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1 Introduction

Cayley graphs of a semigroup have been extensively studied because they
reflect the structure of the semigroup. Further, we can visualize a semigroup by
constructing its Cayley graphs. Numerous interesting results have been found. For
instance, the monograph [1] includes one section devoted to the study of Cayley
graphs of a semigroup, and [2] includes fundamental properties and recent research
on Cayley graphs of a semigroup. Many properties of Cayley graphs of particular
types of semigroups have been investigated, see for instance [3, 4, 5].
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Recall the well-known property of Cayley graphs of a group: for a finite group
G with a nonempty subset A, the Cayley graph of G with respect to A is (strongly)
connected if and only if A is a generating set of G. This is a necessary and sufficient
condition for Cayley graphs of a group to be connected. The main purpose of this
article is to find out such condition for semigroups. We also characterize weakly
connected Cayley graphs of a semigroup, using Green’s relations taken relative
to a subsemigroup. Finally, we connect a Cayley graph of a semigroup with the
Hasse diagram of a partially ordered set.

In the next section we give the definition of a Cayley graph of a semigroup
and summarize basic knowledge of graphs and semigroups. In Section 3 we give a
condition to determine whether or not a Cayley graph of a semigroup is strongly
connected. In Section 4 we characterize weakly connected Cayley graphs of a
semigroup.

2 Preliminaries

For a finite semigroup S and a nonempty subset A of S, we define the (right)
Cayley graph of S with respect to A, denoted by Cay (S,A), to be the directed
graph with vertex set S and edge set {(s, sa) : s ∈ S and a ∈ A}. To shorten the
notation, we write Cay (S, a) instead of Cay (S, {a}).

We introduce the basic theory of graphs and semigroups, following [6, 7] and
[8, 9].

Let D be a digraph with vertex set V (D) and edge set E(D). A digraph H is
a subgraph of D provided that V (H) ⊆ V (D) and E(H) ⊆ E(D). If a subgraph
H of D has the additional property that for any pair of vertices u and v in H ,
(u, v) ∈ E(H) if and only if (u, v) ∈ E(D), then H is called an induced subgraph
of D. Let A be a set of vertices of D. The subgraph of D induced by A, denoted
by indA, is the induced subgraph of D with vertex set A.

An alternating sequence u = u0, e1, u1, . . . , en, un = v of vertices and edges in
a digraph is a u-v (directed) walk of length n if ei = (ui−1, ui) for i = 1, 2, . . . , n.
A u-v walk is a (directed) path if the vertices are all distinct and is closed if
u = v. A closed walk of length at least 2 containing no repeated vertex except
for the beginning and the end is called a (directed) cycle. A u-v semiwalk is an
alternating sequence u = u0, e1, u1, . . . , en, un = v of vertices and edges in which
either ei = (ui−1, ui) or ei = (ui, ui−1) for all i. A semipath and semicycle are
defined in a similar way. Note that every path is a semipath and that every cycle
is a semicycle.

We will use the result that if there are semipaths both from u to v and from
v to w, then there is a u-w semipath. More precisely, we have

Proposition 2.1. Let D be a digraph. For any two distinct vertices u and v,
define

u ∼ v ⇔ there is a semipath from u to v.

Then ∼ is symmetric and transitive.
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When the word “semipath” is replaced by “path”, the relation defined above
is only transitive.

The notion of paths and semipaths is used to describe connectedness of a
digraph as follows. Let D be a digraph and let u and v be distinct vertices of D.
The digraph D is strongly connected (or strong) if a u-v path and v-u path exist.
It is unilaterally connected (or unilateral) if a u-v path or v-u path exists. It is
weakly connected (or weak) if a u-v semipath or v-u semipath exists. A digraph
is said to be disconnected if it is not even weak. Note that the trivial digraph is
vacuously strong for it cannot contain two different vertices.

Let A be a nonempty subset of a semigroup S. The subsemigroup of S
generated by A is denoted by 〈A〉 and consists of the elements of S that can
be expressed as finite products of elements in A. In particular, we have 〈a〉 =
{an : n ∈ N}. If A is such that 〈A〉 = S, then A is called a generating set of S or,
equivalently, S is generated by A. Clearly, S is a generating set of itself.

A semigroup S is said to be right simple provided that it contains no proper
right ideals. It is straightforward to check that S is right simple if and only if
aS = S for all a in S if and only if the linear equation ax = b in the variable x
possesses a solution in S for all a, b ∈ S.

Recall that an equivalence relation is a relation that is reflexive, symmetric,
and transitive. Let ρ be an equivalence relation on a set S and let s ∈ S. Denote
by sρ the equivalence class containing s and by S/ρ the collection {sρ : s ∈ S} of
equivalence classes of S. An element t of S is a representative for sρ if t ∈ sρ.

Let S be a semigroup with a subsemigroup T and let aT 1 denote the set
aT ∪ {a}. Following [10], Green’s relation taken relative to T , written RT , is
defined by

aRT b ⇔ aT 1 = bT 1 (2.1)

for a, b ∈ S. This relation will play an important role in Sections 3 and 4.
A partial order is a relation that is reflexive, antisymmetric, and transitive.

An ordered set (S,≤) consists of a set S together with a partial order ≤ on S. Two
ordered sets (S,≤) and (T,≤) are order-isomorphic if there exists a surjective map
ϕ from S onto T that preserves the order, that is, a ≤ b if and only if ϕ(a) ≤ ϕ(b)
for all a, b ∈ S.

As in the case of Cayley graphs of a semigroup, one may visualize the structure
of a finite ordered set by the so-called Hasse diagram, see [11] for more details.

Throughout the article by a graph we mean a directed graph in which loops are
permitted but multiple edges are not; S stands for an arbitrary finite semigroup
and A stands for a nonempty subset of S. There is no loss of generality when we
work with Cayley graphs of nontrivial semigroups.

3 Strongly Connected Graphs

The condition given in the introduction determines whether a Cayley graph
of a group is connected. Such condition does not guarantee connectedness in the
case of semigroups, however.
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We present two simple examples, which show that the condition that A is
a generating set of S is neither necessary nor sufficient for Cayley graphs of a
semigroup to be connected. Let S4 = {s1, s2, s3, s4} and T4 = {t1, t2, t3, t4} be
semigroups with multiplication defined by Table 1 and Table 2. It is easy to see
that A = {s3, s4} is a generating set of S4, but the Cayley graph Cay (S4, A) is
disconnected (see Figure 1). Moreover, the Cayley graph Cay (T4, t3) is weakly
connected, even though {t3} does not generate T4.

· s1 s2 s3 s4
s1 s1 s1 s4 s4
s2 s2 s2 s3 s3
s3 s3 s3 s2 s2
s4 s4 s4 s1 s1

Table 1. Multiplication table for S4

· t1 t2 t3 t4
t1 t1 t2 t3 t4
t2 t1 t2 t3 t4
t3 t3 t4 t1 t2
t4 t3 t4 t1 t2

Table 2. Multiplication table for T4
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Figure 1. Cay (S, {s3, s4}) and Cay (T, t3)
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The next theorem gives a criterion for the existence of a path from one vertex
to another. Consequently, necessary and sufficient conditions for connectedness of
Cayley graphs of a semigroup are obtained. This result is consistent with Lemma
5.1 of [3]. In light of the proof of Theorem 3.1, we also obtain Proposition 3.4.

Theorem 3.1. Let u and v be distinct elements of S. A path from u to v in
Cay (S,A) exists if and only if the linear equation ux = v in the variable x has a
solution in 〈A〉. Furthermore, Cay (S,A) has a cycle containing u or a loop at u
if and only if ux = u has a solution in 〈A〉.

Proof. Let u = s0, s1, . . . , sn = v be a path. By definition, there are elements
a1, a2, . . . , an of A such that si = si−1ai for i = 1, 2, . . . , n. This proves v =
u(a1a2 · · ·an), and a1a2 · · · an ∈ 〈A〉 is a solution to the equation.

Conversely, there is an x0 ∈ 〈A〉 for which ux0 = v. Since x0 ∈ 〈A〉, we
can write x0 as a1a2 · · · an, where ai ∈ A. Define x1 = ua1 and xi = xi−1ai for
i = 2, 3, . . . , n. Hence, xn = v and (u, x1), (x1, x2), . . . , (xn−1, v) are edges in
Cay (S,A). Note that loops and cycles may occur in these edges. However, we can
exclude them to obtain a u-v path. The remaining part can be proved in a similar
way.

Corollary 3.2. A Cayley graph Cay (S,A) is strong if and only if the linear
equation ux = v in the variable x has a solution in 〈A〉 for all u, v ∈ S.

Proof. To complete the proof, we need only show that a solution for ux = u exists
for u ∈ S. Since S is a nontrivial semigroup, there is an element w 6= u of S
such that a u-w path and w-u path exist. Hence, ux0 = w and wy0 = u for some
x0, y0 ∈ 〈A〉 and so ux0y0 = u.

Corollary 3.3. A Cayley graph Cay (S,A) is unilateral if and only if for all
u, v ∈ S with u 6= v, the linear equation ux = v or vx = u in the variable x has a
solution in 〈A〉.

Proposition 3.4. If the subsemigroup 〈A〉 of S has order m, then the Cayley
graph Cay (S,A) contains a path of length at most m.

Proof. The statement is clear if there is no path in Cay (S,A). We may therefore
assume that u = s0, s1, . . . , sn = v is a path in Cay (S,A). Repeating the argument
given in the proof of Theorem 3.1, we have si = s0a1 · · · ai for i = 1, 2, . . . , n.
Furthermore, the elements a1, a1a2, . . . , a1a2 · · ·an must be distinct for if there
were indices j 6= k such that a1a2 · · ·aj = a1a2 · · · ak, then we would have sj = sk,
contrary to the definition of a path. Since a1, a1a2, . . . , a1a2 · · · an belong to 〈A〉,
we conclude that n ≤ m.

In order to obtain a result as in the group case, we have to restrict classes
of semigroups to the class of right simple semigroups. In fact, if S is not a right
simple semigroup, then a Cayley graph Cay (S,A) fails to be strongly connected
for any subset A of S.
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The following theorem is a generalization of the statement given in the intro-
duction as every group is a right simple semigroup. Recall that every (right) linear
equation in a right simple semigroup always has a solution.

Theorem 3.5. Let S be a right simple semigroup and let A ⊆ S. A Cayley graph
Cay (S,A) is strong if and only if 〈A〉 = S.

Proof. Suppose that y ∈ S and a ∈ A. By Corollary 3.2, the equation y = ax has
a solution in 〈A〉. Hence, y belongs to 〈A〉. This proves S ⊆ 〈A〉 and so equality
holds. The converse holds trivially by the same corollary.

Corollary 3.6. There is a subset A of S such that the Cayley graph Cay (S,A)
is strong if and only if S is right simple.

Proof. For each a ∈ S, we have aS ⊆ S. For each s ∈ S, we can pick, by Corollary
3.2, an element x0 of 〈A〉 such that s = ax0 ∈ aS. Hence, S ⊆ aS and so
equality holds. This proves that S is right simple. Verification of the converse is
straightforward. Since 〈S〉 = S, the Cayley graph Cay (S, S) is strong.

We close this section by introducing the equivalence relation that will be useful
in the next section. According to (2.1), if T = 〈A〉, then for all u, v ∈ S,

uR〈A〉 v ⇔ u〈A〉1 = v〈A〉1. (3.1)

For simplicity, we write π instead of R〈A〉 and A(u, v) instead of the cumbersome
expression u〈A〉 ∩ v〈A〉. The following theorem gives a characterization of π.

Theorem 3.7. Let u and v be distinct elements of S. Then u π v if and only if
there exist elements a and b of 〈A〉 such that v = ua and u = vb.

Proof. Clearly, u ∈ v〈A〉1 and v ∈ u〈A〉1 because u〈A〉1 = v〈A〉1. Since u 6= v,
there is an element a ∈ 〈A〉 for which v = ua. Repeating this argument shows
that u = vb for some b in 〈A〉.

Let x ∈ u〈A〉1. If x = u, then x = vb ∈ v〈A〉1. Otherwise, x = uc for some
c ∈ 〈A〉. It follows that x = vbc ∈ v〈A〉1 and hence u〈A〉1 ⊆ v〈A〉1. One obtains
similarly that v〈A〉1 ⊆ u〈A〉1. This proves u π v.

From Theorem 3.1, we conclude that u π v if and only if the Cayley graph
contains a u-v path and v-u path. This leads to a remarkable consequence: for an
equivalence class sπ in S/π, the induced subgraph ind sπ of a graph Cay (S,A) is
always strongly connected. We state this result as Theorem 3.8. Note that this
theorem enables us to study weakly connected graphs through the collection S/π
of equivalence classes instead of the entire semigroup S.
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Theorem 3.8. The induced subgraph ind sπ of Cay (S,A) is strongly connected.

Proof. If sπ consists exactly of one vertex, then the graph ind sπ is vacuously
strong. We may therefore assume that there are at least two distinct vertices in
sπ, say u and v. Hence u π v, and a u-v path and v-u path exist, namely

u = u0, u1, . . . , um = v and v = v0, v1, . . . , vn = u.

It remains to prove that both paths lie in the graph ind sπ or, equivalently, ui

and vj belong to sπ for all i, j. In fact, the existence of u-ui, ui-v, and v-u paths
ensures that ui π u, that is, ui ∈ sπ. Similarly, we have vj ∈ sπ for all j.

4 Weakly Connected Graphs

We begin with a condition that guarantees the existence of a semipath, and
then use this result to characterize weakly connected Cayley graphs of a semi-
group, as shown in Theorem 4.3. Recall that the notation A(u, v) stands for the
intersection u〈A〉 ∩ v〈A〉.

Lemma 4.1. Let u and v be distinct vertices of Cay (S,A). If A(u, v) 6= ∅, then
there is a semipath between u and v.

Proof. Let z be an element of A(u, v). Then ua = z = vb for some a, b ∈ 〈A〉.
If z = u, then a v-u path exists. If z = v, then a u-v path exists. In the case
z 6∈ {u, v}, there are a u-z path and v-z path. Hence, a u-v semipath exists.

The converse of Lemma 4.1 is not in general true, as the following example
indicates. Let S6 = {s1, s2, . . . , s6} be a semigroup with multiplication defined by
Table 3. In the case A = {s4, s6}, the Cayley graph Cay (S,A) contains two s2-s4
semipaths and yet A(s2, s4) = s2S ∩ s4S = ∅ (see Figure 2).

· s1 s2 s3 s4 s5 s6
s1 s1 s2 s3 s4 s5 s6
s2 s2 s2 s2 s5 s5 s5
s3 s3 s3 s3 s4 s4 s4
s4 s4 s4 s4 s3 s3 s3
s5 s5 s5 s5 s2 s2 s2
s6 s6 s4 s5 s2 s3 s1

Table 3. Multiplication table for S6
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Figure 2. Cay (S, {s4, s6})

For simplicity, let π denote the relation defined by (3.1). Because S is a finite
semigroup, we can let

S/π = {siπ : si ∈ S, i = 1, 2, . . . ,m} and P = {s1, s2, . . . , sm} (4.1)

be the collection of all distinct π-classes and the set of all distinct representatives,
respectively.

Lemma 4.2. Suppose that s and t are representatives for uπ and vπ. If there is
an s-t path or a t-s path, then A(u, v) is nonempty.

Proof. If an s-t path exists, then t = sa for some a ∈ 〈A〉. By assumption and
Theorem 3.7, s = u or s = ub, and t = v or t = vc for some b, c ∈ 〈A〉. It follows
that sab = tb belongs to A(u, v). The same reasoning applies to the case of a t-s
path.

For convenience, let us introduce terminology that will be used in the proof of
Theorem 4.3. Note that we can divide any semipath in a graph into partial paths.
To be more precise, given a semipath u1, u2, . . . , un, a semipath up, up+1, . . . , uq

with 1 ≤ p < q ≤ n is called a subpath of the u1-un semipath if it is either a up-uq

path or uq-up path. A subpath up, up+1, . . . , uq, which is denoted by [up, uq], is
said to have the most length if one of the following conditions holds:

(1) p = 1 and q = n

(2) p = 1, q 6= n and up, . . . , uq, uq+1 is not a path

(3) p 6= 1, q = n and up−1, up, . . . , uq is not a path

(4) p 6= 1, q 6= n, up, . . . , uq, uq+1 and up−1, up, . . . , uq are not paths.

Theorem 4.3. Let P be the set defined by (4.1). A Cayley graph Cay (S,A)
is weak if and only if for all u, v ∈ P with u 6= v, there exists a sequence u =
t0, t1, . . . , tn = v of distinct elements in P such that

A(ti−1, ti) 6= ∅ for i = 1, 2, . . . , n. (4.2)
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Proof. Assume that u, v ∈ P with u 6= v. It is clear that u and v are not related by
π and that a u-v semipath exists, say u = u0, u1, . . . , up = v. Divide the semipath
into k subpaths such that each of them has the most length, namely that it consists
of subpaths [ur0 , ur1 ], [ur1 , ur2 ], . . . , [urk−1

, urk ], where 0 = r0 < r1 < · · · < rk = p.
Set vi = uri for i = 0, 1, . . . , k. For each i, either a vi−1-vi path or vi-vi−1

path exists since [vi−1, vi] is a subpath. Next, define V := {v0, v1, . . . , vk} and
V1 := {s ∈ V : s π u}. Obviously, V1 6= ∅ and so n1 := max {0 ≤ i ≤ k : vi ∈ V1}
is meaningful and vn1+1 6∈ V1. The inequality n1 < k is true since vk 6∈ V1,
so we may define V2 := {s ∈ V : s π vn1+1} and n2 := max {0 ≤ i ≤ k : vi ∈ V2}.
Observe that n1 + 1 ≤ n2 ≤ k. If n2 = k, then vn1+1 ∈ vπ. This combined with
the existence of a vn1

-vn1+1 path or vn1+1-vn1
path implies A(u, v) 6= ∅ by Lemma

4.2, and the sequence u, v is what we wanted. Otherwise, n2 < k and we define
V3 := {s ∈ V : s π vn2+1} and n3 := max {0 ≤ i ≤ k : vi ∈ V3}. For n3 = k, we
have v ∈ V3. Because vn1+1 π vn2

, two possibilities arise: (1) n1 + 1 = n2 or (2)
a vn1+1-vn2

path and vn2
-vn1+1 path exist. In either case, there is a path from

vn1
to vn2

or from vn2
to vn1

. Furthermore, since S/π forms a disjoint partition
of S, there is an index j2 in {1, 2, . . . ,m} for which vn2

∈ sj2π. By Lemma 4.2,
A(u, sj2) 6= ∅. Also, A(sj2 , v) is nonempty. Since sj2 6∈ {u, v}, the sequence u, sj2 , v
works. If n3 < k, we will continue this process to define Vi and ni. The finiteness
of V together with n1 < n2 < · · · ensures that the process must terminate and
the required sequence arises.

To prove the converse, let u and v be distinct elements of S. Of course, a
u-v path exists if u π v. Otherwise, u ∈ sjπ and v ∈ skπ, where sj , sk ∈ P and
j 6= k. By assumption, there is a sequence sj = t0, t1, . . . , tn = sk having the
property described in (4.2). Since A(ti−1, ti) 6= ∅, there is a semipath from ti−1 to
ti for each i by Lemma 4.1. An application of Proposition 2.1 shows that an sj-sk
semipath exists and so a u-v semipath exists because u ∈ sjπ and v ∈ skπ.

Corollary 4.4. A graph Cay (S,A) is weak if A(u, v) 6= ∅ for all u, v ∈ P .

Proof. The sequence u, v meets the criterion given in Theorem 4.3.

Two immediate consequences of the preceding corollary are as follows. Let S
be a semigroup with a right zero element z. If 〈A〉 contains z, then the graph
Cay (S,A) is weak since z ∈ A(u, v) for all u, v in P . According to the example
below Lemma 4.1, the converse does not hold in general.

A semigroup S is left reversible provided that aS ∩ bS is not empty for all
a, b ∈ S, see [8]. If a left reversible semigroup S is generated by a set A, then the
graph Cay (S,A) is weak because A(u, v) = uS∩vS 6= ∅. The converse is not true,
as shown in Figure 1 (right). The semigroup T4 is left reversible and the graph
Cay (T4, t3) is weak even though {t3} does not generate T4.

Corollary 4.5. If A is a subset of S with |P | > 1 and sπ = s〈A〉1 for all s ∈ P ,
then the Cayley graph Cay (S,A) is disconnected.



650 Thai J. Math. 13 (2015)/ T. Suksumran and S. Panma

Proof. For u, v ∈ P with u 6= v, we have

A(u, v) ⊆ u〈A〉1 ∩ v〈A〉1 = uπ ∩ vπ = ∅,

which implies A(u, v) = ∅. Hence, no sequences in P can meet the criterion given
in Theorem 4.3, and the corollary follows.

The remaining of this section is devoted to the study of the set P in terms
of an ordered set. A connection between a Cayley graph of a semigroup and the
Hasse diagram is presented here. We first define the relation on P by the condition

u ≤ v ⇔ u〈A〉1 ⊆ v〈A〉1. (4.3)

The relation ≤ is easily seen to be a partial order on P . A characterization of ≤ in
terms of paths is formulated in the next theorem. As usual, the expression u < v
means u ≤ v and u 6= v.

Theorem 4.6. For all u, v in P , u < v if and only if Cay (S,A) contains a path
from v to u.

Proof. If u < v, then u 6= v and u = va for some a ∈ 〈A〉. Hence, a v-u path
exists. Conversely, the hypothesis implies u = va with a ∈ 〈A〉, which implies
u〈A〉1 ⊆ v〈A〉1. This proves u < v.

The important point to note here is that the ordered set (P,≤) does not depend
on the choice of a representative for each π-class. More mathematically, suppose
that ti is an arbitrary representative of siπ and Q = {t1, t2, . . . , tm}. Then the
ordered sets (P,≤) and (Q,≤) have the same structure. In fact, the map ϕ : P → Q
defined by ϕ(si) = ti for i = 1, 2, . . . ,m is an order-isomorphism between them.

Given an ordered set (P,≤), the Hasse diagram of P is connected if for each pair
of distinct elements u and v in P , there exists a sequence u = u0, u1, . . . , un = v
of distinct elements in P such that ui−1 and ui are comparable for all i.

Theorem 4.7. A Cayley graph Cay (S,A) is weak if and only if the Hasse diagram
of the ordered set (P,≤) given by (4.1) and (4.3) is connected.

Proof. Let u and v be distinct elements of P . There is, by Theorem 4.3, a sequence
u = t0, t1, . . . , tn = v in P such that A(ti−1, ti) 6= ∅ for i = 1, 2, . . . , n. As in the
proof of Lemma 4.1, one of a ui−1-ui path, ui-ui−1 path, or ui−1-zi and ui-zi paths
must exist, that is, one of ui < ui−1, ui−1 < ui, or z

′
i < ui−1 and z′i < ui, where

zi ∈ z′iπ and z′i ∈ P must be the case. Hence, in the Hasse diagram, there is a line
joining ui−1 and ui for all i. This proves the connectedness of the Hasse diagram.

Conversely, let u and v be distinct elements of P . By assumption, there is a
sequence u = u0, u1, . . . , un = v of distinct elements in P such that ui−1 and ui

are comparable. Hence, a ui-ui−1 path or ui−1-ui path exists. By Lemma 4.2,
A(ui−1, ui) 6= ∅ and so the graph Cay (S,A) is weak by Theorem 4.3.
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Corollary 4.8. If the ordered set (P,≤) has the maximum or minimum element,
then the Cayley graph Cay (S,A) is weak.

Proof. Whenever P has the maximum or minimum element, any two elements of
P are necessarily comparable, which implies the Hasse diagram is connected.

For instance, consider the semigroup Z10 with multiplication modulo 10 and
A = {3}. A direct computation gives 0π = {0}, 1π = {1, 3, 7, 9}, 2π = {2, 4, 6, 8},
and 5π = {5}. The Cayley graph Cay (Z10, 3) and the Hasse diagram of P =
{0, 1, 2, 5} are pictured in Figure 3.
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Figure 3. Cay (Z10, 3) and the Hasse diagram of P = {0, 1, 2, 5}
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