrow C$ by

$$
G(x)=P_{C}\left(I-\lambda_{1} D_{1}\right)\left(a x+(1-a) P_{C}\left(I-\lambda_{2} D_{2}\right) x\right),
$$

for every $\lambda_{1} \in\left(0,2 d_{1}\right), \lambda_{2} \in\left(0,2 d_{2}\right)$ and $a \in(0,1)$. Then $F(G)=V I\left(C, D_{1}\right) \cap$ $V I\left(C, D_{2}\right)$.
Lemma 2.7 (18). Let H be a real Hilbert space, let C be a nonempty closed convex subset of H and let A be a mapping of C into H. Let $u \in C$. Then for $\lambda>0$,

$$
u=P_{C}(I-\lambda A) u \Leftrightarrow u \in V I(C, A),
$$

where P_{C} is the metric projection of H onto C.
The next result is very important for our main result.
Lemma 2.8. Let C be a nonempty closed convex subset of a real Hilbert space H and let $T: C \rightarrow C$ be a quasi-nonexpansive mapping. Then $V I(C, I-T)=$ $F(T)$.

Proof. It is easy to see that $F(T) \subseteq V I(C, I-T)$.
Let $u \in V I(C, I-T)$, then we have

$$
\begin{equation*}
\langle v-u,(I-T) u\rangle \geq 0, \forall v \in C . \tag{2.1}
\end{equation*}
$$

Let $v^{*} \in F(T)$, then we have

$$
\begin{equation*}
\left\|T u-v^{*}\right\|^{2} \leq\left\|u-v^{*}\right\|^{2} . \tag{2.2}
\end{equation*}
$$

On the other hand

$$
\begin{align*}
\left\|T u-v^{*}\right\|^{2} & =\left\|\left(u-v^{*}\right)-(I-T) u\right\|^{2} \\
& =\left\|u-v^{*}\right\|^{2}-2\left\langle u-v^{*},(I-T) u\right\rangle+\|(I-T) u\|^{2} . \tag{2.3}
\end{align*}
$$

From (2.2) and (2.3), we have

$$
\left\|u-v^{*}\right\|^{2}-2\left\langle u-v^{*},(I-T) u\right\rangle+\|(I-T) u\|^{2} \leq\left\|u-v^{*}\right\|^{2} .
$$

From (2.1), we have

$$
\|(I-T) u\|^{2} \leq 2\left\langle u-v^{*},(I-T) u\right\rangle .
$$

It follows that $u \in F(T)$. Hence $V I(C, I-T) \subseteq F(T)$.
Remark 2.9. From Lemma 2.7 and 2.8, we have

$$
F(T)=V I(C, I-T)=F\left(P_{C}(I-\lambda(I-T))\right),
$$

for all $\lambda>0$.

3 Main Results

Theorem 3.1. Let C be a nonempty closed convex subset of a real Hilbert space H and let $T: C \rightarrow C$ be a quasi-nonexpansive mapping. Let $A, B: C \rightarrow H$ be α, β-inverse strongly monotone mappings, respectively. Define the mapping G : $C \rightarrow C$ by $G x=P_{C}\left(I-\lambda_{1} A\right)\left(a x+(1-a) P_{C}\left(I-\lambda_{2} B\right) x\right)$ for all $x \in C$. Assume $\mathcal{F}=V I(C, A) \cap V I(C, B) \cap F(T) \neq \emptyset$. Suppose that $x_{1}, u \in C$ and let $\left\{x_{n}\right\}$ be a sequence generated by

$$
\begin{equation*}
x_{n+1}=\alpha_{n} u+\beta_{n} P_{C}\left(I-\lambda_{n}(I-T)\right) x_{n}+\gamma_{n} G x_{n}, \forall n \geq 1 \tag{3.1}
\end{equation*}
$$

where $\lambda_{1} \in(0,2 \alpha), \lambda_{2} \in(0,2 \beta)$ and $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\},\left\{\gamma_{n}\right\}$ are sequences in $[0,1]$. Suppose the following conditions holds:
(i) $\alpha_{n}+\beta_{n}+\gamma_{n}=1$,
(ii) $\lim _{n \rightarrow \infty} \alpha_{n}=0$ and $\sum_{n=1}^{\infty} \alpha_{n}=\infty$,
(iii) $0<a \leq \beta_{n} \leq c<1$ for all $n \geq 1$,
(iv) $\sum_{n=1}^{\infty} \lambda_{n}<\infty$ and $0<\lambda_{n}<1$,
(v) $\sum_{n=1}^{\infty}\left|\alpha_{n+1}-\alpha_{n}\right|<\infty, \sum_{n=1}^{\infty}\left|\beta_{n+1}-\beta_{n}\right|<\infty, \sum_{n=1}^{\infty}\left|\lambda_{n+1}-\lambda_{n}\right|<\infty$.

Then $\left\{x_{n}\right\}$ converges strongly to $z_{0}=P_{\mathcal{F}} u$.
Proof. We divide the proof into five steps.
Step 1. We show that $\left\{x_{n}\right\}$ is bounded.
Let $x, y \in C$. Since A is α-inverse strongly monotone and $\lambda_{1} \in(0,2 \alpha)$, we have

$$
\begin{aligned}
\left\|\left(I-\lambda_{1} A\right) x-\left(I-\lambda_{1} A\right) y\right\|^{2} & =\|x-y\|^{2}-2 \lambda_{1}\langle x-y, A x-A y\rangle+\lambda_{1}^{2}\|A x-A y\|^{2} \\
& \leq\|x-y\|^{2}-2 \alpha \lambda_{1}\|A x-A y\|^{2}+\lambda_{1}^{2}\|A x-A y\|^{2} \\
& =\|x-y\|^{2}+\lambda_{1}\left(\lambda_{1}-2 \alpha\right)\|A x-A y\|^{2} \\
& \leq\|x-y\|^{2} .
\end{aligned}
$$

Therefore $\left(I-\lambda_{1} A\right)$ is a nonexpansive mapping. Similarly, $\left(I-\lambda_{2} B\right)$ is a nonexpansive mapping. Hence $P_{C}\left(I-\lambda_{1} A\right)$ and $P_{C}\left(I-\lambda_{2} B\right)$ are nonexpansive mappings. From definition of the mapping G, we have G is a nonexpansive mapping.
Let $x^{*} \in \mathcal{F}$. From Remark 2.9, we have

$$
x^{*} \in F\left(P_{C}\left(I-\lambda_{n}(I-T)\right)\right) .
$$

By Lemma 2.6 we have

$$
x^{*}=G\left(x^{*}\right)=P_{C}\left(I-\lambda_{1} A\right)\left(a x^{*}+(1-a) P_{C}\left(I-\lambda_{2} B\right) x^{*}\right)
$$

Observe that

$$
\begin{aligned}
\left\|T x_{n}-T x^{*}\right\|^{2} & =\left\|\left(x_{n}-x^{*}\right)-(I-T) x_{n}\right\|^{2} \\
& =\left\|x_{n}-x^{*}\right\|^{2}-2\left\langle x_{n}-x^{*},(I-T) x_{n}\right\rangle+\left\|(I-T) x_{n}\right\|^{2} .
\end{aligned}
$$

Since T is a quasi-nonexpansive mapping, we have

$$
\begin{equation*}
\left\|(I-T) x_{n}\right\|^{2} \leq 2\left\langle x_{n}-x^{*},(I-T) x_{n}\right\rangle . \tag{3.2}
\end{equation*}
$$

From the nonexpansiveness of P_{C} and (3.2), we have

$$
\begin{align*}
\left\|P_{C}\left(I-\lambda_{n}(I-T)\right) x_{n}-x^{*}\right\|^{2}= & \left\|P_{C}\left(I-\lambda_{n}(I-T)\right) x_{n}-P_{C}\left(I-\lambda_{n}(I-T)\right) x^{*}\right\|^{2} \\
\leq \leq & \left\|\left(I-\lambda_{n}(I-T)\right) x_{n}-\left(I-\lambda_{n}(I-T)\right) x^{*}\right\|^{2} \\
= & \left\|\left(x_{n}-x^{*}\right)-\lambda_{n}\left((I-T) x_{n}-(I-T) x^{*}\right)\right\|^{2} \\
= & \left\|x_{n}-x^{*}\right\|^{2}-2 \lambda_{n}\left\langle x_{n}-x^{*},(I-T) x_{n}\right\rangle \\
& +\lambda_{n}^{2}\left\|(I-T) x_{n}\right\|^{2} \\
\leq & \left\|x_{n}-x^{*}\right\|^{2}-\lambda_{n}\left\|(I-T) x_{n}\right\|^{2}+\lambda_{n}^{2}\left\|(I-T) x_{n}\right\|^{2} \\
\leq & \left\|x_{n}-x^{*}\right\|^{2} . \tag{3.3}
\end{align*}
$$

Put $M_{n}=a x_{n}+(1-a) P_{C}\left(I-\lambda_{2} B\right) x_{n}$ and $W_{n}=P_{C}\left(I-\lambda_{1} A\right) M_{n}$. From (3.1), we have

$$
x_{n+1}=\alpha_{n} u+\beta_{n} P_{C}\left(I-\lambda_{n}(I-T)\right) x_{n}+\gamma_{n} W_{n} .
$$

From the definition of x_{n}, (3.3) and nonexpansiveness of G, we have

$$
\begin{aligned}
\left\|x_{n+1}-x^{*}\right\|= & \left\|\alpha_{n}\left(u-x^{*}\right)+\beta_{n}\left(P_{C}\left(I-\lambda_{n}(I-T)\right) x_{n}-x^{*}\right)+\gamma_{n}\left(W_{n}-x^{*}\right)\right\| \\
\leq & \alpha_{n}\left\|u-x^{*}\right\|+\beta_{n}\left\|P_{C}\left(I-\lambda_{n}(I-T)\right) x_{n}-x^{*}\right\|+\gamma_{n}\left\|W_{n}-x^{*}\right\| \\
\leq & \alpha_{n}\left\|u-x^{*}\right\|+\beta_{n}\left\|x_{n}-x^{*}\right\| \\
& +\gamma_{n} \| P_{C}\left(I-\lambda_{1} A\right)\left(a x_{n}+(1-a) P_{C}\left(I-\lambda_{2} B\right) x_{n}\right) \\
& -P_{C}\left(I-\lambda_{1} A\right)\left(a x^{*}+(1-a) P_{C}\left(I-\lambda_{2} B\right) x^{*}\right) \| \\
= & \alpha_{n}\left\|u-x^{*}\right\|+\beta_{n}\left\|x_{n}-x^{*}\right\|+\gamma_{n}\left\|G\left(x_{n}\right)-G\left(x^{*}\right)\right\| \\
\leq & \alpha_{n}\left\|u-x^{*}\right\|+\beta_{n}\left\|x_{n}-x^{*}\right\|+\gamma_{n}\left\|x_{n}-x^{*}\right\| \\
= & \alpha_{n}\left\|u-x^{*}\right\|+\left(1-\alpha_{n}\right)\left\|x_{n}-x^{*}\right\| \\
\leq & \max \left\{\left\|u-x^{*}\right\|,\left\|x_{n}-x^{*}\right\|\right\} .
\end{aligned}
$$

By induction, we can conclude that

$$
\left\|x_{n}-x^{*}\right\| \leq \max \left\{\left\|u-x^{*}\right\|,\left\|x_{1}-x^{*}\right\|\right\}
$$

for all $n \geq 1$. This implies that the sequence $\left\{x_{n}\right\}$ is bounded and so is $\left\{(I-T) x_{n}\right\}$.

Step 2. We show that $\lim _{n \rightarrow \infty}\left\|x_{n+1}-x_{n}\right\|=0$.
From the definition of x_{n} and nonexpansiveness of G, we have

$$
\begin{aligned}
\left\|x_{n+1}-x_{n}\right\|= & \|\left(\alpha_{n}-\alpha_{n-1}\right) u+\left(\beta_{n}-\beta_{n-1}\right) P_{C}\left(I-\lambda_{n-1}(I-T)\right) x_{n-1} \\
& +\beta_{n}\left(P_{C}\left(I-\lambda_{n}(I-T)\right) x_{n}-P_{C}\left(I-\lambda_{n-1}(I-T)\right) x_{n-1}\right) \\
& +\gamma_{n}\left(W_{n}-W_{n-1}\right)+\left(\gamma_{n}-\gamma_{n-1}\right) W_{n-1} \| \\
\leq & \left|\alpha_{n}-\alpha_{n-1}\right|\|u\|+\left|\beta_{n}-\beta_{n-1}\right|\left\|P_{C}\left(I-\lambda_{n-1}(I-T)\right) x_{n-1}\right\| \\
& +\beta_{n}\left\|P_{C}\left(I-\lambda_{n}(I-T)\right) x_{n}-P_{C}\left(I-\lambda_{n-1}(I-T)\right) x_{n-1}\right\| \\
& +\gamma_{n}\left\|W_{n}-W_{n-1}\right\|+\left|\gamma_{n}-\gamma_{n-1}\right|\left\|W_{n-1}\right\| \\
\leq & \left|\alpha_{n}-\alpha_{n-1}\right|\|u\|+\left|\beta_{n}-\beta_{n-1}\right|\left\|P_{C}\left(I-\lambda_{n-1}(I-T)\right) x_{n-1}\right\| \\
& +\beta_{n}\left\|\left(x_{n}-x_{n-1}\right)-\lambda_{n}(I-T) x_{n}+\lambda_{n-1}(I-T) x_{n-1}\right\| \\
& +\gamma_{n} \| P_{C}\left(I-\lambda_{1} A\right)\left(a x_{n}+(1-a) P_{C}\left(I-\lambda_{2} B\right) x_{n}\right) \\
& -P_{C}\left(I-\lambda_{1} A\right)\left(a x_{n-1}+(1-a) P_{C}\left(I-\lambda_{2} B\right) x_{n-1}\right) \| \\
& +\left|\gamma_{n}-\gamma_{n-1}\right|\left\|W_{n-1}\right\| \\
= & \alpha_{n}-\alpha_{n-1}\left|\|u\|+\left|\beta_{n}-\beta_{n-1}\right|\left\|P_{C}\left(I-\lambda_{n-1}(I-T)\right) x_{n-1}\right\|\right. \\
& +\beta_{n} \|\left(x_{n}-x_{n-1}\right)-\lambda_{n}\left((I-T) x_{n}-(I-T) x_{n-1}\right) \\
& -\left(\lambda_{n}-\lambda_{n-1}\right)(I-T) x_{n-1}\left\|+\gamma_{n}\right\| G\left(x_{n}\right)-G\left(x_{n-1}\right) \| \\
& +\left|\gamma_{n}-\gamma_{n-1}\right|\left\|W_{n-1}\right\| \\
\leq & \left|\alpha_{n}-\alpha_{n-1}\right|\|u\|+\left|\beta_{n}-\beta_{n-1}\right|\left\|P_{C}\left(I-\lambda_{n-1}(I-T)\right) x_{n-1}\right\| \\
& +\beta_{n}\left\|x_{n}-x_{n-1}\right\|+\lambda_{n}\left\|(I-T) x_{n}-(I-T) x_{n-1}\right\| \\
& +\left|\lambda_{n}-\lambda_{n-1}\right|\left\|(I-T) x_{n-1}\right\|+\gamma_{n}\left\|x_{n}-x_{n-1}\right\|+\left|\gamma_{n}-\gamma_{n-1}\right|\left\|W_{n-1}\right\| \\
= & \left(1-\alpha_{n}\right)\left\|x_{n}-x_{n-1}\right\|+\lambda_{n}\left\|(I-T) x_{n}-(I-T) x_{n-1}\right\| \\
& +\left|\alpha_{n}-\alpha_{n-1}\right|\|u\|+\left|\beta_{n}-\beta_{n-1}\right|\left\|P_{C}\left(I-\lambda_{n-1}(I-T)\right) x_{n-1}\right\| \\
& +\left|\gamma_{n}-\gamma_{n-1}\right|\left\|W_{n-1}\right\|+\left|\lambda_{n}-\lambda_{n-1}\right|\left\|(I-T) x_{n-1}\right\| \\
\leq & \left(1-\alpha_{n}\right)\left\|x_{n}-x_{n-1}\right\|+\lambda_{n} M+\left|\alpha_{n}-\alpha_{n-1}\right| M+\left|\beta_{n}-\beta_{n-1}\right| M \\
& +\left|\gamma_{n}-\gamma_{n-1}\right| M+\left|\lambda_{n}-\lambda_{n-1}\right| M,
\end{aligned}
$$

where $M:=\max _{n \in \mathbb{N}}\left\{\left\|(I-T) x_{n+1}-(I-T) x_{n}\right\|,\|u\|,\left\|P_{C}\left(I-\lambda_{n}(I-T)\right) x_{n}\right\|,\left\|W_{n}\right\|\right.$,

$$
\left.\left\|(I-T) x_{n}\right\|\right\}
$$

From the condition $(i i),(i v),(v)$ and Lemma 2.5 we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n+1}-x_{n}\right\|=0 \tag{3.4}
\end{equation*}
$$

Step 3. We show that $\lim _{n \rightarrow \infty}\left\|P_{C}\left(I-\lambda_{n}(I-T)\right) x_{n}-x_{n}\right\|=0$.
Since $x^{*}=P_{C}\left(I-\lambda_{1} A\right)\left(a x^{*}+(1-a) P_{C}\left(I-\lambda_{2} B\right) x^{*}\right)$ and $M^{*}=a x^{*}+(1-a) P_{C}\left(I-\lambda_{2} B\right) x^{*}$, we have $x^{*}=P_{C}\left(I-\lambda_{1} A\right) M^{*}$.

Since $x^{*} \in V I(C, B)$, we obtain

$$
\begin{align*}
M^{*}-x^{*} & =(1-a)\left(P_{C}\left(I-\lambda_{2} B\right) x^{*}-x^{*}\right) \\
& =(1-a)\left(P_{C}\left(I-\lambda_{2} B\right) x^{*}-P_{C}\left(I-\lambda_{2} B\right) x^{*}\right) \\
& =0 \tag{3.5}
\end{align*}
$$

From the definition of M_{n} and M^{*}, we have

$$
\begin{align*}
\left\|M_{n}-M^{*}\right\| & =\left\|a\left(x_{n}-x^{*}\right)+(1-a)\left(P_{C}\left(I-\lambda_{2} B\right) x_{n}-P_{C}\left(I-\lambda_{2} B\right) x^{*}\right)\right\| \\
& \leq a\left\|x_{n}-x^{*}\right\|+(1-a)\left\|P_{C}\left(I-\lambda_{2} B\right) x_{n}-P_{C}\left(I-\lambda_{2} B\right) x^{*}\right\| \\
& \leq a\left\|x_{n}-x^{*}\right\|+(1-a)\left\|x_{n}-x^{*}\right\| \\
& =\left\|x_{n}-x^{*}\right\| \tag{3.6}
\end{align*}
$$

From the definition of W_{n}, we have

$$
\begin{aligned}
\left\|W_{n}-x^{*}\right\|^{2}= & \left\|P_{C}\left(I-\lambda_{1} A\right) M_{n}-P_{C}\left(I-\lambda_{1} A\right) M^{*}\right\|^{2} \\
\leq \leq & \left\langle\left(I-\lambda_{1} A\right) M_{n}-\left(I-\lambda_{1} A\right) M^{*}, W_{n}-x^{*}\right\rangle \\
= & \frac{1}{2}\left(\left\|\left(I-\lambda_{1} A\right) M_{n}-\left(I-\lambda_{1} A\right) M^{*}\right\|^{2}+\left\|W_{n}-x^{*}\right\|^{2}\right. \\
& \left.-\left\|\left(I-\lambda_{1} A\right) M_{n}-\left(I-\lambda_{1} A\right) M^{*}-W_{n}+x^{*}\right\|^{2}\right) \\
\leq & \frac{1}{2}\left(\left\|M_{n}-M^{*}\right\|^{2}+\left\|W_{n}-x^{*}\right\|^{2}\right. \\
& \left.-\left\|\left(M_{n}-W_{n}\right)-\lambda_{1}\left(A M_{n}-A M^{*}\right)\right\|^{2}\right)
\end{aligned}
$$

which implies that

$$
\begin{align*}
\left\|W_{n}-x^{*}\right\|^{2} \leq & \left\|M_{n}-M^{*}\right\|^{2}-\left\|\left(M_{n}-W_{n}\right)-\lambda_{1}\left(A M_{n}-A M^{*}\right)\right\|^{2} \\
= & \left\|M_{n}-M^{*}\right\|^{2}-\left\|M_{n}-W_{n}\right\|^{2}+2 \lambda_{1}\left\langle M_{n}-W_{n}, A M_{n}-A M^{*}\right\rangle \\
& -\lambda_{1}^{2}\left\|A M_{n}-A M^{*}\right\|^{2} . \tag{3.7}
\end{align*}
$$

From the definition of W_{n}, we have

$$
\begin{align*}
\| W_{n}-x^{*} & \|^{2} \\
& =\left\|P_{C}\left(I-\lambda_{1} A\right) M_{n}-P_{C}\left(I-\lambda_{1} A\right) M^{*}\right\|^{2} \\
& \leq\left\|\left(I-\lambda_{1} A\right) M_{n}-\left(I-\lambda_{1} A\right) M^{*}\right\|^{2} \\
& =\left\|\left(M_{n}-M^{*}\right)-\lambda_{1}\left(A M_{n}-A M^{*}\right)\right\|^{2} \\
& =\left\|M_{n}-M^{*}\right\|^{2}-2 \lambda_{1}\left\langle M_{n}-M^{*}, A M_{n}-A M^{*}\right\rangle+\lambda_{1}^{2}\left\|A M_{n}-A M^{*}\right\|^{2} \\
& \leq\left\|M_{n}-M^{*}\right\|^{2}-2 \lambda_{1} \alpha\left\|A M_{n}-A M^{*}\right\|^{2}+\lambda_{1}^{2}\left\|A M_{n}-A M^{*}\right\|^{2} \\
& =\left\|M_{n}-M^{*}\right\|^{2}-\lambda_{1}\left(2 \alpha-\lambda_{1}\right)\left\|A M_{n}-A M^{*}\right\|^{2} . \tag{3.8}
\end{align*}
$$

From the definition of x_{n}, (3.3), (3.6) and (3.8), we have

$$
\begin{aligned}
\left\|x_{n+1}-x^{*}\right\|^{2} \leq & \alpha_{n}\left\|u-x^{*}\right\|^{2}+\beta_{n}\left\|P_{C}\left(I-\lambda_{n}(I-T)\right) x_{n}-x^{*}\right\|^{2} \\
& +\gamma_{n}\left\|W_{n}-x^{*}\right\|^{2} \\
\leq & \alpha_{n}\left\|u-x^{*}\right\|^{2}+\beta_{n}\left\|x_{n}-x^{*}\right\|^{2} \\
& +\gamma_{n}\left(\left\|M_{n}-M^{*}\right\|^{2}-\lambda_{1}\left(2 \alpha-\lambda_{1}\right)\left\|A M_{n}-A M^{*}\right\|^{2}\right) \\
\leq & \alpha_{n}\left\|u-x^{*}\right\|^{2}+\beta_{n}\left\|x_{n}-x^{*}\right\|^{2}+\gamma_{n}\left\|x_{n}-x^{*}\right\|^{2} \\
& -\gamma_{n} \lambda_{1}\left(2 \alpha-\lambda_{1}\right)\left\|A M_{n}-A M^{*}\right\|^{2} \\
= & \alpha_{n}\left\|u-x^{*}\right\|^{2}+\left(1-\alpha_{n}\right)\left\|x_{n}-x^{*}\right\|^{2} \\
& -\gamma_{n} \lambda_{1}\left(2 \alpha-\lambda_{1}\right)\left\|A M_{n}-A M^{*}\right\|^{2} .
\end{aligned}
$$

It implies that

$$
\begin{align*}
\gamma_{n} \lambda_{1}(2 \alpha- & \left.\lambda_{1}\right)
\end{align*} \quad\left\|A M_{n}-A M^{*}\right\|^{2} .
$$

From the condition (ii) and (3.4), we derive

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|A M_{n}-A M^{*}\right\|=0 \tag{3.10}
\end{equation*}
$$

From the definition of x_{n}, (3.3), (3.6) and (3.7), we have

$$
\begin{aligned}
\left\|x_{n+1}-x^{*}\right\|^{2} \leq & \alpha_{n}\left\|u-x^{*}\right\|^{2}+\beta_{n}\left\|P_{C}\left(I-\lambda_{n}(I-T)\right) x_{n}-x^{*}\right\|^{2}+\gamma_{n}\left\|W_{n}-x^{*}\right\|^{2} \\
\leq & \alpha_{n}\left\|u-x^{*}\right\|^{2}+\beta_{n}\left\|x_{n}-x^{*}\right\|^{2} \\
& +\gamma_{n}\left(\left\|M_{n}-M^{*}\right\|^{2}-\left\|M_{n}-W_{n}\right\|^{2}+2 \lambda_{1}\left\langle M_{n}-W_{n}, A M_{n}-A M^{*}\right\rangle\right. \\
& \left.-\lambda_{1}^{2}\left\|A M_{n}-A M^{*}\right\|^{2}\right) \\
\leq & \alpha_{n}\left\|u-x^{*}\right\|^{2}+\beta_{n}\left\|x_{n}-x^{*}\right\|^{2}+\gamma_{n}\left\|x_{n}-x^{*}\right\|^{2}-\gamma_{n}\left\|M_{n}-W_{n}\right\|^{2} \\
& +2 \lambda_{1}\left\|M_{n}-W_{n}\right\|\left\|A M_{n}-A M^{*}\right\| \\
= & \alpha_{n}\left\|u-x^{*}\right\|^{2}+\left(1-\alpha_{n}\right)\left\|x_{n}-x^{*}\right\|^{2}-\gamma_{n}\left\|M_{n}-W_{n}\right\|^{2} \\
& +2 \lambda_{1}\left\|M_{n}-W_{n}\right\|\left\|A M_{n}-A M^{*}\right\| .
\end{aligned}
$$

It follows that

$$
\begin{align*}
\gamma_{n}\left\|M_{n}-W_{n}\right\|^{2} \leq & \alpha_{n}\left\|u-x^{*}\right\|^{2}+\left\|x_{n}-x^{*}\right\|^{2}-\left\|x_{n+1}-x^{*}\right\|^{2} \\
& +2 \lambda_{1}\left\|M_{n}-W_{n}\right\|\left\|A M_{n}-A M^{*}\right\| \\
\leq & \alpha_{n}\left\|u-x^{*}\right\|^{2}+\left\|x_{n}-x_{n+1}\right\|\left(\left\|x_{n}-x^{*}\right\|+\left\|x_{n+1}-x^{*}\right\|\right) \\
& +2 \lambda_{1}\left\|M_{n}-W_{n}\right\|\left\|A M_{n}-A M^{*}\right\| . \tag{3.11}
\end{align*}
$$

From the condition (ii), (3.4) and (3.10), we derive

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|M_{n}-W_{n}\right\|=0 \tag{3.12}
\end{equation*}
$$

From the property of P_{C}, we have

$$
\begin{aligned}
\left\|P_{C}\left(I-\lambda_{2} B\right) x_{n}-x^{*}\right\|^{2}= & \left\|P_{C}\left(I-\lambda_{2} B\right) x_{n}-P_{C}\left(I-\lambda_{2} B\right) x^{*}\right\|^{2} \\
\leq \leq & \left\langle\left(I-\lambda_{2} B\right) x_{n}-\left(I-\lambda_{2} B\right) x^{*}, P_{C}\left(I-\lambda_{2} B\right) x_{n}-x^{*}\right\rangle \\
= & \frac{1}{2}\left(\left\|\left(I-\lambda_{2} B\right) x_{n}-\left(I-\lambda_{2} B\right) x^{*}\right\|^{2}\right. \\
& +\left\|P_{C}\left(I-\lambda_{2} B\right) x_{n}-x^{*}\right\|^{2} \\
& \left.-\left\|\left(I-\lambda_{2} B\right) x_{n}-\left(I-\lambda_{2} B\right) x^{*}-P_{C}\left(I-\lambda_{2} B\right) x_{n}+x^{*}\right\|^{2}\right) \\
\leq & \frac{1}{2}\left(\left\|x_{n}-x^{*}\right\|^{2}+\left\|P_{C}\left(I-\lambda_{2} B\right) x_{n}-x^{*}\right\|^{2}\right. \\
& \left.-\left\|\left(x_{n}-P_{C}\left(I-\lambda_{2} B\right) x_{n}\right)-\lambda_{2}\left(B x_{n}-B x^{*}\right)\right\|^{2}\right) .
\end{aligned}
$$

This implies that

$$
\begin{align*}
\left\|P_{C}\left(I-\lambda_{2} B\right) x_{n}-x^{*}\right\|^{2} \leq & \left\|x_{n}-x^{*}\right\|^{2} \\
& -\left\|\left(x_{n}-P_{C}\left(I-\lambda_{2} B\right) x_{n}\right)-\lambda_{2}\left(B x_{n}-B x^{*}\right)\right\|^{2} \\
= & \left\|x_{n}-x^{*}\right\|^{2}-\left\|x_{n}-P_{C}\left(I-\lambda_{2} B\right) x_{n}\right\|^{2} \\
& +2 \lambda_{2}\left\langle x_{n}-P_{C}\left(I-\lambda_{2} B\right) x_{n}, B x_{n}-B x^{*}\right\rangle \\
& -\lambda_{2}^{2}\left\|B x_{n}-B x^{*}\right\|^{2} . \tag{3.13}
\end{align*}
$$

By using the same method as (3.8), we have

$$
\begin{equation*}
\left\|P_{C}\left(I-\lambda_{2} B\right) x_{n}-x^{*}\right\|^{2} \leq\left\|x_{n}-x^{*}\right\|^{2}-\lambda_{2}\left(2 \beta-\lambda_{2}\right)\left\|B x_{n}-B x^{*}\right\|^{2} \tag{3.14}
\end{equation*}
$$

Since $x^{*} \in V I(C, A)$, we have

$$
\begin{align*}
\left\|W_{n}-x^{*}\right\|^{2} & =\left\|P_{C}\left(I-\lambda_{1} A\right) M_{n}-P_{C}\left(I-\lambda_{1} A\right) x^{*}\right\|^{2} \\
& \leq\left\|a x_{n}+(1-a) P_{C}\left(I-\lambda_{2} B\right) x_{n}-x^{*}\right\|^{2} \\
& =\left\|a\left(x_{n}-x^{*}\right)+(1-a)\left(P_{C}\left(I-\lambda_{2} B\right) x_{n}-x^{*}\right)\right\|^{2} \\
& \leq a\left\|x_{n}-x^{*}\right\|^{2}+(1-a)\left\|P_{C}\left(I-\lambda_{2} B\right) x_{n}-x^{*}\right\|^{2} \tag{3.15}
\end{align*}
$$

From the definition of x_{n}, (3.3), (3.14) and (3.15), we have

$$
\begin{aligned}
& \left\|x_{n+1}-x^{*}\right\|^{2} \\
& \leq \alpha_{n}\left\|u-x^{*}\right\|^{2}+\beta_{n}\left\|P_{C}\left(I-\lambda_{n}(I-T)\right) x_{n}-x^{*}\right\|^{2}+\gamma_{n}\left\|W_{n}-x^{*}\right\|^{2} \\
& \leq \alpha_{n}\left\|u-x^{*}\right\|^{2}+\beta_{n}\left\|P_{C}\left(I-\lambda_{n}(I-T)\right) x_{n}-x^{*}\right\|^{2} \\
& \quad+\gamma_{n}\left(a\left\|x_{n}-x^{*}\right\|^{2}+(1-a)\left\|P_{C}\left(I-\lambda_{2} B\right) x_{n}-x^{*}\right\|^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
\leq & \alpha_{n}\left\|u-x^{*}\right\|^{2}+\beta_{n}\left\|P_{C}\left(I-\lambda_{n}(I-T)\right) x_{n}-x^{*}\right\|^{2} \\
& +\gamma_{n}\left(a\left\|x_{n}-x^{*}\right\|^{2}+(1-a)\left(\left\|x_{n}-x^{*}\right\|^{2}-\lambda_{2}\left(2 \beta-\lambda_{2}\right)\left\|B x_{n}-B x^{*}\right\|^{2}\right)\right) \\
\leq & \alpha_{n}\left\|u-x^{*}\right\|^{2}+\beta_{n}\left\|x_{n}-x^{*}\right\|^{2}+\gamma_{n}\left(a\left\|x_{n}-x^{*}\right\|^{2}+(1-a)\left\|x_{n}-x^{*}\right\|^{2}\right. \\
& \left.-(1-a) \lambda_{2}\left(2 \beta-\lambda_{2}\right)\left\|B x_{n}-B x^{*}\right\|^{2}\right) \\
= & \alpha_{n}\left\|u-x^{*}\right\|^{2}+\left(1-\alpha_{n}\right)\left\|x_{n}-x^{*}\right\|^{2}-(1-a) \lambda_{2} \gamma_{n}\left(2 \beta-\lambda_{2}\right)\left\|B x_{n}-B x^{*}\right\|^{2} .
\end{aligned}
$$

This implies that

$$
\begin{align*}
& (1-a) \lambda_{2} \gamma_{n}\left(2 \beta-\lambda_{2}\right)\left\|B x_{n}-B x^{*}\right\|^{2} \\
& \quad \leq \alpha_{n}\left\|u-x^{*}\right\|^{2}+\left\|x_{n}-x^{*}\right\|^{2}-\left\|x_{n+1}-x^{*}\right\|^{2} \\
& \quad \leq \alpha_{n}\left\|u-x^{*}\right\|^{2}+\left\|x_{n}-x_{n+1}\right\|\left(\left\|x_{n}-x^{*}\right\|+\left\|x_{n+1}-x^{*}\right\|\right) \tag{3.16}
\end{align*}
$$

From the condition (ii) and (3.4), we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|B x_{n}-B x^{*}\right\|=0 \tag{3.17}
\end{equation*}
$$

From the definition of x_{n}, (3.3) and (3.13), we have

$$
\begin{aligned}
\left\|x_{n+1}-x^{*}\right\|^{2} \leq & \alpha_{n}\left\|u-x^{*}\right\|^{2}+\beta_{n}\left\|P_{C}\left(I-\lambda_{n}(I-T)\right) x_{n}-x^{*}\right\|^{2} \\
& +\gamma_{n}\left(a\left\|x_{n}-x^{*}\right\|^{2}+(1-a)\left\|P_{C}\left(I-\lambda_{2} B\right) x_{n}-x^{*}\right\|^{2}\right) \\
\leq & \alpha_{n}\left\|u-x^{*}\right\|^{2}+\beta_{n}\left\|x_{n}-x^{*}\right\|^{2}+\gamma_{n}\left(a\left\|x_{n}-x^{*}\right\|^{2}\right. \\
& +(1-a)\left(\left\|x_{n}-x^{*}\right\|^{2}-\left\|x_{n}-P_{C}\left(I-\lambda_{2} B\right) x_{n}\right\|^{2}\right. \\
& \left.\left.+2 \lambda_{2}\left\langle x_{n}-P_{C}\left(I-\lambda_{2} B\right) x_{n}, B x_{n}-B x^{*}\right\rangle-\lambda_{2}^{2}\left\|B x_{n}-B x^{*}\right\|^{2}\right)\right) \\
\leq & \alpha_{n}\left\|u-x^{*}\right\|^{2}+\left(1-\alpha_{n}\right)\left\|x_{n}-x^{*}\right\|^{2} \\
& -\gamma_{n}(1-a)\left\|x_{n}-P_{C}\left(I-\lambda_{2} B\right) x_{n}\right\|^{2} \\
& +2 \lambda_{2} \gamma_{n}(1-a)\left\langle x_{n}-P_{C}\left(I-\lambda_{2} B\right) x_{n}, B x_{n}-B x^{*}\right\rangle \\
\leq & \alpha_{n}\left\|u-x^{*}\right\|^{2}+\left\|x_{n}-x^{*}\right\|^{2}-\gamma_{n}(1-a)\left\|x_{n}-P_{C}\left(I-\lambda_{2} B\right) x_{n}\right\|^{2} \\
& +2 \lambda_{2} \gamma_{n}(1-a)\left\|x_{n}-P_{C}\left(I-\lambda_{2} B\right) x_{n}\right\|\left\|B x_{n}-B x^{*}\right\| .
\end{aligned}
$$

This implies that

$$
\begin{align*}
\gamma_{n}(1-a) & \left\|x_{n}-P_{C}\left(I-\lambda_{2} B\right) x_{n}\right\|^{2} \\
\leq & \alpha_{n}\left\|u-x^{*}\right\|^{2}+\left\|x_{n}-x^{*}\right\|^{2}-\left\|x_{n+1}-x^{*}\right\|^{2} \\
& +2 \lambda_{2} \gamma_{n}(1-a)\left\|x_{n}-P_{C}\left(I-\lambda_{2} B\right) x_{n}\right\|\left\|B x_{n}-B x^{*}\right\| \\
\leq & \alpha_{n}\left\|u-x^{*}\right\|^{2}+\left\|x_{n}-x_{n+1}\right\|\left(\left\|x_{n}-x^{*}\right\|+\left\|x_{n+1}-x^{*}\right\|\right) \\
& +2 \lambda_{2} \gamma_{n}(1-a)\left\|x_{n}-P_{C}\left(I-\lambda_{2} B\right) x_{n}\right\|\left\|B x_{n}-B x^{*}\right\| \tag{3.18}
\end{align*}
$$

From the condition (ii), (3.4) and (3.17), we derive

$$
\lim _{n \rightarrow \infty}\left\|x_{n}-P_{C}\left(I-\lambda_{2} B\right) x_{n}\right\|=0
$$

Since

$$
\begin{aligned}
\left\|M_{n}-x_{n}\right\| & =\left\|a x_{n}+(1-a) P_{C}\left(I-\lambda_{2} B\right) x_{n}-x_{n}\right\| \\
& =(1-a)\left\|P_{C}\left(I-\lambda_{2} B\right) x_{n}-x_{n}\right\|
\end{aligned}
$$

and $\left\|P_{C}\left(I-\lambda_{2} B\right) x_{n}-x_{n}\right\| \rightarrow 0$ as $n \rightarrow \infty$, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|M_{n}-x_{n}\right\|=0 \tag{3.19}
\end{equation*}
$$

From (3.12) and (3.19), we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|W_{n}-x_{n}\right\|=0 \tag{3.20}
\end{equation*}
$$

Since

$$
x_{n+1}-x_{n}=\alpha_{n}\left(u-x_{n}\right)+\beta_{n}\left(P_{C}\left(I-\lambda_{n}(I-T)\right) x_{n}-x_{n}\right)+\gamma_{n}\left(W_{n}-x_{n}\right)
$$

it implies by the condition (ii), the condition (iii), (3.4) and (3.20) that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|P_{C}\left(I-\lambda_{n}(I-T)\right) x_{n}-x_{n}\right\|=0 \tag{3.21}
\end{equation*}
$$

Step 4. We show that $\limsup _{n \rightarrow \infty}\left\langle u-z_{0}, x_{n}-z_{0}\right\rangle \leq 0$, where $z_{0}=P_{\mathcal{F}} u$. To show this inequality, take a subsequence $\left\{x_{n_{j}}\right\}$ of $\left\{x_{n}\right\}$ such that

$$
\limsup _{n \rightarrow \infty}\left\langle u-z_{0}, x_{n}-z_{0}\right\rangle=\lim _{j \rightarrow \infty}\left\langle u-z_{0}, x_{n_{j}}-z_{0}\right\rangle
$$

Without loss of generality, we may assume that $x_{n_{j}} \rightharpoonup \omega$ as $j \rightarrow \infty$, where $\omega \in C$. First, we show that $\omega \in F(T)$. From Remark 2.9, we have $F(T)=V I(C, I-T)=$ $F\left(P_{C}\left(I-\lambda_{n_{j}}(I-T)\right)\right)$. Assume that $\omega \notin F(T)$, that $\omega \neq P_{C}\left(I-\lambda_{n_{j}}(I-T)\right) \omega$. By $x_{n_{j}} \rightharpoonup \omega$ as $j \rightarrow \infty$, (3.21) and Opial's property, we have

$$
\begin{aligned}
\liminf _{j \rightarrow \infty}\left\|x_{n_{j}}-\omega\right\|< & \liminf _{j \rightarrow \infty}\left\|x_{n_{j}}-P_{C}\left(I-\lambda_{n_{j}}(I-T)\right) \omega\right\| \\
\leq & \liminf _{j \rightarrow \infty}\left(\left\|x_{n_{j}}-P_{C}\left(I-\lambda_{n_{j}}(I-T)\right) x_{n_{j}}\right\|\right. \\
& \left.+\left\|P_{C}\left(I-\lambda_{n_{j}}(I-T)\right) x_{n_{j}}-P_{C}\left(I-\lambda_{n_{j}}(I-T)\right) \omega\right\|\right) \\
\leq & \liminf _{j \rightarrow \infty}\left(\left\|x_{n_{j}}-P_{C}\left(I-\lambda_{n_{j}}(I-T)\right) x_{n_{j}}\right\|\right. \\
& \left.\quad+\left\|x_{n_{j}}-\omega\right\|+\lambda_{n_{j}}\left\|(I-T) x_{n_{j}}-(I-T) \omega\right\|\right) \\
\leq & \liminf _{j \rightarrow \infty}\left\|x_{n_{j}}-\omega\right\| .
\end{aligned}
$$

This is a contradiction, we have

$$
\begin{equation*}
\omega \in F(T) \tag{3.22}
\end{equation*}
$$

Next, we show that $\omega \in V I(C, A) \cap V I(C, B)$. From Lemma 2.6 we have $V I(C, A)$ $\cap V I(C, B)=F(G)$. From (3.20), we have $W_{n_{j}} \rightharpoonup \omega$ as $j \rightarrow \infty$.

$$
\begin{aligned}
\left\|W_{n}-G\left(W_{n}\right)\right\| & =\left\|P_{C}\left(I-\lambda_{1} A\right)\left(a x_{n}+(1-a) P_{C}\left(I-\lambda_{2} B\right) x_{n}\right)-G\left(W_{n}\right)\right\| \\
& =\left\|G\left(x_{n}\right)-G\left(W_{n}\right)\right\| \\
& \leq\left\|x_{n}-W_{n}\right\| .
\end{aligned}
$$

From (3.20), we have

$$
\lim _{n \rightarrow \infty}\left\|W_{n}-G\left(W_{n}\right)\right\|=0 .
$$

From $W_{n_{j}} \rightharpoonup \omega$ as $j \rightarrow \infty$ and Lemma 2.4 we have

$$
\begin{equation*}
\omega \in F(G)=V I(C, A) \cap V I(C, B) . \tag{3.23}
\end{equation*}
$$

From (3.22) and (3.23), we have $\omega \in \mathcal{F}$. Since $x_{n_{j}} \rightharpoonup \omega$ as $j \rightarrow \infty$, we have

$$
\begin{align*}
\limsup _{n \rightarrow \infty}\left\langle u-z_{0}, x_{n}-z_{0}\right\rangle & =\lim _{j \rightarrow \infty}\left\langle u-z_{0}, x_{n_{j}}-z_{0}\right\rangle \\
& =\left\langle u-z_{0}, \omega-z_{0}\right\rangle \leq 0 . \tag{3.24}
\end{align*}
$$

Step 5. Finally, we show that the sequence $\left\{x_{n}\right\}$ converges strongly to $z_{0}=P_{\mathcal{F}} u$. From the definition of x_{n} and $z_{0}=P_{\mathcal{F}} u$, we have

$$
\begin{aligned}
\left\|x_{n+1}-z_{0}\right\|^{2}= & \left\|\alpha_{n}\left(u-z_{0}\right)+\beta_{n}\left(P_{C}\left(I-\lambda_{n}(I-T)\right) x_{n}-z_{0}\right)+\gamma_{n}\left(W_{n}-z_{0}\right)\right\|^{2} \\
\leq & \left\|\beta_{n}\left(P_{C}\left(I-\lambda_{n}(I-T)\right) x_{n}-z_{0}\right)+\gamma_{n}\left(W_{n}-z_{0}\right)\right\|^{2} \\
& +2 \alpha_{n}\left\langle u-z_{0}, x_{n+1}-z_{0}\right\rangle \\
\leq & \beta_{n}\left\|P_{C}\left(I-\lambda_{n}(I-T)\right) x_{n}-z_{0}\right\|^{2}+\gamma_{n}\left\|W_{n}-z_{0}\right\|^{2} \\
& +2 \alpha_{n}\left\langle u-z_{0}, x_{n+1}-z_{0}\right\rangle \\
\leq & \beta_{n}\left\|x_{n}-z_{0}\right\|^{2}+\gamma_{n}\left\|x_{n}-z_{0}\right\|^{2}+2 \alpha_{n}\left\langle u-z_{0}, x_{n+1}-z_{0}\right\rangle \\
= & \left(1-\alpha_{n}\right)\left\|x_{n}-z_{0}\right\|^{2}+2 \alpha_{n}\left\langle u-z_{0}, x_{n+1}-z_{0}\right\rangle .
\end{aligned}
$$

From the condition (ii), (3.24) and Lemma 2.5, we can conclude that the sequence $\left\{x_{n}\right\}$ converges strongly to $z_{0}=P_{\mathcal{F}} u$. This completes the proof.

From our main result, Lemma 1.1 and Lemma 2.6 we have the following corollary:
Corollary 3.2. Let C be a nonempty closed convex subset of a real Hilbert space H and let $T: C \rightarrow C$ be a quasi-nonexpansive mapping. Let $A, B: C \rightarrow H$ be α, β inverse strongly monotone mappings, respectively. Define the mapping $G: C \rightarrow C$ by $G x=P_{C}\left(I-\lambda_{1} A\right)\left(a x+(1-a) P_{C}\left(I-\lambda_{2} B\right) x\right)$ for all $x \in C$. Assume $\mathcal{F}=$ $F(G) \cap F(T) \neq \emptyset$. Suppose that $x_{1}, u \in C$ and let $\left\{x_{n}\right\}$ be a sequence generated by

$$
x_{n+1}=\alpha_{n} u+\beta_{n} P_{C}\left(I-\lambda_{n}(I-T)\right) x_{n}+\gamma_{n} G x_{n}, \forall n \geq 1,
$$

where $\lambda_{1} \in(0,2 \alpha), \lambda_{2} \in(0,2 \beta)$ and $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\},\left\{\gamma_{n}\right\}$ are sequences in $[0,1]$. Suppose the following conditions holds:
(i) $\alpha_{n}+\beta_{n}+\gamma_{n}=1$,
(ii) $\lim _{n \rightarrow \infty} \alpha_{n}=0$ and $\sum_{n=1}^{\infty} \alpha_{n}=\infty$,
(iii) $0<a \leq \beta_{n} \leq c<1$ for all $n \geq 1$,
(iv) $\sum_{n=1}^{\infty} \lambda_{n}<\infty$ and $0<\lambda_{n}<1$,
(v) $\sum_{n=1}^{\infty}\left|\alpha_{n+1}-\alpha_{n}\right|<\infty, \sum_{n=1}^{\infty}\left|\beta_{n+1}-\beta_{n}\right|<\infty, \sum_{n=1}^{\infty}\left|\lambda_{n+1}-\lambda_{n}\right|<\infty$.

Then $\left\{x_{n}\right\}$ converges strongly to $z_{0}=P_{\mathcal{F} u} u$ and $\left(z_{0}, y_{0}\right)$ is a solution of (1.3), where $y_{0}=P_{C}\left(I-\lambda_{2} B\right) z_{0}$.

4 Application

In this section, we prove strong convergence theorems involving the set of fixed points of nonspreading mapping.

A mapping $T: C \rightarrow C$ is called nonspreading if

$$
2\|T x-T y\|^{2} \leq\|T x-y\|^{2}+\|T y-x\|^{2}, \forall x, y \in C .
$$

The such mapping is defined by Kohsaka and Takahashi (19).
The following lemma is needed to prove in application.
Lemma 4.1 (19]). Let H be a Hilbert space, let C be a nonempty closed convex subset of H, and let S be a nonspreading mapping of C into itself. Then $F(S)$ is closed and convex.

In 2009, Kangtunyakarn and Suantai 20 introduced the S-mapping generated by $T_{1}, T_{2}, \ldots, T_{N}$ and $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{N}$ as following. Let C be a nonempty convex subset of a real Banach space. Let $\left\{T_{i}\right\}_{i=1}^{N}$ be a finite family of (nonexpansive) mappings of C into itself. For each $j=1,2, \ldots, N$, let $\alpha_{j}=\left(\alpha_{1}^{j}, \alpha_{2}^{j}, \alpha_{3}^{j}\right) \in I \times I \times I$, where $I \in[0,1]$ and $\alpha_{1}^{j}+\alpha_{2}^{j}+\alpha_{3}^{j}=1$. Define the mapping $S: C \rightarrow C$ as follows:

$$
\begin{aligned}
& U_{0}=I, \\
& U_{1}=\alpha_{1}^{1} T_{1} U_{0}+\alpha_{2}^{1} U_{0}+\alpha_{3}^{1} I, \\
& U_{2}=\alpha_{1}^{2} T_{2} U_{1}+\alpha_{2}^{2} U_{1}+\alpha_{3}^{2} I, \\
& U_{3}=\alpha_{1}^{3} T_{3} U_{2}+\alpha_{2}^{3} U_{2}+\alpha_{3}^{3} I, \\
& \quad \cdot \\
& \cdot \\
& \cdot \\
& U_{N-1}=\alpha_{1}^{N-1} T_{N-1} U_{N-2}+\alpha_{2}^{N-1} U_{N-2}+\alpha_{3}^{N-1} I, \\
& S=U_{N}=\alpha_{1}^{N} T_{N} U_{N-1}+\alpha_{2}^{N} U_{N-1}+\alpha_{3}^{N} I .
\end{aligned}
$$

This mapping is called an S-mapping generated by $T_{1}, T_{2}, \ldots, T_{N}$ and $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{N}$.
For every $i=1,2, \ldots, N$. Put $\alpha_{3}^{i}=0$ in Definition 4.1, then the S-mapping is reduced to the K-mapping defined by Kangtunyakarn and Suantai 21 as following. Let C be a nonempty convex subset of a real Banach space. Let $\left\{T_{i}\right\}_{i=1}^{N}$ be a finite family of mappings of C into itself, and let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{N}$ be real numbers such that $0 \leq \lambda_{i} \leq 1$ for every $i=1,2, \ldots, N$. We define a mapping $K: C \rightarrow C$ as follows:

$$
\begin{aligned}
U_{0} & =I \\
U_{1} & =\lambda_{1} T_{1}+\left(1-\lambda_{1}\right) I \\
U_{2} & =\lambda_{2} T_{2} U_{1}+\left(1-\lambda_{2}\right) U_{1} \\
U_{3} & =\lambda_{3} T_{3} U_{2}+\left(1-\lambda_{3}\right) U_{2} \\
\cdot & \\
\cdot & \\
U_{N-1} & =\lambda_{N-1} T_{N-1} U_{N-2}+\left(1-\lambda_{N-1}\right) U_{N-2} \\
K & =U_{N}=\lambda_{N} T_{N} U_{N-1}+\left(1-\lambda_{N}\right) U_{N-1}
\end{aligned}
$$

Such a mapping K is called the K-mapping generated by $T_{1}, T_{2}, \ldots, T_{N}$ and $\lambda_{1}, \lambda_{2}, \ldots$, λ_{N}.

Lemma $4.2([22])$. Let C be a nonempty closed convex subset of a real Hilbert space H. Let $\left\{T_{i}\right\}_{i=1}^{N}$ be a finite family of nonspreading mappings of C into C with $\bigcap_{i=1}^{N} F\left(T_{i}\right) \neq \emptyset$, and let $\alpha_{j}=\left(\alpha_{1}^{j}, \alpha_{2}^{j}, \alpha_{3}^{j}\right) \in I \times I \times I, j=1,2, \ldots, N$, where $I=[0,1] \quad, \alpha_{1}^{j}+\alpha_{2}^{j}+\alpha_{3}^{j}=1, \alpha_{1}^{j}, \alpha_{3}^{j} \in(0,1)$ for all $j=1,2, \ldots, N-1$ and $\alpha_{1}^{N} \in$ $(0,1], \alpha_{3}^{N} \in[0,1) \alpha_{2}^{j} \in[0,1)$ for all $j=1,2, \ldots, N$. Let S be the mapping generated by $T_{1}, T_{2}, \ldots, T_{N}$ and $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{N}$. Then $F(S)=\bigcap_{i=1}^{N} F\left(T_{i}\right)$ and S is a quasinonexpansive mapping.

Lemma 4.3 ([23]). Let C be a nonempty closed convex subset of a real Hilbert space H. Let $\left\{T_{i}\right\}_{i=1}^{N}$ be a finite family of nonspreading mappings of C into itself with $\bigcap_{i=1}^{N} F\left(T_{i}\right) \neq \emptyset$ and let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{N}$ be real numbers such that $0<\lambda_{i}<1$ for every $i=1,2, \ldots, N-1$ and $0<\lambda_{N} \leq 1$. Let K be the K-mapping generated by $T_{1}, T_{2}, \ldots, T_{N}$ and $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{N}$. Then $F(K)=\bigcap_{i=1}^{N} F\left(T_{i}\right)$ and K is quasinonexpansive mapping.

By using these results, we obtain the following theorems
Theorem 4.4. Let C be a nonempty closed convex subset of a real Hilbert space H. Let $\left\{T_{i}\right\}_{i=1}^{N}$ be a finite family of nonspreading mappings of C into C with $\bigcap_{i=1}^{N} F\left(T_{i}\right) \neq \emptyset$, and let $\alpha_{j}=\left(\alpha_{1}^{j}, \alpha_{2}^{j}, \alpha_{3}^{j}\right) \in I \times I \times I, j=1,2, \ldots, N$, where $I=[0,1], \alpha_{1}^{j}+\alpha_{2}^{j}+\alpha_{3}^{j}=1, \alpha_{1}^{j}, \alpha_{3}^{j} \in(0,1)$ for all $j=1,2, \ldots, N-1$ and $\alpha_{1}^{N} \in$
$(0,1], \alpha_{3}^{N} \in[0,1) \alpha_{2}^{j} \in[0,1)$ for all $j=1,2, \ldots, N$. Let S be the mapping generated by $T_{1}, T_{2}, \ldots, T_{N}$ and $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{N}$. Let $A, B: C \rightarrow H$ be α, β-inverse strongly monotone mappings, respectively. Define the mapping $G: C \rightarrow C$ by $G x=$ $P_{C}\left(I-\lambda_{1} A\right)\left(a x+(1-a) P_{C}\left(I-\lambda_{2} B\right) x\right)$ for all $x \in C$. Assume $\mathcal{F}=V I(C, A) \cap$ $V I(C, B) \cap \bigcap_{i=1}^{N} F\left(T_{i}\right) \neq \emptyset$. Suppose that $x_{1}, u \in C$ and let $\left\{x_{n}\right\}$ be sequence generated by

$$
x_{n+1}=\alpha_{n} u+\beta_{n} P_{C}\left(I-\lambda_{n}(I-S)\right) x_{n}+\gamma_{n} G x_{n}, \forall n \geq 1
$$

where $\lambda_{1} \in(0,2 \alpha), \lambda_{2} \in(0,2 \beta)$ and $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\},\left\{\gamma_{n}\right\}$ are sequences in $[0,1]$. Suppose the following conditions hold:
(i) $\alpha_{n}+\beta_{n}+\gamma_{n}=1$,
(ii) $\lim _{n \rightarrow \infty} \alpha_{n}=0$ and $\sum_{n=1}^{\infty} \alpha_{n}=\infty$,
(iii) $0<a \leq \beta_{n} \leq c<1$ for all $n \geq 1$,
(iv) $\sum_{n=1}^{\infty} \lambda_{n}<\infty$ and $0<\lambda_{n}<1$,
(v) $\sum_{n=1}^{\infty}\left|\alpha_{n+1}-\alpha_{n}\right|<\infty, \sum_{n=1}^{\infty}\left|\beta_{n+1}-\beta_{n}\right|<\infty, \sum_{n=1}^{\infty}\left|\lambda_{n+1}-\lambda_{n}\right|<\infty$.

Then $\left\{x_{n}\right\}$ converges strongly to $z_{0}=P_{\mathcal{F}} u$.
Proof. By using Theorem 3.1 and Lemma 4.2, we obtain the conclusion.
Theorem 4.5. Let C be a nonempty closed convex subset of a real Hilbert space H. Let $\left\{T_{i}\right\}_{i=1}^{N}$ be a finite family of nonspreading mappings of C into itself with $\bigcap_{i=1}^{N} F\left(T_{i}\right) \neq \emptyset$ and let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{N}$ be real numbers such that $0<\lambda_{i}<1$ for every $i=1,2, \ldots, N-1$ and $0<\lambda_{N} \leq 1$. Let K be the K-mapping generated by $T_{1}, T_{2}, \ldots, T_{N}$ and $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{N}$. Let $A, B: C \rightarrow H$ be α, β-inverse strongly monotone mappings, respectively. Define the mapping $G: C \rightarrow C$ by $G x=$ $P_{C}\left(I-\lambda_{1} A\right)\left(a x+(1-a) P_{C}\left(I-\lambda_{2} B\right) x\right)$ for all $x \in C$. Assume $\mathcal{F}=V I(C, A) \cap$ $V I(C, B) \cap \bigcap_{i=1}^{N} F\left(T_{i}\right) \neq \emptyset$. Suppose that $x_{1}, u \in C$ and let $\left\{x_{n}\right\}$ be sequence generated by

$$
x_{n+1}=\alpha_{n} u+\beta_{n} P_{C}\left(I-\lambda_{n}(I-K)\right) x_{n}+\gamma_{n} G x_{n}, \quad \forall n \geq 1,
$$

where $\lambda_{1} \in(0,2 \alpha), \lambda_{2} \in(0,2 \beta)$ and $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\},\left\{\gamma_{n}\right\}$ are sequences in $[0,1]$. Suppose the following conditions hold:
(i) $\alpha_{n}+\beta_{n}+\gamma_{n}=1$,
(ii) $\lim _{n \rightarrow \infty} \alpha_{n}=0$ and $\sum_{n=1}^{\infty} \alpha_{n}=\infty$,
(iii) $0<a \leq \beta_{n} \leq c<1$ for all $n \geq 1$,
(iv) $\sum_{n=1}^{\infty} \lambda_{n}<\infty$ and $0<\lambda_{n}<1$,
(v) $\sum_{n=1}^{\infty}\left|\alpha_{n+1}-\alpha_{n}\right|<\infty, \sum_{n=1}^{\infty}\left|\beta_{n+1}-\beta_{n}\right|<\infty, \sum_{n=1}^{\infty}\left|\lambda_{n+1}-\lambda_{n}\right|<\infty$.

Then $\left\{x_{n}\right\}$ converges strongly to $z_{0}=P_{\mathcal{F}} u$.

Proof. By using Theorem 3.1 and Lemma 4.3, we obtain the conclusion.
The following result is direct proved from Theorem 4.4. Therefore, we omit the prove.

Corollary 4.6. Let C be a nonempty closed convex subset of a real Hilbert space. Let T be a nonspreading mappings of C into itself with $F(T) \neq \emptyset$. Let $A, B: C \rightarrow$ H be α, β-inverse strongly monotone mappings, respectively. Define the mapping $G: C \rightarrow C$ by $G x=P_{C}\left(I-\lambda_{1} A\right)\left(a x+(1-a) P_{C}\left(I-\lambda_{2} B\right) x\right)$ for all $x \in C$. Assume $\mathcal{F}=V I(C, A) \cap V I(C, B) \cap F(T) \neq \emptyset$. Suppose that $x_{1}, u \in C$ and let $\left\{x_{n}\right\}$ be sequence generated by

$$
x_{n+1}=\alpha_{n} u+\beta_{n} P_{C}\left(I-\lambda_{n}(I-T)\right) x_{n}+\gamma_{n} G x_{n}, \forall n \geq 1
$$

where $\lambda_{1} \in(0,2 \alpha), \lambda_{2} \in(0,2 \beta)$ and $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\},\left\{\gamma_{n}\right\}$ are sequences in $[0,1]$. Suppose the following conditions hold:
(i) $\alpha_{n}+\beta_{n}+\gamma_{n}=1$,
(ii) $\lim _{n \rightarrow \infty} \alpha_{n}=0$ and $\sum_{n=1}^{\infty} \alpha_{n}=\infty$,
(iii) $0<a \leq \beta_{n} \leq c<1$ for all $n \geq 1$,
(iv) $\sum_{n=1}^{\infty} \lambda_{n}<\infty$ and $0<\lambda_{n}<1$,
(v) $\sum_{n=1}^{\infty}\left|\alpha_{n+1}-\alpha_{n}\right|<\infty, \sum_{n=1}^{\infty}\left|\beta_{n+1}-\beta_{n}\right|<\infty, \sum_{n=1}^{\infty}\left|\lambda_{n+1}-\lambda_{n}\right|<\infty$.

Then $\left\{x_{n}\right\}$ converges strongly to $z_{0}=P_{\mathcal{F}} u$.

References

[1] H. Iiduka, Fixed point optimization algorithm and its application to network bandwidth allocation, J. Comp. Appl. Math. 236 (2012) 1733-1742.
[2] G.T. Herman, Fundamentals of Computerized Tomography: Image Reconstruction from Projections, Springer, New York, 2009.
[3] A. Beck, M. Teboulle, Fast gradient-based algorithms for constrained total variation de-noising and deblurring problems, IEEE Trans Image Process 18 (2009) 2419-2434.
[4] J.L. Lions, G. Stampacchia, Variational inequalities, Comm. Pure Appl. Math. 20 (1967) 493-517.
[5] D. Kinderlehrer, G. Stampaccia, An Iteration to Variational Inequalities and Their Applications, Academic Press, New York, 1990.
[6] N. Nadezhkina, W. Takahashi, Weak convergence theorem by an extragradientmethod for nonexpansive mappings and monotone mappings, J. Optim. Theory Appl. 128 (2006) 191-201.
[7] J.C. Yao, O. Chadli, Pseudomonotone complementarity problems and variational inequalities, Handbook of generalized convexity and monotonicity, Springer New York 76 (2005) 501-558.
[8] Y. Yao, J.C. Yao, On modified iterative method for nonexpansive mappings and monotone mappings, Appl. Math. Comput. 186 (2007) 1551-1558.
[9] L.C. Ceng, C.Y. Wang, J.C. Yao, Strong convergence theorems by a relaxed extragradient method for a general system of variational inequalities, Math. Methods Oper. Res. 67 (2008) 357-390.
[10] A. Kangtunyakarn, An iterative algorithm to approximate a common element of the set of common fixed points for a finite family of strict pseudocontractions and of the set of solutions for a modified system of variational inequalities, Fixed Point Theory and Applications 143 (2013).
[11] M. Tian, X. Jin, A general iterative method for quasi-nonexpansive mappings in Hilbert space, Journal of Inequalities and Applications, 38 (2012).
[12] P.E. Mainge, The viscosity approximation process for quasi-nonexpansive mappings in Hilbert spaces, Comp. Math. Appl. 59 (2010) 74-79.
[13] M. Tian, X. Jin, Strong convergent result for quasi-nonexpansive mappings in Hilbert spaces, Fixed Point Theory and Applications 88 (2011).
[14] Z. Opial, Weak convergence of the sequence of successive approximation of nonexpansive mappings, Bull. Amer. Math. Soc. 73 (1967) 591-597.
[15] M.O. Osilike, D.I. Igbokwe, Weak and strong convergence theorems for fixed points of pseudocontractions and solutions of monotone type operator equations, Comp. Math. Appl. 40 (2000) 559-567.
[16] F.E. Browder, Nonlinear operators and nonlinear equations of evolution in Banach spaces, Proc. Sympos. Pure. Math. 18 (1976) 78-81.
[17] H.K. Xu, An iterative approach to quadric optimization, J. Optim. Theory Appl. 116 (2003) 659-678.
[18] W. Takahashi, Nonlinear Functional Analysis, Yokohama Publishers, Yokohama, 2000.
[19] F. Kohsaka, W.Takahashi, Fixed point theorems for a class of nonlinear mappings related to maximal monotone operators in Banach spaces, Arch. Math. 91 (2008) 166-177.
[20] A. Kangtunyakarn, S. Suantai, Hybrid iterative scheme for generalized equilibrium problems and fixed point problems of finite family of nonexpansive mappings, Nonlinear Analysis: Hybrid Systems 3 (2009) 296-309.
[21] A. Kangtunyakarn, S. Suantai, A new mapping for finding common solutions of equilibrium problems and fixed point problems of finite family of nonexpansive mappings, Nonlinear Anal. 71 (2009) 4448-4460.
[22] A. Kangtunyakarn, Strong convergence of the hybrid method for a finite family of nonspreading mappings and variational inequality problem, Fixed Point Theory and Applications 188 (2012).
[23] A. Kangtunyakarn, S. Suantai, Convergence theorem of common fixed points for a family of nonspreading mapping in Hilbert space, Optim. Lett. 6 (2012) 957-961.
(Received 6 March 2014)
(Accepted 7 May 2014)

Thai J. Math. Online @ http://thaijmath.in.cmu.ac.th

[^0]: ${ }^{1}$ This research was supported by the Research Administration Division of King Mongkut's Institute of Technology Ladkrabang.
 ${ }^{2}$ Corresponding author.
 Copyright © 2015 by the Mathematical Association of Thailand. All rights reserved.

