Thai Journal of Mathematics Volume 13 (2015) Number 3 : 627–640

http://thaijmath.in.cmu.ac.th ISSN 1686-0209

Convergence of the S-Iteration Process for a Pair of Single-valued and Multi-valued Generalized Nonexpansive Mappings in $CAT(\kappa)$ Spaces

Sirichai Sopha † and Withun Phuengrattana †,‡,1

[†]Department of Mathematics, Faculty of Science and Technology Nakhon Pathom Rajabhat University, Nakhon Pathom 73000, Thailand

> [‡]Research Center for Pure and Applied Mathematics Research and Development Institute Nakhon Pathom Rajabhat University Nakhon Pathom 73000, Thailand e-mail : sirichai@npru.ac.th (S. Sopha) withun_ph@yahoo.com (W. Phuengrattana)

Abstract : In this paper, we study Δ and strong convergence of modified Siteration process for a pair of a total asymptotically nonexpansive single-valued mapping and a multi-valued mapping satisfying the condition (C_{λ}) and (E) in the setting of complete CAT (κ) spaces.

Keywords : total asymptotically nonexpansive mappings; quasi-nonexpansive mappings; $CAT(\kappa)$ spaces.

2010 Mathematics Subject Classification : 47H09; 47H10.

1 Introduction

A CAT(κ) space (κ is a real number) is a geodesic metric space whose geodesic triangle is thinner than the corresponding comparison triangle in a model space

Copyright \bigodot 2015 by the Mathematical Association of Thailand. All rights reserved.

¹Corresponding author.

with curvature κ . Fixed point theory in $CAT(\kappa)$ spaces was first studied by Kirk [1, 2]. His works were followed by a series of new works by many authors, mainly focusing on CAT(0) spaces. Since then, the fixed point theory for single-valued and multivalued mappings in CAT(0) spaces has been rapidly developed, and many papers have appeared (see, *e.g.*, [3, 4, 5, 6, 7, 8, 9]). It is worth mentioning that the results in CAT(0) spaces can be applied to any CAT(κ) space with $\kappa \leq 0$ since any CAT(κ) space is a CAT(ω) space for every $\omega \geq \kappa$ (see, *e.g.*, [10]). However, there are only a few research papers that contain fixed point results in the setting of CAT(κ) spaces with $\kappa > 0$.

In 2011, Sokhuma and Kaewkhao [11] introduced a modified Ishikawa iterative process for finding a common fixed point of a pair of single-valued and multi-valued nonexpansive mappings in Banach spaces. They also proved a strong convergence theorem for the proposed iterative process in uniformly convex Banach spaces. Recently, Uddin *et al.* [12] generalized and improved several results contained in [11]. They proved convergence theorems of modified Ishikawa iteration process involving a pair of mappings satisfying the condition (C_{λ}) on Banach spaces.

In 2007, Agarwal *et al.* [13] introduced the S-iteration process for finding a fixed point of a nearly asymptotically nonexpansive single-valued mapping in a Banach space. They also showed, theoretically as well as numerically, that the S-iteration process is faster than the Mann and Ishikawa iteration processes for contraction operators. Later in 2011, Khan and Abbas [3] have modified Siteration process in CAT(0) spaces for finding a fixed point of a nonexpansive single-valued mapping. Recently, Akkasriworn and Sokhuma [14] defined the modified S-iteration process for a pair of single-valued and multi-valued nonexpansive mappings in Banach spaces. However, there is not any result in $CAT(\kappa)$ spaces concerning the convergence of S-iteration process for a pair of single-valued and multi-valued mappings.

The purpose of this paper is to study the modified S-iteration process for a pair of a total asymptotically nonexpansive single-valued mapping and a multi-valued mapping satisfying the condition (C_{λ}) in complete CAT (κ) spaces.

2 Preliminaries and some useful lemmas

Throughout this paper we denote by \mathbb{N} the set of all positive integers. Let (X, d) be a metric space. A geodesic path joining $x \in X$ to $y \in X$ is a map φ from a closed interval $[0, l] \subset \mathbb{R}$ to X such that $\varphi(0) = x, \varphi(l) = y$, and $d(\varphi(t_1), \varphi(t_2)) = |t_1 - t_2|$ for all $t_1, t_2 \in [0, l]$. In particular, φ is an isometry and d(x, y) = l. The image of φ is called a *geodesic segment* joining x and y. When it is unique this geodesic segment is denoted by [x, y]. For each $x, y \in X$ and $\alpha \in (0, 1)$, we denote the point $z \in [x, y]$ such that $d(x, z) = \alpha d(x, y)$ by $(1 - \alpha)x \oplus \alpha y$. The space (X, d) is said to be a *geodesic metric space* (D-geodesic metric space) if every two points of X (every two points of distance smaller than D) are joined by a geodesic, and X is said to be *uniquely geodesic* (D-uniquely geodesic) if there is exactly one geodesic joining x and y for each $x, y \in X$ (for

 $x, y \in X$ with d(x, y) < D. A nonempty subset K of X is said to be *convex* if K includes every geodesic segment joining any two of its points. The set K is said to be *bounded* if diam $(K) = \sup\{d(x, y) : x, y \in K\} < \infty$.

We now introduce the model spaces M_{κ}^{n} , for more details on these spaces the reader is referred to [10]. Let $n \in \mathbb{N}$, we denote the metric space \mathbb{R}^{n} endowed with the usual Euclidean distance by \mathbb{E}^{n} . The Euclidean scalar product in \mathbb{R}^{n} is denote by $(\cdot|\cdot)$, that is,

$$(x|y) = x_1y_1 + \dots + x_ny_n$$
 where $x = (x_1, \dots, x_n), y = (y_1, \dots, y_n).$

Let \mathbb{S}^n denote the *n*-dimensional sphere defined by $\mathbb{S}^n = \{x = (x_1, \ldots, x_{n+1}) \in \mathbb{R}^{n+1} : (x|x) = 1\}$ with metric $d_{\mathbb{S}^n}(x, y) = \arccos(x|y)$ for $x, y \in \mathbb{S}^n$. Let $\mathbb{E}^{n,1}$ denote the vector space \mathbb{R}^{n+1} endowed with the symmetric bilinear form which associates to vectors $x = (x_1, \ldots, x_{n+1})$ and $y = (y_1, \ldots, y_{n+1})$ the real number $\langle x|y \rangle$ defined by

$$\langle x|y\rangle = -x_{n+1}y_{n+1} + \sum_{i=1}^n x_i y_i.$$

Let \mathbb{H}^n denote the hyperbolic *n*-space defined by $\mathbb{H}^n = \{x = (x_1, \ldots, x_{n+1}) \in \mathbb{E}^{n,1} : (x|x) = -1, x_{n+1} > 0\}$ with metric $d_{\mathbb{H}^n}$ such that $\cosh d_{\mathbb{H}^n}(x, y) = -\langle x|y \rangle$ for $x, y \in \mathbb{H}^n$.

Given a real number κ , we denote by M_{κ}^{n} the following metric spaces:

- (i) if $\kappa = 0$, then M_{κ}^n is the Euclidean space \mathbb{E}^n ;
- (ii) if $\kappa > 0$, then M_{κ}^{n} is obtained from the spherical space \mathbb{S}^{n} by multiplying the distance function by the constant $\frac{1}{\sqrt{\kappa}}$;
- (iii) if $\kappa < 0$, then M_{κ}^{n} is obtained from the hyperbolic space \mathbb{H}^{n} by multiplying the distance function by the constant $\frac{1}{\sqrt{-\kappa}}$.

A geodesic triangle $\Delta(x, y, z)$ in a geodesic metric space (X, d) consists of three points $x, y, z \in X$ (the vertices of Δ) and three geodesic segments between each pair of vertices (the edges of Δ). A comparison triangle for a geodesic triangle $\Delta(x, y, z)$ in (X, d) is a triangle $\overline{\Delta}(\overline{x}, \overline{y}, \overline{z})$ in M_{κ}^2 such that $d(x, y) = d_{M_{\kappa}^2}(\overline{x}, \overline{y})$, $d(y, z) = d_{M_{\kappa}^2}(\overline{y}, \overline{z})$, and $d(z, x) = d_{M_{\kappa}^2}(\overline{z}, \overline{x})$. If $\kappa \leq 0$, then such a comparison triangle always exists M_{κ}^2 . If $\kappa > 0$, then such a triangle exists whenever $d(x, y) + d(y, z) + d(z, x) < 2D_{\kappa}$, where $D_{\kappa} = \frac{\pi}{\sqrt{\kappa}}$. A point $\overline{w} \in [\overline{x}, \overline{y}]$ is called a comparison point for $w \in [x, y]$ if $d(x, w) = d_{M^2}(\overline{x}, \overline{w})$.

A geodesic triangle $\Delta(x, y, z)$ in X is said to satisfy the CAT(κ) inequality if for any $p, q \in \Delta(x, y, z)$ and for their comparison points $\overline{p}, \overline{q} \in \Delta(\overline{x}, \overline{y}, \overline{z})$, one has $d(p,q) \leq d_{M_{\kappa}^2}(\overline{p}, \overline{q}).$

Definition 2.1.

(i) If $\kappa \leq 0$, then X is called a $CAT(\kappa)$ space if and only if X is a geodesic space such that all of its geodesic triangles satisfy the $CAT(\kappa)$ inequality.

(ii) If $\kappa > 0$, then X is called a $CAT(\kappa)$ space if and only if X is D_{κ} -geodesic and any geodesic triangle $\Delta(x, y, z)$ in X with $d(x, y) + d(y, z) + d(z, x) < 2D_{\kappa}$ satisfies the $CAT(\kappa)$ inequality.

Let $R \in (0, 2]$. Recall that a geodesic metric space (X, d) is said to be *R*-convex (see [15]) if for any three points $x, y, z \in X$ and $\alpha \in [0, 1]$, we have

$$d^{2}(x,(1-\alpha)y \oplus \alpha z) \leq (1-\alpha)d^{2}(x,y) + \alpha d^{2}(x,z) - \frac{R}{2}\alpha(1-\alpha)d^{2}(y,z).$$
(2.1)

It is known that a geodesic metric space (X, d) is a CAT(0) space if and only if (X, d) is *R*-convex for R = 2. The following lemma is a consequence of Proposition 3.1 in [15].

Lemma 2.2. Let $\kappa > 0$ and (X, d) be a $CAT(\kappa)$ space with $diam(X) \leq \frac{\pi}{\sqrt{\kappa}} - \varepsilon$ for some $\varepsilon \in (0, \frac{\pi}{2})$. Then (X, d) is R-convex for $R = (\pi - 2\varepsilon) \tan(\varepsilon)$.

We now collect some elementary facts about $CAT(\kappa)$ spaces; see [16].

Let $\{x_n\}$ be a bounded sequence in a CAT (κ) space X with $\kappa > 0$. For $x \in X$, we define a mapping $r(\cdot, \{x_n\}) : X \to [0, \infty)$ by

$$r(x, \{x_n\}) = \limsup_{n \to \infty} d(x, x_n).$$

The asymptotic radius $r(\{x_n\})$ of $\{x_n\}$ is given by

$$r(\{x_n\}) = \inf \{r(x, \{x_n\}) : x \in X\},\$$

and the asymptotic center $A(\{x_n\})$ of $\{x_n\}$ is the set

$$A(\{x_n\}) = \{x \in X : r(x, \{x_n\}) = r(\{x_n\})\}.$$

The asymptotic center $A(\{x_n\})$ is singleton for a $CAT(\kappa)$ space with diameter smaller than $\frac{\pi}{2\sqrt{\kappa}}$; see [17].

Definition 2.3. A sequence $\{x_n\}$ in a CAT (κ) space X is said to Δ -converge to $x \in X$ if x is the unique asymptotic center of $\{u_n\}$ for every subsequence $\{u_n\}$ of $\{x_n\}$. In this case, we write Δ -lim_{$n\to\infty$} $x_n = x$ and call x the Δ -limit of $\{x_n\}$.

Lemma 2.4 ([17]). Let $\kappa > 0$ and X be a complete $CAT(\kappa)$ space with $diam(X) \leq \frac{\frac{\pi}{2} - \varepsilon}{\sqrt{\kappa}}$ for some $\varepsilon \in (0, \frac{\pi}{2})$. Then every bounded sequence in X has a Δ -convergent subsequence.

Lemma 2.5 ([10]). Let $\kappa > 0$ and X be a complete $CAT(\kappa)$ space with $diam(X) \leq \frac{\frac{\pi}{2} - \varepsilon}{\sqrt{\kappa}}$ for some $\varepsilon \in (0, \frac{\pi}{2})$. Then, we have

$$d((1-\alpha)x \oplus \alpha y, z) \le (1-\alpha)d(x, z) + \alpha d(y, z)$$

for all $x, y, z \in X$ and $\alpha \in [0, 1]$.

630

Lemma 2.6 ([4]). Let $\kappa > 0$ and X be a complete $CAT(\kappa)$ space with $diam(X) \leq \frac{\frac{\pi}{2} - \varepsilon}{\sqrt{\kappa}}$ for some $\varepsilon \in (0, \frac{\pi}{2})$. If $\{x_n\}$ is a sequence in X with $A(\{x_n\}) = \{x\}$ and $\{u_n\}$ is a subsequence of $\{x_n\}$ with $A(\{u_n\}) = \{u\}$ and the sequence $\{d(x_n, u)\}$ converges, then x=u.

The following lemma is a characterization of CAT(0) spaces. It can be applied to a $CAT(\kappa)$ space with $\kappa > 0$ as well.

Lemma 2.7 ([5]). Let X be a CAT(0) space, and let $x \in X$. Suppose that $\{t_n\}$ is a sequence in [a,b] for some $a,b \in (0,1)$ and that $\{x_n\}, \{y_n\}$ are sequences in X such that $\limsup_{n\to\infty} d(x_n,x) \leq r$, $\limsup_{n\to\infty} d(y_n,x) \leq r$ and

$$\lim_{n \to \infty} d((1 - t_n)x_n \oplus t_n y_n, x) = r \text{ for some } r \ge 0.$$

Then $\lim_{n\to\infty} d(x_n, y_n) = 0.$

Let K be a nonempty subset of a $CAT(\kappa)$ space X, and $T : K \to K$ be a single-valued mapping. The set of all fixed points of T will be denoted by $F(T) = \{x \in K : x = Tx\}.$

Definition 2.8. A single-valued mapping $T: K \to K$ is said to be

- (i) nonexpansive if $d(Tx, Ty) \le d(x, y)$ for all $x, y \in K$;
- (ii) asymptotically nonexpansive if there exists a sequence $\{k_n\} \subset [1,\infty)$ such that $\lim_{n\to\infty} k_n = 1$ and $d(T^nx, T^ny) \leq k_n d(x, y)$ for all $x, y \in K$ and $n \in \mathbb{N}$;
- (iii) generalized asymptotically nonexpansive if there exist two sequences $\{k_n\}$, $\{s_n\} \subset [0,\infty)$ such that $\lim_{n\to\infty} k_n = \lim_{n\to\infty} s_n = 0$ and $d(T^nx,T^ny) \leq k_n d(x,y) + s_n$ for all $x, y \in K$ and $n \in \mathbb{N}$;
- (iv) total asymptotically nonexpansive if there exist two sequences $\{k_n\}, \{s_n\} \subset [0,\infty)$ with $\lim_{n\to\infty} k_n = \lim_{n\to\infty} s_n = 0$ and a strictly increasing continuous function $\phi : [0,\infty) \to [0,\infty)$ with $\phi(0) = 0$ such that $d(T^nx,T^ny) \leq d(x,y) + k_n\phi(d(x,y)) + s_n$ for all $x, y \in K$ and $n \in \mathbb{N}$.

Remark 2.9.

- (i) The concept of total asymptotically nonexpansive single-valued mappings was first introduced in Banach spaces by Alber et al. [18].
- (ii) If $\phi(\lambda) = \lambda$, then a total asymptotically nonexpansive mapping reduces to a generalized asymptotically nonexpansive mapping. If $\phi(\lambda) = \lambda$ and $k_n = 0$ for all $n \in \mathbb{N}$, then a total asymptotically nonexpansive mapping reduces to an asymptotically nonexpansive mapping. If $\phi(\lambda) = \lambda$ and $k_n = 0$ and $s_n = 0$ for all $n \in \mathbb{N}$, then a total asymptotically nonexpansive mapping reduces to a nonexpansive mapping.

The following two lemmas can be found in [16].

Lemma 2.10. Let $\kappa > 0$ and X be a complete $CAT(\kappa)$ space with $diam(X) \leq \frac{\pi}{\sqrt{\kappa}}^{-\varepsilon}$ for some $\varepsilon \in (0, \frac{\pi}{2})$. Let K be a nonempty closed convex subset of X, and let $T : K \to K$ be a continuous and total asymptotically nonexpansive mapping. Then T has a fixed point in K.

Lemma 2.11. Let $\kappa > 0$ and X be a complete $CAT(\kappa)$ space with $diam(X) \leq \frac{\pi}{\sqrt{\kappa}} -\varepsilon$ for some $\varepsilon \in (0, \frac{\pi}{2})$. Let K be a nonempty closed convex subset of X, and let $T : K \to K$ be a uniformly continuous and total asymptotically nonexpansive mapping. If $\{x_n\}$ is a sequence in K such that $\lim_{n\to\infty} d(x_n, Tx_n) = 0$ and Δ - $\lim_{n\to\infty} x_n = p$, then $p \in K$ and p = Tp.

We shall denote the family of nonempty closed bounded subsets of K by CB(K), and the family of nonempty compact convex subsets of K by CC(K). The *Pompeiu-Hausdorff distance* [19] on CB(K) is defined by

$$H(A,B) = \max\left\{\sup_{x \in A} \operatorname{dist}(x,B), \sup_{y \in B} \operatorname{dist}(y,A)\right\} \text{ for } A, B \in CB(K),$$

where $dist(x, K) = inf\{d(x, y) : y \in K\}$ is the distance from a point x to a subset K. Let S be a multi-valued mapping of K into CB(K). The set of all fixed points of S will be denoted by $F(S) = \{x \in K : x \in Sx\}$.

Definition 2.12. A multi-valued mapping $S: K \to CB(K)$ is said to

- (i) be nonexpansive if $H(Sx, Sy) \leq d(x, y)$ for all $x, y \in K$;
- (ii) be quasi-nonexpansive if $F(S) \neq \emptyset$ and $H(Sx, Sz) \leq d(x, z)$ for all $x \in D$ and $z \in F(S)$;
- (iii) satisfy condition (E_{μ}) if there exists $\mu \geq 1$ such that for each $x, y \in K$, dist $(x, Sy) \leq \mu$ dist(x, Sx) + d(x, y). We say that S satisfies condition (E) whenever S satisfies (E_{μ}) for some $\mu \geq 1$.
- (iv) satisfy condition (C_{λ}) if there exists $\lambda \in (0, 1)$ such that for each $x, y \in K$, $\lambda \operatorname{dist}(x, Sx) \leq d(x, y)$ implies $H(Sx, Sy) \leq d(x, y)$.

Remark 2.13.

- (i) If $S: K \to CB(K)$ is nonexpansive, then S satisfies the condition (E_1) .
- (ii) As in the single-valued case, if $0 < \lambda_1 < \lambda_2 < 1$ then the condition (C_{λ_1}) implies the condition (C_{λ_2}) .

The following lemma is also needed.

Lemma 2.14 ([20]). Let $\{a_n\}$ and $\{b_n\}$ be sequences of nonnegative real numbers satisfying

$$a_{n+1} \leq a_n + b_n$$
 for all $n \in \mathbb{N}$.

If $\sum_{n=1}^{\infty} b_n < \infty$, then $\lim_{n \to \infty} a_n$ exists.

632

3 Main results

In this section, we first introduce the modified S-iteration process for a pair of single-valued and multi-valued mappings in $CAT(\kappa)$ spaces.

Definition 3.1. For K a nonempty convex subset of a CAT (κ) space $X, T : K \to K$ a single-valued mapping and $S : K \to CB(K)$ a multi-valued mapping, the iterative sequence $\{x_n\}$ is generated from $x_1 \in K$, and is defined by

$$\begin{cases} y_n = (1 - \alpha_n) x_n \oplus \alpha_n z_n, \ z_n \in S x_n, \\ x_{n+1} = (1 - \beta_n) z_n \oplus \beta_n T^n y_n, \ n \in \mathbb{N}, \end{cases}$$
(3.1)

where $\{\alpha_n\}$ and $\{\beta_n\}$ are sequences in (0, 1). We will call it the modified S-iteration process.

Before proving the Δ and strong convergence theorems, we need the following two lemmas.

Lemma 3.2. Let $\kappa > 0$, X be a complete $CAT(\kappa)$ space with $diam(X) \leq \frac{\pi}{\sqrt{\kappa}} - \varepsilon}{\sqrt{\kappa}}$ for some $\varepsilon \in (0, \frac{\pi}{2})$, and K be a nonempty closed convex subset of X. Let T: $K \to K$ be a uniformly continuous and total asymptotically nonexpansive singlevalued mapping with sequences $\{k_n\}, \{s_n\} \subset [0, \infty)$ such that $\sum_{n=1}^{\infty} k_n < \infty$ and $\sum_{n=1}^{\infty} s_n < \infty$, and $S : K \to CB(K)$ be a multi-valued mapping satisfying the condition (C_{λ}) . Assume that $\mathfrak{F} := F(T) \cap F(S)$ is nonempty and $Sp = \{p\}$ for all $p \in \mathfrak{F}$. For $x_1 \in K$, the sequence $\{x_n\}$ generated by (3.1). Then, $\lim_{n\to\infty} d(x_n, p)$ exists for all $p \in \mathfrak{F}$.

Proof. Let $p \in \mathfrak{F}$ and $M = \operatorname{diam}(K)$. As, $\lambda \in (0, 1)$, implies $\lambda \operatorname{dist}(p, Sp) = 0 \leq d(x_n, p)$, owing to the condition (C_λ) , we have $H(Sx_n, Sp) \leq d(x_n, p)$. Since T is total asymptotically nonexpansive, it follows by Lemma 2.5 that

$$\begin{aligned} d(x_n, p) &\leq (1 - \beta_n)d(z_n, p) + \beta_n d(T^n y_n, T^n p) \\ &\leq (1 - \beta_n)d(z_n, p) + \beta_n (d(y_n, p) + k_n \phi(d(y_n, p)) + s_n) \\ &\leq (1 - \beta_n)d(z_n, p) + \beta_n (d(y_n, p) + k_n \phi(M) + s_n) \\ &\leq (1 - \beta_n)d(z_n, p) + \beta_n d(y_n, p) + \beta_n (k_n \phi(M) + s_n) \\ &\leq (1 - \beta_n)d(z_n, p) + \beta_n ((1 - \alpha_n)d(x_n, p) + \alpha_n d(z_n, p)) + \beta_n (k_n \phi(M) + s_n) \\ &= (1 - \beta_n + \beta_n \alpha_n)d(z_n, p) + \beta_n (1 - \alpha_n)d(x_n, p) + \beta_n (k_n \phi(M) + s_n) \\ &= (1 - \beta_n + \beta_n \alpha_n) dist(z_n, Sp) + \beta_n (1 - \alpha_n)d(x_n, p) + \beta_n (k_n \phi(M) + s_n) \\ &\leq (1 - \beta_n + \beta_n \alpha_n) H(Sx_n, Sp) + \beta_n (1 - \alpha_n)d(x_n, p) + \beta_n (k_n \phi(M) + s_n) \\ &\leq d(x_n, p) + \beta_n (k_n \phi(M) + s_n). \end{aligned}$$

Since $\sum_{n=1}^{\infty} k_n < \infty$ and $\sum_{n=1}^{\infty} s_n < \infty$, it implies by Lemma 2.14 that $\lim_{n\to\infty} d(x_n, p)$ exists.

Lemma 3.3. Let $\kappa > 0$, X be a complete $CAT(\kappa)$ space with $diam(X) \leq \frac{\pi}{\sqrt{\kappa}} -\varepsilon$ for some $\varepsilon \in (0, \frac{\pi}{2})$, and K be a nonempty closed convex subset of X. Let $T : K \to K$ be a uniformly continuous and total asymptotically nonexpansive single-valued mapping with sequences $\{k_n\}, \{s_n\} \subset [0, \infty)$ such that $\sum_{n=1}^{\infty} k_n < \infty$ and $\sum_{n=1}^{\infty} s_n < \infty$, and $S : K \to CB(K)$ be a multi-valued mapping satisfying the condition (C_{λ}) . Assume that $\mathfrak{F} := F(T) \cap F(S)$ is nonempty and $Sp = \{p\}$ for all $p \in \mathfrak{F}$. For $x_1 \in K$, the sequence $\{x_n\}$ generated by (3.1), where $\{\alpha_n\}$ and $\{\beta_n\}$ are sequences in [0,1] such that $0 < a \leq \alpha_n, \beta_n \leq b < 1$. Then, we have $\lim_{n\to\infty} dist(x_n, Sx_n) = 0$ and $\lim_{n\to\infty} d(x_n, T^nx_n) = 0$ and $\lim_{n\to\infty} d(x_n, Tx_n) = 0$.

Proof. Let $p \in \mathfrak{F}$ and $M = \operatorname{diam}(K)$. In view of Lemma 3.2, we assume that

$$\lim_{n \to \infty} d(x_n, p) = c. \tag{3.2}$$

If c = 0, then all the conclusions are trivial. Therefore we will assume that c > 0. As, $\lambda \in (0, 1)$, implies $\lambda \operatorname{dist}(p, Sp) = 0 \leq d(x_n, p)$, owing to the condition (C_{λ}) , we have $H(Sx_n, Sp) \leq d(x_n, p)$. Thus, $d(z_n, p) = \operatorname{dist}(z_n, Sp) \leq H(Sx_n, Sp) \leq d(x_n, p)$. This implies that

$$\limsup_{n \to \infty} d(z_n, p) \le \limsup_{n \to \infty} d(x_n, p) = c.$$
(3.3)

Consider,

$$\begin{aligned} d(T^n y_n, p) &\leq d(y_n, p) + k_n \phi(d(y_n, p)) + s_n \\ &\leq d(y_n, p) + k_n \phi(M) + s_n \\ &\leq (1 - \alpha_n) d(x_n, p) + \alpha_n d(z_n, p) + k_n \phi(M) + s_n \\ &= (1 - \alpha_n) d(x_n, p) + \alpha_n \text{dist}(z_n, Sp) + k_n \phi(M) + s_n \\ &\leq (1 - \alpha_n) d(x_n, p) + \alpha_n H(Sx_n, Sp) + k_n \phi(M) + s_n \\ &\leq d(x_n, p) + k_n \phi(M) + s_n. \end{aligned}$$

This implies by $\lim_{n\to\infty} k_n = 0$ and $\lim_{n\to\infty} s_n = 0$ that

$$\limsup_{n \to \infty} d(T^n y_n, p) \le \limsup_{n \to \infty} d(y_n, p) \le \limsup_{n \to \infty} d(x_n, p) = c.$$
(3.4)

Since $c = \limsup_{n \to \infty} d(x_{n+1}, p) = \limsup_{n \to \infty} d((1 - \beta_n) z_n \oplus \beta_n T^n y_n, p)$, it follows by Lemma 2.7 that

$$\lim_{n \to \infty} d(z_n, T^n y_n) = 0. \tag{3.5}$$

By the definition of the sequence $\{x_n\}$, we have

$$d(x_{n+1}, p) \le (1 - \beta_n)d(z_n, p) + \beta_n d(T^n y_n, p) \le (1 - \beta_n)d(x_n, p) + \beta_n (d(y_n, p) + k_n \phi(d(y_n, p)) + s_n) \le (1 - \beta_n)d(x_n, p) + \beta_n (d(y_n, p) + k_n \phi(M) + s_n).$$

This implies that

$$d(x_{n+1}, p) - d(x_n, p) \le \beta_n (d(y_n, p) - d(x_n, p) + k_n \phi(M) + s_n).$$

Therefore,

$$\frac{d(x_{n+1}, p) - d(x_n, p)}{b} + d(x_n, p) \le \frac{d(x_{n+1}, p) - d(x_n, p)}{\beta_n} + d(x_n, p) \le d(y_n, p) + k_n \phi(M) + s_n.$$

It implies by (3.2) and (3.4) that

$$c = \liminf_{n \to \infty} \left(\frac{d(x_{n+1}, p) - d(x_n, p)}{b} + d(x_n, p) \right)$$

$$\leq \liminf_{n \to \infty} (d(y_n, p) + k_n \phi(M) + s_n)$$

$$= \liminf_{n \to \infty} d(y_n, p)$$

$$\leq \limsup_{n \to \infty} d(y_n, p) \leq c.$$

Then we have

$$c = \lim_{n \to \infty} d(y_n, p) = \lim_{n \to \infty} d((1 - \alpha_n) x_n \oplus \alpha_n z_n, p).$$
(3.6)

Since $d(z_n, p) \leq d(x_n, p)$,

$$\limsup_{n \to \infty} d(z_n, p) \le \limsup_{n \to \infty} d(x_n, p) = c.$$
(3.7)

By (3.6), (3.7), and Lemma 2.7 that

$$\lim_{n \to \infty} d(x_n, z_n) = 0.$$
(3.8)

Since $z_n \in Sx_n$, we have $dist(x_n, Sx_n) \leq d(x_n, z_n)$. This implies by (3.8) that

$$\lim_{n \to \infty} \operatorname{dist}(x_n, Sx_n) = 0.$$

By T is total asymptotically nonexpansive, we have

$$\begin{aligned} d(T^n x_n, x_n) &\leq d(T^n x_n, T^n y_n) + d(T^n y_n, x_n) \\ &\leq d(x_n, y_n) + k_n \phi(d(x_n, y_n)) + s_n + d(T^n y_n, x_n) \\ &\leq d(x_n, y_n) + k_n \phi(M) + s_n + d(T^n y_n, x_n) \\ &\leq \alpha_n d(x_n, z_n) + k_n \phi(M) + s_n + d(T^n y_n, z_n) + d(z_n, x_n) \\ &= (1 + \alpha_n) d(x_n, z_n) + d(T^n y_n, z_n) + k_n \phi(M) + s_n. \end{aligned}$$

Then, by (3.5) and (3.8), we get

$$\lim_{n \to \infty} d(T^n x_n, x_n) = 0.$$
(3.9)

635

By the uniform continuity of T, we have

$$\lim_{n \to \infty} d(T^{n+1}x_n, Tx_n) = 0.$$
(3.10)

Consider,

$$\begin{aligned} d(x_n, x_{n+1}) &\leq (1 - \beta_n) d(x_n, z_n) + \beta_n d(x_n, T^n y_n) \\ &\leq (1 - \beta_n) d(x_n, z_n) + \beta_n (d(x_n, T^n x_n) + d(T^n x_n, T^n y_n)) \\ &\leq (1 - \beta_n) d(x_n, z_n) + \beta_n (d(x_n, T^n x_n) + d(x_n, y_n) + k_n \phi(d(x_n, y_n)) + s_n) \\ &\leq (1 - \beta_n) d(x_n, z_n) + \beta_n (d(x_n, T^n x_n) + d(x_n, y_n) + k_n \phi(M) + s_n) \\ &\leq (1 - \beta_n) d(x_n, z_n) + \beta_n (d(x_n, T^n x_n) + \alpha_n d(x_n, z_n) + k_n \phi(M) + s_n) \\ &= (1 - \beta_n + \beta_n \alpha_n) d(x_n, z_n) + \beta_n (d(x_n, T^n x_n) + k_n \phi(M) + s_n). \end{aligned}$$

This implies by (3.8) and (3.9) that

$$\lim_{n \to \infty} d(x_n, x_{n+1}) = 0.$$
 (3.11)

By (3.9), (3.10), and (3.11), we have

$$d(x_n, Tx_n) \le d(x_n, x_{n+1}) + d(x_{n+1}, T^{n+1}x_{n+1}) + d(T^{n+1}x_{n+1}, T^{n+1}x_n) + d(T^{n+1}x_n, Tx_n) \le 2d(x_n, x_{n+1}) + d(x_{n+1}, T^{n+1}x_{n+1}) + k_{n+1}\phi(M) + s_{n+1} + d(T^{n+1}x_n, Tx_n) \to 0 \text{ as } n \to \infty.$$

This completes the proof.

Now, we prove a Δ -convergence theorem for a pair of a total asymptotically nonexpansive single-valued mapping and a multi-valued mapping satisfying the condition (C_{λ}) and (E) in complete CAT(κ) spaces.

Theorem 3.4. Let $\kappa > 0$, X be a complete $CAT(\kappa)$ space with $diam(X) \leq \frac{\pi}{\sqrt{\kappa}} - \varepsilon}{\sqrt{\kappa}}$ for some $\varepsilon \in (0, \frac{\pi}{2})$, and K be a nonempty closed convex subset of X. Let T: $K \to K$ be a uniformly continuous and total asymptotically nonexpansive singlevalued mapping with sequences $\{k_n\}, \{s_n\} \subset [0, \infty)$ such that $\sum_{n=1}^{\infty} k_n < \infty$ and $\sum_{n=1}^{\infty} s_n < \infty$, and $S : K \to CC(K)$ be a multi-valued mapping satisfying the condition (C_{λ}) and (E). Assume that $\mathfrak{F} := F(T) \cap F(S)$ is nonempty and $Sp = \{p\}$ for all $p \in \mathfrak{F}$. For $x_1 \in K$, the sequence $\{x_n\}$ generated by (3.1), where $\{\alpha_n\}$ and $\{\beta_n\}$ are sequences in (0, 1) such that $0 < a \leq \alpha_n, \beta_n \leq b < 1$. Then the sequence $\{x_n\} \Delta$ -converges to a point in \mathfrak{F} .

Proof. By Lemma 3.2, it implies that $\{x_n\}$ is bounded. Let $\omega_{\Delta}(x_n) = \bigcup A(\{u_n\})$ where the union is taken over all subsequences $\{u_n\}$ of $\{x_n\}$. First, we show that $\omega_{\Delta}(x_n) \subseteq \mathfrak{F}$. To show this, we let $u \in \omega_{\Delta}(x_n)$. Then there exists a subsequence $\{u_n\}$ of $\{x_n\}$ such that $A(\{u_n\}) = \{u\}$. By Lemma 2.4, there exists a subsequence

 $\{u_{n_j}\}$ of $\{u_n\}$ such that Δ - $\lim_{j\to\infty} u_{n_j} = v \in K$. From Lemma 3.3, we have $\lim_{j\to\infty} \operatorname{dist}(u_{n_j}, Su_{n_j}) = 0$ and $\lim_{j\to\infty} d(u_{n_j}, Tu_{n_j}) = 0$. It implies by Lemma 3.3 and Lemma 2.11 that $v \in F(T)$. Since Sv is compact, for all $j \in \mathbb{N}$, we can choose $q_{n_j} \in Sv$ such that $d(u_{n_j}, q_{n_j}) = \operatorname{dist}(u_{n_j}, Sv)$ and the sequence $\{q_{n_j}\}$ has a convergent subsequence $\{q_{n_k}\}$ with $\lim_{k\to\infty} q_{n_k} = q \in Sv$. By condition (E), there exists $\mu \geq 1$ such that

$$\operatorname{dist}(u_{n_k}, Sv) \le \mu \operatorname{dist}(u_{n_k}, Su_{n_k}) + d(u_{n_k}, v).$$

Then we have

$$d(u_{n_k}, q) \le d(u_{n_k}, q_{n_k}) + d(q_{n_k}, q) = \operatorname{dist}(u_{n_k}, Sv) + d(q_{n_k}, q) \le \mu \operatorname{dist}(u_{n_k}, Su_{n_k}) + d(u_{n_k}, v) + d(q_{n_k}, q).$$

This implies that

$$\limsup_{k \to \infty} d(u_{n_k}, q) \le \limsup_{k \to \infty} d(u_{n_k}, v)$$

By the uniqueness of asymptotic centers, we have $v = q \in Sv$.

Hence, we obtain $v \in \mathfrak{F}$ and so $\lim_{n \to \infty} d(x_n, v)$ exists. Suppose that $u \neq v$. By the uniqueness of asymptotic centers, we get

$$\begin{split} \limsup_{k \to \infty} d(u_{n_k}, v) &< \limsup_{k \to \infty} d(u_{n_k}, u) \\ &\leq \limsup_{n \to \infty} d(u_n, u) \\ &< \limsup_{n \to \infty} d(u_n, v) \\ &= \limsup_{n \to \infty} d(x_n, v) \\ &= \limsup_{k \to \infty} d(u_{n_k}, v). \end{split}$$

This is a contradiction. Then we have $u = v \in \mathfrak{F}$. This shows that $\omega_{\Delta}(x_n) \subseteq \mathfrak{F}$.

To show that $\{x_n\}$ Δ -converges to a point in \mathfrak{F} , it is sufficient to show that $\omega_{\Delta}(x_n)$ consists of exactly one point. Let $\{u_n\}$ be a subsequence of $\{x_n\}$ with $A(\{u_n\}) = \{u\}$ and let $A(\{x_n\}) = \{z\}$. Since $u \in \omega_{\Delta}(x_n) \subseteq \mathfrak{F}$, it follows that $\lim_{n\to\infty} d(x_n, u)$ exists. By Lemma 2.6, u = z. This completes the proof.

We now get a strong convergence theorem of modified S-iteration for a pair of a total asymptotically nonexpansive single-valued mapping and a multi-valued mapping satisfying the condition (C_{λ}) and (E) in complete CAT (κ) spaces.

Theorem 3.5. Let $\kappa > 0$, X be a complete $CAT(\kappa)$ space with $diam(X) \leq \frac{\frac{\pi}{2} - \varepsilon}{\sqrt{\kappa}}$ for some $\varepsilon \in (0, \frac{\pi}{2})$, and K be a nonempty compact convex subset of X. Let $T : K \to K$ be a uniformly continuous and total asymptotically nonexpansive single-valued mapping with sequences $\{k_n\}, \{s_n\} \subset [0, \infty)$ such that $\sum_{n=1}^{\infty} k_n < \infty$ and $\sum_{n=1}^{\infty} s_n < \infty$, and $S: K \to CB(K)$ be a multi-valued mapping satisfying the condition (C_{λ}) and (E). Assume that $\mathfrak{F} := F(T) \cap F(S)$ is nonempty and $Sp = \{p\}$ for all $p \in \mathfrak{F}$. For $x_1 \in K$, the sequence $\{x_n\}$ generated by (3.1), where $\{\alpha_n\}$ and $\{\beta_n\}$ are sequences in (0,1) such that $0 < a \le \alpha_n, \beta_n \le b < 1$. Then the sequence $\{x_n\}$ converges strongly to a point in \mathfrak{F} .

Proof. By Lemma 3.2, we have $\{x_n\}$ is bounded. Since K is compact, there exists a subsequence $\{x_{n_i}\}$ of $\{x_n\}$ converges strongly to p in K. By condition (E), there exists $\mu \geq 1$ such that

$$dist(p, Sp) \leq d(p, x_{n_i}) + dist(x_{n_i}, Sp)$$

$$\leq d(x_{n_i}, p) + \mu dist(x_{n_i}, Sx_{n_i}) + d(x_{n_i}, p)$$

$$= 2d(x_{n_i}, p) + \mu dist(x_{n_i}, Sx_{n_i}).$$

Then, by Lemma 3.3, we have $p \in F(S)$. Again, by Lemma 3.3 and the uniform continuity of T, we have

$$d(Tp,p) \le d(Tp,Tx_{n_i}) + d(Tx_{n_i},x_{n_i}) + d(x_{n_i},p) \to 0 \text{ as } n \to \infty.$$

That is, $p \in F(T)$. Therefore, $p \in \mathfrak{F}$. By Lemma 3.2, $\lim_{n\to\infty} d(x_n, p)$ exists, thus p is the strong limit of the sequence $\{x_n\}$ itself.

Recall that a single-valued mapping $T: K \to K$ is said to be *semi-compact* if for any bounded sequence $\{x_n\}$ in K such that $\lim_{n\to\infty} \operatorname{dist}(x_n, Tx_n) = 0$, there exists a subsequence $\{x_{n_i}\}$ of $\{x_n\}$ such that $\{x_{n_i}\}$ converges strongly to $p \in K$. The following theorem, we show that the compactness of K in Theorem 3.5 can be dropped if a single-valued mapping T^m is semi-compact for some $m \in \mathbb{N}$.

Theorem 3.6. Let $\kappa > 0$, X be a complete $CAT(\kappa)$ space with $diam(X) \leq \frac{\pi}{\sqrt{\kappa}} - \varepsilon}{\sqrt{\kappa}}$ for some $\varepsilon \in (0, \frac{\pi}{2})$, and K be a nonempty closed convex subset of X. Let $T : K \to K$ be a uniformly continuous and total asymptotically nonexpansive singlevalued mapping with sequences $\{k_n\}, \{s_n\} \subset [0, \infty)$ such that $\sum_{n=1}^{\infty} k_n < \infty$ and $\sum_{n=1}^{\infty} s_n < \infty$, and $S : K \to CB(K)$ be a multi-valued mapping satisfying the condition (C_{λ}) and (E). Assume that $\mathfrak{F} := F(T) \cap F(S)$ is nonempty and $Sp = \{p\}$ for all $p \in \mathfrak{F}$. For $x_1 \in K$, the sequence $\{x_n\}$ generated by (3.1), where $\{\alpha_n\}$ and $\{\beta_n\}$ are sequences in (0,1) such that $0 < a \leq \alpha_n, \beta_n \leq b < 1$. If T^m is semicompact for some $m \in \mathbb{N}$, then the sequence $\{x_n\}$ converges strongly to a point in \mathfrak{F} .

Proof. By Lemma 3.3, we have $\lim_{n\to\infty} d(x_n, Tx_n) = 0$. This follows by the uniform continuity of T that

$$d(x_n, T^m x_n) \le d(x_n, Tx_n) + d(Tx_n, T^2 x_n) + \dots + d(T^{m-1} x_n, T^m x_n) \to 0,$$

as $n \to \infty$. By the semi-compactness of T^m , there exist a subsequence $\{x_{n_i}\}$ of $\{x_n\}$ converges strongly to p in K for some $p \in K$. As in the proof of Theorem 3.5, we obtain that the sequence $\{x_n\}$ converges strongly to a point in \mathfrak{F} .

Recall that a multi-valued mapping $S : K \to CB(K)$ is said to be *hemi-compact* if for any bounded sequence $\{x_n\}$ in K such that $\lim_{n\to\infty} \operatorname{dist}(x_n, Sx_n) = 0$, there exists a subsequence $\{x_{n_i}\}$ of $\{x_n\}$ such that $\{x_{n_i}\}$ converges strongly to $p \in K$. The following theorem, we show that the compactness of K in Theorem 3.5 can be dropped if a multi-valued mapping S is hemi-compact.

Theorem 3.7. Let $\kappa > 0$, X be a complete $CAT(\kappa)$ space with $diam(X) \leq \frac{\pi}{\sqrt{\kappa}} -\varepsilon$ for some $\varepsilon \in (0, \frac{\pi}{2})$, and K be a nonempty closed convex subset of X. Let $T : K \to K$ be a uniformly continuous and total asymptotically nonexpansive singlevalued mapping with sequences $\{k_n\}, \{s_n\} \subset [0, \infty)$ such that $\sum_{n=1}^{\infty} k_n < \infty$ and $\sum_{n=1}^{\infty} s_n < \infty$, and $S : K \to CB(K)$ be a multi-valued mapping satisfying the condition (C_{λ}) and (E). Assume that $\mathfrak{F} := F(T) \cap F(S)$ is nonempty and $Sp = \{p\}$ for all $p \in \mathfrak{F}$. For $x_1 \in K$, the sequence $\{x_n\}$ generated by (3.1), where $\{\alpha_n\}$ and $\{\beta_n\}$ are sequences in (0, 1) such that $0 < a \leq \alpha_n, \beta_n \leq b < 1$. If S is hemicompact, then the sequence $\{x_n\}$ converges strongly to a point in \mathfrak{F}.

Proof. Since S is hemi-compact, there exists a subsequence $\{x_{n_i}\}$ of $\{x_n\}$ converges strongly to p in K for some $p \in K$. As in the proof of Theorem 3.5, we obtain that the sequence $\{x_n\}$ converges strongly to a point in \mathfrak{F} .

Acknowledgement : The authors would like to thank the referees for valuable suggestions on the research paper.

References

- W.A. Kirk, Geodesic geometry and fixed point theory, in: Seminar of Mathematical Analysis (Malaga/Seville, 2002/2003), in: Colecc. Abierta, vol. 64, Univ. Sevilla Secr. Publ., Seville, 2003, pp. 195225.
- [2] W.A. Kirk, Geodesic geometry and fixed point theory II, in: Proceedings of the International Conference in Fixed Point Theory and Applications, Valencia, Spain, 2003, pp. 113142
- [3] S.H. Khan, M. Abbas, Strong and Δ-convergence of some iterative schemes in CAT(0) spaces, Comput. Math. Appl. 61 (2011) 109116.
- [4] S. Dhompongsa, B. Panyanak, On Δ-convergence theorems in CAT(0) spaces, Comp. Math. Appl. 56 (2008) 2572-2579.
- [5] W. Laowang, B. Panyanak, Approximating fixed points of nonexpansive nonself mappings in CAT(0) spaces, Fixed Point Theory and Applications, Vol. 2010, Article ID 367274, 11 pages.
- [6] A. Abkar, M. Eslamian, Common fixed point results in CAT(0) spaces, Nonlinear Anal. 74 (2011) 1835-1840.

- [7] A. Abkar, M. Eslamian, Convergence theorems for a finite family of generalized nonexpansive multivalued mappings in CAT(0) spaces, Nonlinear Anal. 75 (2012) 1895-1903.
- [8] A. Abkar, M. Eslamian, Fixed point and convergence theorems for different classes of generalized nonexpansive mappings in CAT(0) spaces, Comp. Math. Appl. 64 (2012) 643-650.
- [9] M. Başarır, A. Şahin, On the strong and Δ-convergence of S-iteration process for generalized nonexpansive mappings on CAT(0) space, Thai. J. Math. 12 (2014) 549-559.
- [10] M. Bridson, A. Haefliger, Metric Spaces of Non-Positive Curvature, Springer, Berlin, 1999.
- [11] K. Sokhuma, A. Kaewkhao, Ishikawa iterative process for a pair of singlevalued and multivalued nonexpansive mappings in Banach spaces, Fixed Point Theory and Applications, Vol. 2010, Article ID 618767, 9 pages.
- [12] I. Uddin, M. Imdad, J. Ali, Convergence theorems for a hybrid pair of generalized nonexpansive mappings in Banach spaces, Bull. Malays. Math. Sci. Soc. 38 (2015) 695-705.
- [13] R.P. Agarwal, D. O'Regan, D.R. Sahu, Iterative construction of fixed points of nearly asymptotically nonexpansive mappings, J. Nonlinear Convex. Anal. 8 (1) (2007) 6179.
- [14] N. Akkasriworn, K. Sokhuma, S-iterative process for a pair of single valued and multi valued mappings in Banach spaces, Thai J. Math., Articles in Press.
- [15] S. Ohta, Convexities of metric spaces, Geom. Dedic. 125 (2007) 225-250.
- [16] B. Panyanak, On total asymptotically nonexpansive mappings in $CAT(\kappa)$ spaces, Journal of Inequalities and Applications (2014) 2014:336.
- [17] R. Espinola, A. Fernandez-Leon, CAT(κ)-Spaces, weak convergence and fixed points, J. Math. Anal. Appl. 353 (2009) 410-427.
- [18] YA.I. Alber, C.E. Chidume, H. Zegeye, Approximating fixed points of total asymptotically nonexpansive mappings, Fixed Point Theory and Applications, Vol. 2006, Article ID 10673, 20 pages.
- [19] R. Tyrrell Rockafellar, Roger J.-B. Wets, Variational Analysis, Springer-Verlag, 2005.
- [20] K.K. Tan, H.K. Xu, Approximating fixed points of nonexpansive mappings by the Ishikawa iteration process, J. Math. Anal. Appl. 178 (1993) 301-308.

(Received 4 July 2015) (Accepted 10 December 2015)

THAI J. MATH. Online @ http://thaijmath.in.cmu.ac.th