Thai Journal of Mathematics Volume 13 (2015) Number 3 : 641–652

http://thaijmath.in.cmu.ac.th ISSN 1686-0209

On Connected Cayley Graphs of Semigroups

T. Suksumran †,1 and S. Panma ‡

[†]Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand e-mail : teerapong.suksumran@gmail.com [‡]Department of Mathematics, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand e-mail : panmayan@yahoo.com

Abstract : It is well known that for a finite group G with a nonempty subset A, the Cayley graph of G with respect to A is connected if and only if A is a generating set of G. In this paper we generalize this result to the case of semigroups and give some necessary and sufficient conditions for Cayley graphs of a semigroup to be connected. We also characterize weakly connected Cayley graphs of a semigroup and indicate a relationship between a Cayley graph of a semigroup and the Hasse diagram of a partially ordered set.

Keywords : Cayley graph of semigroup; right simple semigroup; connected digraph; strongly connected graph; weakly connected graph.
2010 Mathematics Subject Classification : 20M30; 05C20.

1 Introduction

Cayley graphs of a semigroup have been extensively studied because they reflect the structure of the semigroup. Further, we can visualize a semigroup by constructing its Cayley graphs. Numerous interesting results have been found. For instance, the monograph [1] includes one section devoted to the study of Cayley graphs of a semigroup, and [2] includes fundamental properties and recent research on Cayley graphs of a semigroup. Many properties of Cayley graphs of particular types of semigroups have been investigated, see for instance [3, 4, 5].

Copyright 2015 by the Mathematical Association of Thailand. All rights reserved.

¹Corresponding author.

Recall the well-known property of Cayley graphs of a group: for a finite group G with a nonempty subset A, the Cayley graph of G with respect to A is (strongly) connected if and only if A is a generating set of G. This is a necessary and sufficient condition for Cayley graphs of a group to be connected. The main purpose of this article is to find out such condition for semigroups. We also characterize weakly connected Cayley graphs of a semigroup, using Green's relations taken relative to a subsemigroup. Finally, we connect a Cayley graph of a semigroup with the Hasse diagram of a partially ordered set.

In the next section we give the definition of a Cayley graph of a semigroup and summarize basic knowledge of graphs and semigroups. In Section 3 we give a condition to determine whether or not a Cayley graph of a semigroup is strongly connected. In Section 4 we characterize weakly connected Cayley graphs of a semigroup.

2 Preliminaries

For a finite semigroup S and a nonempty subset A of S, we define the *(right)* Cayley graph of S with respect to A, denoted by Cay (S, A), to be the directed graph with vertex set S and edge set $\{(s, sa): s \in S \text{ and } a \in A\}$. To shorten the notation, we write Cay (S, a) instead of Cay $(S, \{a\})$.

We introduce the basic theory of graphs and semigroups, following [6, 7] and [8, 9].

Let D be a digraph with vertex set V(D) and edge set E(D). A digraph H is a *subgraph* of D provided that $V(H) \subseteq V(D)$ and $E(H) \subseteq E(D)$. If a subgraph H of D has the additional property that for any pair of vertices u and v in H, $(u,v) \in E(H)$ if and only if $(u,v) \in E(D)$, then H is called an *induced subgraph* of D. Let A be a set of vertices of D. The subgraph of D induced by A, denoted by ind A, is the induced subgraph of D with vertex set A.

An alternating sequence $u = u_0, e_1, u_1, \ldots, e_n, u_n = v$ of vertices and edges in a digraph is a *u-v* (directed) walk of length *n* if $e_i = (u_{i-1}, u_i)$ for $i = 1, 2, \ldots, n$. A *u-v* walk is a (directed) path if the vertices are all distinct and is closed if u = v. A closed walk of length at least 2 containing no repeated vertex except for the beginning and the end is called a (directed) cycle. A *u-v* semiwalk is an alternating sequence $u = u_0, e_1, u_1, \ldots, e_n, u_n = v$ of vertices and edges in which either $e_i = (u_{i-1}, u_i)$ or $e_i = (u_i, u_{i-1})$ for all *i*. A semipath and semicycle are defined in a similar way. Note that every path is a semipath and that every cycle is a semicycle.

We will use the result that if there are semipaths both from u to v and from v to w, then there is a u-w semipath. More precisely, we have

Proposition 2.1. Let D be a digraph. For any two distinct vertices u and v, define

 $u \sim v \quad \Leftrightarrow \quad there \ is \ a \ semipath \ from \ u \ to \ v.$

Then \sim is symmetric and transitive.

When the word "semipath" is replaced by "path", the relation defined above is only transitive.

The notion of paths and semipaths is used to describe connectedness of a digraph as follows. Let D be a digraph and let u and v be distinct vertices of D. The digraph D is strongly connected (or strong) if a u-v path and v-u path exist. It is unilaterally connected (or unilateral) if a u-v path or v-u path exists. It is weakly connected (or weak) if a u-v semipath or v-u semipath exists. A digraph is said to be disconnected if it is not even weak. Note that the trivial digraph is vacuously strong for it cannot contain two different vertices.

Let A be a nonempty subset of a semigroup S. The subsemigroup of S generated by A is denoted by $\langle A \rangle$ and consists of the elements of S that can be expressed as finite products of elements in A. In particular, we have $\langle a \rangle = \{a^n : n \in \mathbb{N}\}$. If A is such that $\langle A \rangle = S$, then A is called a *generating set* of S or, equivalently, S is generated by A. Clearly, S is a generating set of itself.

A semigroup S is said to be *right simple* provided that it contains no proper right ideals. It is straightforward to check that S is right simple if and only if aS = S for all a in S if and only if the linear equation ax = b in the variable x possesses a solution in S for all $a, b \in S$.

Recall that an equivalence relation is a relation that is reflexive, symmetric, and transitive. Let ρ be an equivalence relation on a set S and let $s \in S$. Denote by $s\rho$ the equivalence class containing s and by S/ρ the collection $\{s\rho: s \in S\}$ of equivalence classes of S. An element t of S is a *representative* for $s\rho$ if $t \in s\rho$.

Let S be a semigroup with a subsemigroup T and let aT^1 denote the set $aT \cup \{a\}$. Following [10], Green's relation taken relative to T, written \mathcal{R}^T , is defined by

$$a \mathcal{R}^T b \quad \Leftrightarrow \quad aT^1 = bT^1$$
 (2.1)

for $a, b \in S$. This relation will play an important role in Sections 3 and 4.

A partial order is a relation that is reflexive, antisymmetric, and transitive. An ordered set (S, \leq) consists of a set S together with a partial order \leq on S. Two ordered sets (S, \leq) and (T, \leq) are *order-isomorphic* if there exists a surjective map φ from S onto T that preserves the order, that is, $a \leq b$ if and only if $\varphi(a) \leq \varphi(b)$ for all $a, b \in S$.

As in the case of Cayley graphs of a semigroup, one may visualize the structure of a finite ordered set by the so-called *Hasse diagram*, see [11] for more details.

Throughout the article by a graph we mean a directed graph in which loops are permitted but multiple edges are not; S stands for an arbitrary finite semigroup and A stands for a nonempty subset of S. There is no loss of generality when we work with Cayley graphs of *nontrivial* semigroups.

3 Strongly Connected Graphs

The condition given in the introduction determines whether a Cayley graph of a *group* is connected. Such condition does not guarantee connectedness in the case of semigroups, however. We present two simple examples, which show that the condition that A is a generating set of S is neither necessary nor sufficient for Cayley graphs of a semigroup to be connected. Let $S_4 = \{s_1, s_2, s_3, s_4\}$ and $T_4 = \{t_1, t_2, t_3, t_4\}$ be semigroups with multiplication defined by Table 1 and Table 2. It is easy to see that $A = \{s_3, s_4\}$ is a generating set of S_4 , but the Cayley graph Cay (S_4, A) is disconnected (see Figure 1). Moreover, the Cayley graph Cay (T_4, t_3) is weakly connected, even though $\{t_3\}$ does not generate T_4 .

•	s_1	s_2	s_3	s_4
s_1	s_1	s_1	s_4	s_4
s_2	s_2	s_2	s_3	s_3
s_3	s_3	s_3	s_2	s_2
s_4	s_4	s_4	s_1	s_1

Table 1. Multiplication table for S_4

•	t_1	t_2	t_3	t_4
t_1	t_1	t_2	t_3	t_4
t_2	t_1	t_2	t_3	t_4
t_3	t_3	t_4	t_1	t_2
t_4	t_3	t_4	t_1	t_2

Table 2. Multiplication table for T_4

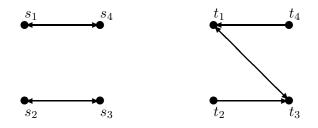


Figure 1. Cay $(S, \{s_3, s_4\})$ and Cay (T, t_3)

The next theorem gives a criterion for the existence of a path from one vertex to another. Consequently, necessary and sufficient conditions for connectedness of Cayley graphs of a semigroup are obtained. This result is consistent with Lemma 5.1 of [3]. In light of the proof of Theorem 3.1, we also obtain Proposition 3.4.

Theorem 3.1. Let u and v be distinct elements of S. A path from u to v in Cay (S, A) exists if and only if the linear equation ux = v in the variable x has a solution in $\langle A \rangle$. Furthermore, Cay (S, A) has a cycle containing u or a loop at u if and only if ux = u has a solution in $\langle A \rangle$.

Proof. Let $u = s_0, s_1, \ldots, s_n = v$ be a path. By definition, there are elements a_1, a_2, \ldots, a_n of A such that $s_i = s_{i-1}a_i$ for $i = 1, 2, \ldots, n$. This proves $v = u(a_1a_2\cdots a_n)$, and $a_1a_2\cdots a_n \in \langle A \rangle$ is a solution to the equation.

Conversely, there is an $x_0 \in \langle A \rangle$ for which $ux_0 = v$. Since $x_0 \in \langle A \rangle$, we can write x_0 as $a_1a_2 \cdots a_n$, where $a_i \in A$. Define $x_1 = ua_1$ and $x_i = x_{i-1}a_i$ for $i = 2, 3, \ldots, n$. Hence, $x_n = v$ and $(u, x_1), (x_1, x_2), \ldots, (x_{n-1}, v)$ are edges in Cay (S, A). Note that loops and cycles may occur in these edges. However, we can exclude them to obtain a u-v path. The remaining part can be proved in a similar way.

Corollary 3.2. A Cayley graph Cay(S, A) is strong if and only if the linear equation ux = v in the variable x has a solution in $\langle A \rangle$ for all $u, v \in S$.

Proof. To complete the proof, we need only show that a solution for ux = u exists for $u \in S$. Since S is a nontrivial semigroup, there is an element $w \neq u$ of S such that a u-w path and w-u path exist. Hence, $ux_0 = w$ and $wy_0 = u$ for some $x_0, y_0 \in \langle A \rangle$ and so $ux_0y_0 = u$.

Corollary 3.3. A Cayley graph Cay(S, A) is unilateral if and only if for all $u, v \in S$ with $u \neq v$, the linear equation ux = v or vx = u in the variable x has a solution in $\langle A \rangle$.

Proposition 3.4. If the subsemigroup $\langle A \rangle$ of S has order m, then the Cayley graph Cay (S, A) contains a path of length at most m.

Proof. The statement is clear if there is no path in Cay (S, A). We may therefore assume that $u = s_0, s_1, \ldots, s_n = v$ is a path in Cay (S, A). Repeating the argument given in the proof of Theorem 3.1, we have $s_i = s_0a_1 \cdots a_i$ for $i = 1, 2, \ldots, n$. Furthermore, the elements $a_1, a_1a_2, \ldots, a_1a_2 \cdots a_n$ must be distinct for if there were indices $j \neq k$ such that $a_1a_2 \cdots a_j = a_1a_2 \cdots a_k$, then we would have $s_j = s_k$, contrary to the definition of a path. Since $a_1, a_1a_2, \ldots, a_1a_2 \cdots a_n$ belong to $\langle A \rangle$, we conclude that $n \leq m$.

In order to obtain a result as in the group case, we have to restrict classes of semigroups to the class of right simple semigroups. In fact, if S is not a right simple semigroup, then a Cayley graph Cay (S, A) fails to be strongly connected for any subset A of S. The following theorem is a generalization of the statement given in the introduction as every group is a right simple semigroup. Recall that every (right) linear equation in a right simple semigroup always has a solution.

Theorem 3.5. Let S be a right simple semigroup and let $A \subseteq S$. A Cayley graph Cay (S, A) is strong if and only if $\langle A \rangle = S$.

Proof. Suppose that $y \in S$ and $a \in A$. By Corollary 3.2, the equation y = ax has a solution in $\langle A \rangle$. Hence, y belongs to $\langle A \rangle$. This proves $S \subseteq \langle A \rangle$ and so equality holds. The converse holds trivially by the same corollary.

Corollary 3.6. There is a subset A of S such that the Cayley graph Cay(S, A) is strong if and only if S is right simple.

Proof. For each $a \in S$, we have $aS \subseteq S$. For each $s \in S$, we can pick, by Corollary 3.2, an element x_0 of $\langle A \rangle$ such that $s = ax_0 \in aS$. Hence, $S \subseteq aS$ and so equality holds. This proves that S is right simple. Verification of the converse is straightforward. Since $\langle S \rangle = S$, the Cayley graph Cay (S, S) is strong.

We close this section by introducing the equivalence relation that will be useful in the next section. According to (2.1), if $T = \langle A \rangle$, then for all $u, v \in S$,

$$u \mathcal{R}^{\langle A \rangle} v \quad \Leftrightarrow \quad u \langle A \rangle^1 = v \langle A \rangle^1.$$
 (3.1)

For simplicity, we write π instead of $\mathcal{R}^{\langle A \rangle}$ and A(u, v) instead of the cumbersome expression $u\langle A \rangle \cap v\langle A \rangle$. The following theorem gives a characterization of π .

Theorem 3.7. Let u and v be distinct elements of S. Then $u \pi v$ if and only if there exist elements a and b of $\langle A \rangle$ such that v = ua and u = vb.

Proof. Clearly, $u \in v\langle A \rangle^1$ and $v \in u\langle A \rangle^1$ because $u\langle A \rangle^1 = v\langle A \rangle^1$. Since $u \neq v$, there is an element $a \in \langle A \rangle$ for which v = ua. Repeating this argument shows that u = vb for some b in $\langle A \rangle$.

Let $x \in u\langle A \rangle^1$. If x = u, then $x = vb \in v\langle A \rangle^1$. Otherwise, x = uc for some $c \in \langle A \rangle$. It follows that $x = vbc \in v\langle A \rangle^1$ and hence $u\langle A \rangle^1 \subseteq v\langle A \rangle^1$. One obtains similarly that $v\langle A \rangle^1 \subseteq u\langle A \rangle^1$. This proves $u \pi v$.

From Theorem 3.1, we conclude that $u \pi v$ if and only if the Cayley graph contains a u-v path and v-u path. This leads to a remarkable consequence: for an equivalence class $s\pi$ in S/π , the induced subgraph ind $s\pi$ of a graph Cay (S, A) is always strongly connected. We state this result as Theorem 3.8. Note that this theorem enables us to study weakly connected graphs through the collection S/π of equivalence classes instead of the entire semigroup S.

646

On Connected Cayley Graphs of Semigroups

Theorem 3.8. The induced subgraph ind $s\pi$ of Cay (S, A) is strongly connected.

Proof. If $s\pi$ consists exactly of one vertex, then the graph ind $s\pi$ is vacuously strong. We may therefore assume that there are at least two distinct vertices in $s\pi$, say u and v. Hence $u \pi v$, and a u-v path and v-u path exist, namely

 $u = u_0, u_1, \dots, u_m = v$ and $v = v_0, v_1, \dots, v_n = u$.

It remains to prove that both paths lie in the graph ind $s\pi$ or, equivalently, u_i and v_j belong to $s\pi$ for all i, j. In fact, the existence of u- u_i, u_i -v, and v-u paths ensures that $u_i \pi u$, that is, $u_i \in s\pi$. Similarly, we have $v_j \in s\pi$ for all j.

4 Weakly Connected Graphs

We begin with a condition that guarantees the existence of a semipath, and then use this result to characterize weakly connected Cayley graphs of a semigroup, as shown in Theorem 4.3. Recall that the notation A(u, v) stands for the intersection $u\langle A \rangle \cap v\langle A \rangle$.

Lemma 4.1. Let u and v be distinct vertices of Cay (S, A). If $A(u, v) \neq \emptyset$, then there is a semipath between u and v.

Proof. Let z be an element of A(u, v). Then ua = z = vb for some $a, b \in \langle A \rangle$. If z = u, then a v-u path exists. If z = v, then a u-v path exists. In the case $z \notin \{u, v\}$, there are a u-z path and v-z path. Hence, a u-v semipath exists. \square

The converse of Lemma 4.1 is not in general true, as the following example indicates. Let $S_6 = \{s_1, s_2, \ldots, s_6\}$ be a semigroup with multiplication defined by Table 3. In the case $A = \{s_4, s_6\}$, the Cayley graph Cay (S, A) contains two s_2 - s_4 semipaths and yet $A(s_2, s_4) = s_2 S \cap s_4 S = \emptyset$ (see Figure 2).

•	s_1	s_2	s_3	s_4	s_5	s_6
s_1	s_1	s_2	s_3	s_4	s_5	s_6
s_2	s_2	s_2	s_2	s_5	s_5	s_5
s_3	s_3	s_3	s_3	s_4	s_4	s_4
s_4	s_4	s_4	s_4	s_3	s_3	s_3
s_5	s_5	s_5	s_5	s_2	s_2	s_2
s_6	s_6	s_4	s_5	s_2	s_3	s_1

Table 3. Multiplication table for S_6

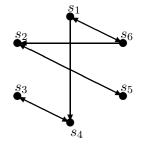


Figure 2. Cay $(S, \{s_4, s_6\})$

For simplicity, let π denote the relation defined by (3.1). Because S is a finite semigroup, we can let

$$S/\pi = \{s_i \pi \colon s_i \in S, i = 1, 2, \dots, m\} \text{ and } P = \{s_1, s_2, \dots, s_m\}$$
(4.1)

be the collection of all distinct π -classes and the set of all distinct representatives, respectively.

Lemma 4.2. Suppose that s and t are representatives for $u\pi$ and $v\pi$. If there is an s-t path or a t-s path, then A(u, v) is nonempty.

Proof. If an s-t path exists, then t = sa for some $a \in \langle A \rangle$. By assumption and Theorem 3.7, s = u or s = ub, and t = v or t = vc for some $b, c \in \langle A \rangle$. It follows that sab = tb belongs to A(u, v). The same reasoning applies to the case of a t-s path.

For convenience, let us introduce terminology that will be used in the proof of Theorem 4.3. Note that we can divide any semipath in a graph into partial paths. To be more precise, given a semipath u_1, u_2, \ldots, u_n , a semipath $u_p, u_{p+1}, \ldots, u_q$ with $1 \leq p < q \leq n$ is called a *subpath* of the u_1 - u_n semipath if it is either a u_p - u_q path or u_q - u_p path. A subpath $u_p, u_{p+1}, \ldots, u_q$, which is denoted by $[u_p, u_q]$, is said to have the most length if one of the following conditions holds:

- (1) p = 1 and q = n
- (2) $p = 1, q \neq n$ and $u_p, \ldots, u_q, u_{q+1}$ is not a path
- (3) $p \neq 1, q = n$ and $u_{p-1}, u_p, \ldots, u_q$ is not a path
- (4) $p \neq 1, q \neq n, u_p, \ldots, u_q, u_{q+1}$ and $u_{p-1}, u_p, \ldots, u_q$ are not paths.

Theorem 4.3. Let P be the set defined by (4.1). A Cayley graph Cay(S, A) is weak if and only if for all $u, v \in P$ with $u \neq v$, there exists a sequence $u = t_0, t_1, \ldots, t_n = v$ of distinct elements in P such that

$$A(t_{i-1}, t_i) \neq \emptyset \quad for \ i = 1, 2, \dots, n.$$
 (4.2)

Proof. Assume that $u, v \in P$ with $u \neq v$. It is clear that u and v are not related by π and that a *u*-*v* semipath exists, say $u = u_0, u_1, \ldots, u_p = v$. Divide the semipath into k subpaths such that each of them has the most length, namely that it consists of subpaths $[u_{r_0}, u_{r_1}], [u_{r_1}, u_{r_2}], \dots, [u_{r_{k-1}}, u_{r_k}]$, where $0 = r_0 < r_1 < \dots < r_k = p$. Set $v_i = u_{r_i}$ for $i = 0, 1, \dots, k$. For each *i*, either a v_{i-1} - v_i path or v_i - v_{i-1} path exists since $[v_{i-1}, v_i]$ is a subpath. Next, define $V := \{v_0, v_1, \ldots, v_k\}$ and $V_1 := \{s \in V : s \neq u\}$. Obviously, $V_1 \neq \emptyset$ and so $n_1 := \max\{0 \le i \le k : v_i \in V_1\}$ is meaningful and $v_{n_1+1} \notin V_1$. The inequality $n_1 < k$ is true since $v_k \notin V_1$, so we may define $V_2 := \{s \in V : s \pi v_{n_1+1}\}$ and $n_2 := \max\{0 \le i \le k : v_i \in V_2\}$. Observe that $n_1 + 1 \le n_2 \le k$. If $n_2 = k$, then $v_{n_1+1} \in v\pi$. This combined with the existence of a $v_{n_1}-v_{n_1+1}$ path or $v_{n_1+1}-v_{n_1}$ path implies $A(u,v) \neq \emptyset$ by Lemma 4.2, and the sequence u, v is what we wanted. Otherwise, $n_2 < k$ and we define $V_3 := \{s \in V : s \pi v_{n_2+1}\}$ and $n_3 := \max\{0 \le i \le k : v_i \in V_3\}$. For $n_3 = k$, we have $v \in V_3$. Because $v_{n_1+1} \pi v_{n_2}$, two possibilities arise: (1) $n_1 + 1 = n_2$ or (2) a v_{n_1+1} - v_{n_2} path and v_{n_2} - v_{n_1+1} path exist. In either case, there is a path from v_{n_1} to v_{n_2} or from v_{n_2} to v_{n_1} . Furthermore, since S/π forms a disjoint partition of S, there is an index j_2 in $\{1, 2, \ldots, m\}$ for which $v_{n_2} \in s_{j_2}\pi$. By Lemma 4.2, $A(u, s_{j_2}) \neq \emptyset$. Also, $A(s_{j_2}, v)$ is nonempty. Since $s_{j_2} \notin \{u, v\}$, the sequence u, s_{j_2}, v works. If $n_3 < k$, we will continue this process to define V_i and n_i . The finiteness of V together with $n_1 < n_2 < \cdots$ ensures that the process must terminate and the required sequence arises.

To prove the converse, let u and v be distinct elements of S. Of course, a u-v path exists if $u \pi v$. Otherwise, $u \in s_j \pi$ and $v \in s_k \pi$, where $s_j, s_k \in P$ and $j \neq k$. By assumption, there is a sequence $s_j = t_0, t_1, \ldots, t_n = s_k$ having the property described in (4.2). Since $A(t_{i-1}, t_i) \neq \emptyset$, there is a semipath from t_{i-1} to t_i for each i by Lemma 4.1. An application of Proposition 2.1 shows that an s_j - s_k semipath exists and so a u-v semipath exists because $u \in s_j \pi$ and $v \in s_k \pi$.

Corollary 4.4. A graph Cay(S, A) is weak if $A(u, v) \neq \emptyset$ for all $u, v \in P$.

Proof. The sequence u, v meets the criterion given in Theorem 4.3.

Two immediate consequences of the preceding corollary are as follows. Let S be a semigroup with a right zero element z. If $\langle A \rangle$ contains z, then the graph Cay (S, A) is weak since $z \in A(u, v)$ for all u, v in P. According to the example below Lemma 4.1, the converse does not hold in general.

A semigroup S is left reversible provided that $aS \cap bS$ is not empty for all $a, b \in S$, see [8]. If a left reversible semigroup S is generated by a set A, then the graph Cay (S, A) is weak because $A(u, v) = uS \cap vS \neq \emptyset$. The converse is not true, as shown in Figure 1 (right). The semigroup T_4 is left reversible and the graph Cay (T_4, t_3) is weak even though $\{t_3\}$ does not generate T_4 .

Corollary 4.5. If A is a subset of S with |P| > 1 and $s\pi = s\langle A \rangle^1$ for all $s \in P$, then the Cayley graph Cay (S, A) is disconnected.

Proof. For $u, v \in P$ with $u \neq v$, we have

$$A(u,v) \subseteq u \langle A \rangle^1 \cap v \langle A \rangle^1 = u \pi \cap v \pi = \emptyset,$$

which implies $A(u, v) = \emptyset$. Hence, no sequences in P can meet the criterion given in Theorem 4.3, and the corollary follows.

The remaining of this section is devoted to the study of the set P in terms of an ordered set. A connection between a Cayley graph of a semigroup and the Hasse diagram is presented here. We first define the relation on P by the condition

$$u \le v \quad \Leftrightarrow \quad u\langle A \rangle^1 \subseteq v\langle A \rangle^1. \tag{4.3}$$

The relation \leq is easily seen to be a partial order on P. A characterization of \leq in terms of paths is formulated in the next theorem. As usual, the expression u < v means $u \leq v$ and $u \neq v$.

Theorem 4.6. For all u, v in P, u < v if and only if Cay(S, A) contains a path from v to u.

Proof. If u < v, then $u \neq v$ and u = va for some $a \in \langle A \rangle$. Hence, a v-u path exists. Conversely, the hypothesis implies u = va with $a \in \langle A \rangle$, which implies $u \langle A \rangle^1 \subseteq v \langle A \rangle^1$. This proves u < v.

The important point to note here is that the ordered set (P, \leq) does not depend on the choice of a representative for each π -class. More mathematically, suppose that t_i is an arbitrary representative of $s_i\pi$ and $Q = \{t_1, t_2, \ldots, t_m\}$. Then the ordered sets (P, \leq) and (Q, \leq) have the same structure. In fact, the map $\varphi \colon P \to Q$ defined by $\varphi(s_i) = t_i$ for $i = 1, 2, \ldots, m$ is an order-isomorphism between them.

Given an ordered set (P, \leq) , the Hasse diagram of P is *connected* if for each pair of distinct elements u and v in P, there exists a sequence $u = u_0, u_1, \ldots, u_n = v$ of distinct elements in P such that u_{i-1} and u_i are comparable for all i.

Theorem 4.7. A Cayley graph Cay (S, A) is weak if and only if the Hasse diagram of the ordered set (P, \leq) given by (4.1) and (4.3) is connected.

Proof. Let u and v be distinct elements of P. There is, by Theorem 4.3, a sequence $u = t_0, t_1, \ldots, t_n = v$ in P such that $A(t_{i-1}, t_i) \neq \emptyset$ for $i = 1, 2, \ldots, n$. As in the proof of Lemma 4.1, one of a u_{i-1} - u_i path, u_i - u_{i-1} path, or u_{i-1} - z_i and u_i - z_i paths must exist, that is, one of $u_i < u_{i-1}, u_{i-1} < u_i$, or $z'_i < u_{i-1}$ and $z'_i < u_i$, where $z_i \in z'_i \pi$ and $z'_i \in P$ must be the case. Hence, in the Hasse diagram, there is a line joining u_{i-1} and u_i for all i. This proves the connectedness of the Hasse diagram.

Conversely, let u and v be distinct elements of P. By assumption, there is a sequence $u = u_0, u_1, \ldots, u_n = v$ of distinct elements in P such that u_{i-1} and u_i are comparable. Hence, a u_i - u_{i-1} path or u_{i-1} - u_i path exists. By Lemma 4.2, $A(u_{i-1}, u_i) \neq \emptyset$ and so the graph Cay (S, A) is weak by Theorem 4.3.

650

Corollary 4.8. If the ordered set (P, \leq) has the maximum or minimum element, then the Cayley graph Cay (S, A) is weak.

Proof. Whenever P has the maximum or minimum element, any two elements of P are necessarily comparable, which implies the Hasse diagram is connected. \Box

For instance, consider the semigroup \mathbb{Z}_{10} with multiplication modulo 10 and $A = \{3\}$. A direct computation gives $0\pi = \{0\}$, $1\pi = \{1, 3, 7, 9\}$, $2\pi = \{2, 4, 6, 8\}$, and $5\pi = \{5\}$. The Cayley graph Cay ($\mathbb{Z}_{10}, 3$) and the Hasse diagram of $P = \{0, 1, 2, 5\}$ are pictured in Figure 3.

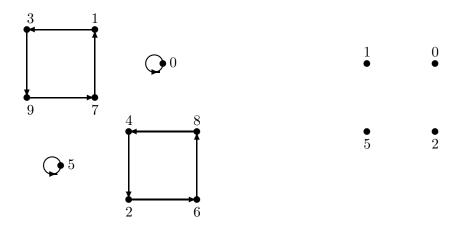


Figure 3. Cay (\mathbb{Z}_{10} , 3) and the Hasse diagram of $P = \{0, 1, 2, 5\}$

Acknowledgement : This work was financially supported by National Science Technology Development Agency, Thailand, via Junior Science Talent Project (JSTP), under grant No. JSTP-06-52-11E.

References

- A. V. Kalarev, Graph Algebras and Automata, Marcel Dekker, New York, 2003.
- [2] A. V. Kalarev, J. Ryan, and J.L. Yearwood, Cayley graphs as classifiers for data mining: the influence of asymmetries, Discrete Math. 309 (2009) 5360– 5369.
- [3] A. V. Kalarev, C. E. Praegger, On transitive Cayley graphs of groups and semigroups, European J. Combin 24 (2003) 59–72.
- [4] Y. Luo, Y. Hao, G.T. Clarke, On the Cayley graphs of completely simple semigroups, Semigroup Forum 82 (2011) 288–295.

- [5] S. Panma, U. Knauer, Sr. Arworn, On transitive Cayley graphs of strong semilattices of right (left) groups, Discrete Math. 309 (2009), 5393–5403.
- [6] G. Chartrand, P. Zhang, Introduction to Graph Theory, McGraw-Hill, 2005.
- [7] F. Harary, Graph Theory, Addison-Wesley, 1969.
- [8] A. H. Clifford, G. B. Preston, The Algebraic Theory of Semigroups Vol. I, American Mathematical Society, Providence, RI, 1964.
- [9] J. M. Howie, Fundamentals of Semigroup Theory, Clarendon Press, 1995.
- [10] R. Gray, N. Ruškuc, Green index and finiteness conditions for semigroups, J. Algebra 320 (2008) 3145–3164.
- [11] B. A. Davey, H. A. Priestley, Introduction to Lattices and Order, Cambridge University Press, Cambridge, 2002.

(Received 4 October 2012) (Accepted 18 March 2014)

 ${f T}$ HAI ${f J}.$ ${f M}$ ATH. Online @ http://thaijmath.in.cmu.ac.th