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1 Introduction

A CAT(κ) space (κ is a real number) is a geodesic metric space whose geodesic
triangle is thinner than the corresponding comparison triangle in a model space
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with curvature κ. Fixed point theory in CAT(κ) spaces was first studied by Kirk
[1, 2]. His works were followed by a series of new works by many authors, mainly
focusing on CAT(0) spaces. Since then, the fixed point theory for single-valued and
multivalued mappings in CAT(0) spaces has been rapidly developed, and many
papers have appeared (see, e.g., [3, 4, 5, 6, 7, 8, 9]). It is worth mentioning that
the results in CAT(0) spaces can be applied to any CAT(κ) space with κ ≤ 0 since
any CAT(κ) space is a CAT(ω) space for every ω ≥ κ (see, e.g., [10]). However,
there are only a few research papers that contain fixed point results in the setting
of CAT(κ) spaces with κ > 0.

In 2011, Sokhuma and Kaewkhao [11] introduced a modified Ishikawa iterative
process for finding a common fixed point of a pair of single-valued and multi-valued
nonexpansive mappings in Banach spaces. They also proved a strong convergence
theorem for the proposed iterative process in uniformly convex Banach spaces.
Recently, Uddin et al. [12] generalized and improved several results contained in
[11]. They proved convergence theorems of modified Ishikawa iteration process
involving a pair of mappings satisfying the condition (Cλ) on Banach spaces.

In 2007, Agarwal et al. [13] introduced the S-iteration process for finding
a fixed point of a nearly asymptotically nonexpansive single-valued mapping in
a Banach space. They also showed, theoretically as well as numerically, that
the S-iteration process is faster than the Mann and Ishikawa iteration processes
for contraction operators. Later in 2011, Khan and Abbas [3] have modified S-
iteration process in CAT(0) spaces for finding a fixed point of a nonexpansive
single-valued mapping. Recently, Akkasriworn and Sokhuma [14] defined the mod-
ified S-iteration process for a pair of single-valued and multi-valued nonexpansive
mappings in Banach spaces. However, there is not any result in CAT(κ) spaces
concerning the convergence of S-iteration process for a pair of single-valued and
multi-valued mappings.

The purpose of this paper is to study the modified S-iteration process for a pair
of a total asymptotically nonexpansive single-valued mapping and a multi-valued
mapping satisfying the condition (Cλ) in complete CAT(κ) spaces.

2 Preliminaries and some useful lemmas

Throughout this paper we denote by N the set of all positive integers. Let
(X, d) be a metric space. A geodesic path joining x ∈ X to y ∈ X is a map
ϕ from a closed interval [0, l] ⊂ R to X such that ϕ(0) = x, ϕ(l) = y, and
d(ϕ(t1), ϕ(t2)) = |t1 − t2| for all t1, t2 ∈ [0, l]. In particular, ϕ is an isometry
and d(x, y) = l. The image of ϕ is called a geodesic segment joining x and y.
When it is unique this geodesic segment is denoted by [x, y]. For each x, y ∈ X

and α ∈ (0, 1), we denote the point z ∈ [x, y] such that d(x, z) = αd(x, y) by
(1− α)x⊕ αy. The space (X, d) is said to be a geodesic metric space (D-geodesic
metric space) if every two points of X (every two points of distance smaller than
D) are joined by a geodesic, and X is said to be uniquely geodesic (D-uniquely
geodesic) if there is exactly one geodesic joining x and y for each x, y ∈ X (for
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x, y ∈ X with d(x, y) < D). A nonempty subset K of X is said to be convex if K
includes every geodesic segment joining any two of its points. The set K is said
to be bounded if diam(K) = sup{d(x, y) : x, y ∈ K} < ∞.

We now introduce the model spaces Mn
κ , for more details on these spaces the

reader is referred to [10]. Let n ∈ N, we denote the metric space Rn endowed with
the usual Euclidean distance by En. The Euclidean scalar product in Rn is denote
by (·|·), that is,

(x|y) = x1y1 + · · ·+ xnyn where x = (x1, . . . , xn), y = (y1, . . . , yn).

Let Sn denote the n-dimensional sphere defined by Sn = {x = (x1, . . . , xn+1) ∈
Rn+1 : (x|x) = 1} with metric dSn(x, y) = arccos(x|y) for x, y ∈ Sn. Let En,1

denote the vector space Rn+1 endowed with the symmetric bilinear form which
associates to vectors x = (x1, . . . , xn+1) and y = (y1, . . . , yn+1) the real number
〈x|y〉 defined by

〈x|y〉 = −xn+1yn+1 +

n
∑

i=1

xiyi.

Let Hn denote the hyperbolic n-space defined by Hn = {x = (x1, . . . , xn+1) ∈
En,1 : (x|x) = −1, xn+1 > 0} with metric dHn such that coshdHn(x, y) = −〈x|y〉
for x, y ∈ Hn.

Given a real number κ, we denote by Mn
κ the following metric spaces:

(i) if κ = 0, then Mn
κ is the Euclidean space En;

(ii) if κ > 0, then Mn
κ is obtained from the spherical space S

n by multiplying
the distance function by the constant 1√

κ
;

(iii) if κ < 0, then Mn
κ is obtained from the hyperbolic space Hn by multiplying

the distance function by the constant 1√
−κ

.

A geodesic triangle ∆(x, y, z) in a geodesic metric space (X, d) consists of three
points x, y, z ∈ X (the vertices of ∆) and three geodesic segments between each
pair of vertices (the edges of ∆). A comparison triangle for a geodesic triangle
∆(x, y, z) in (X, d) is a triangle ∆(x, y, z) in M2

κ such that d(x, y) = dM2
κ
(x, y),

d(y, z) = dM2
κ
(y, z), and d(z, x) = dM2

κ
(z, x). If κ ≤ 0, then such a comparison

triangle always exists M2
κ . If κ > 0, then such a triangle exists whenever d(x, y) +

d(y, z)+ d(z, x) < 2Dκ, where Dκ = π√
κ
. A point w ∈ [x, y] is called a comparison

point for w ∈ [x, y] if d(x,w) = dM2
κ
(x,w).

A geodesic triangle ∆(x, y, z) in X is said to satisfy the CAT(κ) inequality if
for any p, q ∈ ∆(x, y, z) and for their comparison points p, q ∈ ∆(x, y, z), one has
d(p, q) ≤ dM2

κ
(p, q).

Definition 2.1.

(i) If κ ≤ 0, then X is called a CAT(κ) space if and only if X is a geodesic
space such that all of its geodesic triangles satisfy the CAT(κ) inequality.
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(ii) If κ > 0, then X is called a CAT(κ) space if and only if X is Dκ-geodesic and
any geodesic triangle ∆(x, y, z) in X with d(x, y) + d(y, z) + d(z, x) < 2Dκ

satisfies the CAT(κ) inequality.

Let R ∈ (0, 2]. Recall that a geodesic metric space (X, d) is said to be R-convex
(see [15]) if for any three points x, y, z ∈ X and α ∈ [0, 1], we have

d2(x, (1 − α)y ⊕ αz) ≤ (1− α)d2(x, y) + αd2(x, z)−
R

2
α(1 − α)d2(y, z). (2.1)

It is known that a geodesic metric space (X, d) is a CAT(0) space if and only if
(X, d) is R-convex for R = 2. The following lemma is a consequence of Proposition
3.1 in [15].

Lemma 2.2. Let κ > 0 and (X, d) be a CAT(κ) space with diam(X) ≤
π
2
−ε

√
κ

for

some ε ∈ (0, π
2
). Then (X, d) is R-convex for R = (π − 2ε) tan(ε).

We now collect some elementary facts about CAT(κ) spaces; see [16].
Let {xn} be a bounded sequence in a CAT(κ) space X with κ > 0. For x ∈ X ,

we define a mapping r (·, {xn}) : X → [0,∞) by

r (x, {xn}) = lim sup
n→∞

d(x, xn).

The asymptotic radius r ({xn}) of {xn} is given by

r ({xn}) = inf {r (x, {xn}) : x ∈ X} ,

and the asymptotic center A ({xn}) of {xn} is the set

A ({xn}) = {x ∈ X : r (x, {xn}) = r ({xn})} .

The asymptotic center A ({xn}) is singleton for a CAT(κ) space with diameter
smaller than π

2
√
κ
; see [17].

Definition 2.3. A sequence {xn} in a CAT(κ) space X is said to ∆-converge to
x ∈ X if x is the unique asymptotic center of {un} for every subsequence {un} of
{xn}. In this case, we write ∆-limn→∞ xn = x and call x the ∆-limit of {xn}.

Lemma 2.4 ([17]). Let κ > 0 and X be a complete CAT(κ) space with diam(X) ≤
π
2
−ε

√
κ

for some ε ∈ (0, π
2
). Then every bounded sequence in X has a ∆-convergent

subsequence.

Lemma 2.5 ([10]). Let κ > 0 and X be a complete CAT(κ) space with diam(X) ≤
π
2
−ε

√
κ

for some ε ∈ (0, π
2
). Then, we have

d((1 − α)x⊕ αy, z) ≤ (1 − α)d(x, z) + αd(y, z)

for all x, y, z ∈ X and α ∈ [0, 1].
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Lemma 2.6 ([4]). Let κ > 0 and X be a complete CAT(κ) space with diam(X) ≤
π
2
−ε

√
κ

for some ε ∈ (0, π
2
). If {xn} is a sequence in X with A({xn}) = {x} and

{un} is a subsequence of {xn} with A({un}) = {u} and the sequence {d(xn, u)}
converges, then x=u.

The following lemma is a characterization of CAT(0) spaces. It can be applied
to a CAT(κ) space with κ > 0 as well.

Lemma 2.7 ([5]). Let X be a CAT(0) space, and let x ∈ X. Suppose that {tn}
is a sequence in [a, b] for some a, b ∈ (0, 1) and that {xn}, {yn} are sequences in
X such that lim supn→∞ d(xn, x) ≤ r, lim supn→∞ d(yn, x) ≤ r and

lim
n→∞

d((1 − tn)xn ⊕ tnyn, x) = r for some r ≥ 0.

Then limn→∞ d(xn, yn) = 0.

Let K be a nonempty subset of a CAT(κ) space X , and T : K → K be
a single-valued mapping. The set of all fixed points of T will be denoted by
F (T ) = {x ∈ K : x = Tx}.

Definition 2.8. A single-valued mapping T : K → K is said to be

(i) nonexpansive if d(Tx, T y) ≤ d(x, y) for all x, y ∈ K;

(ii) asymptotically nonexpansive if there exists a sequence {kn} ⊂ [1,∞) such
that limn→∞ kn = 1 and d(T nx, T ny) ≤ knd(x, y) for all x, y ∈ K and
n ∈ N;

(iii) generalized asymptotically nonexpansive if there exist two sequences {kn},
{sn} ⊂ [0,∞) such that limn→∞kn = limn→∞sn = 0 and d(T nx, T ny) ≤
knd(x, y) + sn for all x, y ∈ K and n ∈ N;

(iv) total asymptotically nonexpansive if there exist two sequences {kn}, {sn} ⊂
[0,∞) with limn→∞kn = limn→∞sn = 0 and a strictly increasing continu-
ous function φ : [0,∞) → [0,∞) with φ(0) = 0 such that d(T nx, T ny) ≤
d(x, y) + knφ(d(x, y)) + sn for all x, y ∈ K and n ∈ N.

Remark 2.9.

(i) The concept of total asymptotically nonexpansive single-valued mappings was
first introduced in Banach spaces by Alber et al. [18].

(ii) If φ(λ) = λ, then a total asymptotically nonexpansive mapping reduces to a
generalized asymptotically nonexpansive mapping. If φ(λ) = λ and kn = 0
for all n ∈ N, then a total asymptotically nonexpansive mapping reduces
to an asymptotically nonexpansive mapping. If φ(λ) = λ and kn = 0 and
sn = 0 for all n ∈ N, then a total asymptotically nonexpansive mapping
reduces to a nonexpansive mapping.
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The following two lemmas can be found in [16].

Lemma 2.10. Let κ > 0 and X be a complete CAT(κ) space with diam(X) ≤
π
2
−ε

√
κ

for some ε ∈ (0, π
2
). Let K be a nonempty closed convex subset of X, and let

T : K → K be a continuous and total asymptotically nonexpansive mapping.
Then T has a fixed point in K.

Lemma 2.11. Let κ > 0 and X be a complete CAT(κ) space with diam(X) ≤
π
2
−ε

√
κ

for some ε ∈ (0, π
2
). Let K be a nonempty closed convex subset of X, and let

T : K → K be a uniformly continuous and total asymptotically nonexpansive
mapping. If {xn} is a sequence in K such that limn→∞ d(xn, T xn) = 0 and ∆-
limn→∞ xn = p, then p ∈ K and p = Tp.

We shall denote the family of nonempty closed bounded subsets of K by
CB(K), and the family of nonempty compact convex subsets of K by CC(K).
The Pompeiu-Hausdorff distance [19] on CB(K) is defined by

H(A,B) = max

{

sup
x∈A

dist(x,B), sup
y∈B

dist(y,A)

}

for A,B ∈ CB(K),

where dist(x,K) = inf{d(x, y) : y ∈ K} is the distance from a point x to a subset
K. Let S be a multi-valued mapping of K into CB(K). The set of all fixed points
of S will be denoted by F (S) = {x ∈ K : x ∈ Sx}.

Definition 2.12. A multi-valued mapping S : K → CB(K) is said to

(i) be nonexpansive if H(Sx, Sy) ≤ d(x, y) for all x, y ∈ K;

(ii) be quasi-nonexpansive if F (S) 6= ∅ and H(Sx, Sz) ≤ d(x, z) for all x ∈ D

and z ∈ F (S);

(iii) satisfy condition (Eµ) if there exists µ ≥ 1 such that for each x, y ∈ K,
dist(x, Sy) ≤ µdist(x, Sx) + d(x, y). We say that S satisfies condition (E)
whenever S satisfies (Eµ) for some µ ≥ 1.

(iv) satisfy condition (Cλ) if there exists λ ∈ (0, 1) such that for each x, y ∈ K,
λdist(x, Sx) ≤ d(x, y) implies H(Sx, Sy) ≤ d(x, y).

Remark 2.13.

(i) If S : K → CB(K) is nonexpansive, then S satisfies the condition (E1).

(ii) As in the single-valued case, if 0 < λ1 < λ2 < 1 then the condition (Cλ1
)

implies the condition (Cλ2
).

The following lemma is also needed.

Lemma 2.14 ([20]). Let {an} and {bn} be sequences of nonnegative real numbers
satisfying

an+1 ≤ an + bn for all n ∈ N.

If
∑∞

n=1
bn < ∞, then limn→∞ an exists.
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3 Main results

In this section, we first introduce the modified S-iteration process for a pair of
single-valued and multi-valued mappings in CAT(κ) spaces.

Definition 3.1. For K a nonempty convex subset of a CAT(κ) space X , T : K →
K a single-valued mapping and S : K → CB(K) a multi-valued mapping, the
iterative sequence {xn} is generated from x1 ∈ K, and is defined by







yn = (1 − αn)xn ⊕ αnzn, zn ∈ Sxn,

xn+1 = (1− βn)zn ⊕ βnT
nyn, n ∈ N,

(3.1)

where {αn} and {βn} are sequences in (0, 1). We will call it the modified S-iteration
process.

Before proving the ∆ and strong convergence theorems, we need the following
two lemmas.

Lemma 3.2. Let κ > 0, X be a complete CAT(κ) space with diam(X) ≤
π
2
−ε

√
κ

for some ε ∈ (0, π
2
), and K be a nonempty closed convex subset of X. Let T :

K → K be a uniformly continuous and total asymptotically nonexpansive single-
valued mapping with sequences {kn}, {sn} ⊂ [0,∞) such that

∑∞
n=1

kn < ∞ and
∑∞

n=1
sn < ∞, and S : K → CB(K) be a multi-valued mapping satisfying the

condition (Cλ). Assume that F := F (T )∩F (S) is nonempty and Sp = {p} for all
p ∈ F. For x1 ∈ K, the sequence {xn} generated by (3.1). Then, limn→∞ d(xn, p)
exists for all p ∈ F.

Proof. Let p ∈ F and M = diam(K). As, λ ∈ (0, 1), implies λdist(p, Sp) = 0 ≤
d(xn, p), owing to the condition (Cλ), we have H(Sxn, Sp) ≤ d(xn, p). Since T is
total asymptotically nonexpansive, it follows by Lemma 2.5 that

d(xn, p) ≤ (1− βn)d(zn, p) + βnd(T
nyn, T

np)

≤ (1− βn)d(zn, p) + βn(d(yn, p) + knφ(d(yn, p)) + sn)

≤ (1− βn)d(zn, p) + βn(d(yn, p) + knφ(M) + sn)

≤ (1− βn)d(zn, p) + βnd(yn, p) + βn(knφ(M) + sn)

≤ (1− βn)d(zn, p) + βn((1 − αn)d(xn, p) + αnd(zn, p)) + βn(knφ(M) + sn)

= (1− βn + βnαn)d(zn, p) + βn(1− αn)d(xn, p) + βn(knφ(M) + sn)

= (1− βn + βnαn)dist(zn, Sp) + βn(1− αn)d(xn, p) + βn(knφ(M) + sn)

≤ (1− βn + βnαn)H(Sxn, Sp) + βn(1− αn)d(xn, p) + βn(knφ(M) + sn)

≤ d(xn, p) + βn(knφ(M) + sn).

Since
∑∞

n=1
kn < ∞ and

∑∞
n=1

sn < ∞, it implies by Lemma 2.14 that
limn→∞ d(xn, p) exists.
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Lemma 3.3. Let κ > 0, X be a complete CAT(κ) space with diam(X) ≤
π
2
−ε

√
κ

for some ε ∈ (0, π
2
), and K be a nonempty closed convex subset of X. Let

T : K → K be a uniformly continuous and total asymptotically nonexpansive
single-valued mapping with sequences {kn}, {sn} ⊂ [0,∞) such that

∑∞
n=1

kn < ∞
and

∑∞
n=1

sn < ∞, and S : K → CB(K) be a multi-valued mapping satis-
fying the condition (Cλ). Assume that F := F (T ) ∩ F (S) is nonempty and
Sp = {p} for all p ∈ F. For x1 ∈ K, the sequence {xn} generated by (3.1),
where {αn} and {βn} are sequences in [0, 1] such that 0 < a ≤ αn, βn ≤ b <

1. Then, we have limn→∞ dist(xn, Sxn) = 0 and limn→∞ d(xn, T
nxn) = 0 and

limn→∞ d(xn, T xn) = 0.

Proof. Let p ∈ F and M = diam(K). In view of Lemma 3.2, we assume that

lim
n→∞

d(xn, p) = c. (3.2)

If c = 0, then all the conclusions are trivial. Therefore we will assume that c > 0.
As, λ ∈ (0, 1), implies λdist(p, Sp) = 0 ≤ d(xn, p), owing to the condition (Cλ),
we have H(Sxn, Sp) ≤ d(xn, p). Thus, d(zn, p) = dist(zn, Sp) ≤ H(Sxn, Sp) ≤
d(xn, p). This implies that

lim sup
n→∞

d(zn, p) ≤ lim sup
n→∞

d(xn, p) = c. (3.3)

Consider,

d(T nyn, p) ≤ d(yn, p) + knφ(d(yn, p)) + sn

≤ d(yn, p) + knφ(M) + sn

≤ (1 − αn)d(xn, p) + αnd(zn, p) + knφ(M) + sn

= (1 − αn)d(xn, p) + αndist(zn, Sp) + knφ(M) + sn

≤ (1 − αn)d(xn, p) + αnH(Sxn, Sp) + knφ(M) + sn

≤ d(xn, p) + knφ(M) + sn.

This implies by limn→∞ kn = 0 and limn→∞ sn = 0 that

lim sup
n→∞

d(T nyn, p) ≤ lim sup
n→∞

d(yn, p) ≤ lim sup
n→∞

d(xn, p) = c. (3.4)

Since c = lim supn→∞ d(xn+1, p) = lim supn→∞ d((1 − βn)zn ⊕ βnT
nyn, p), it

follows by Lemma 2.7 that

lim
n→∞

d(zn, T
nyn) = 0. (3.5)

By the definition of the sequence {xn}, we have

d(xn+1, p) ≤ (1− βn)d(zn, p) + βnd(T
nyn, p)

≤ (1− βn)d(xn, p) + βn(d(yn, p) + knφ(d(yn, p)) + sn)

≤ (1− βn)d(xn, p) + βn(d(yn, p) + knφ(M) + sn).
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This implies that

d(xn+1, p)− d(xn, p) ≤ βn(d(yn, p)− d(xn, p) + knφ(M) + sn).

Therefore,

d(xn+1, p)− d(xn, p)

b
+ d(xn, p) ≤

d(xn+1, p)− d(xn, p)

βn

+ d(xn, p)

≤ d(yn, p) + knφ(M) + sn.

It implies by (3.2) and (3.4) that

c = lim inf
n→∞

(

d(xn+1, p)− d(xn, p)

b
+ d(xn, p)

)

≤ lim inf
n→∞

(d(yn, p) + knφ(M) + sn)

= lim inf
n→∞

d(yn, p)

≤ lim sup
n→∞

d(yn, p) ≤ c.

Then we have

c = lim
n→∞

d(yn, p) = lim
n→∞

d((1 − αn)xn ⊕ αnzn, p). (3.6)

Since d(zn, p) ≤ d(xn, p),

lim sup
n→∞

d(zn, p) ≤ lim sup
n→∞

d(xn, p) = c. (3.7)

By (3.6), (3.7), and Lemma 2.7 that

lim
n→∞

d(xn, zn) = 0. (3.8)

Since zn ∈ Sxn, we have dist(xn, Sxn) ≤ d(xn, zn). This implies by (3.8) that

lim
n→∞

dist(xn, Sxn) = 0.

By T is total asymptotically nonexpansive, we have

d(T nxn, xn) ≤ d(T nxn, T
nyn) + d(T nyn, xn)

≤ d(xn, yn) + knφ(d(xn, yn)) + sn + d(T nyn, xn)

≤ d(xn, yn) + knφ(M) + sn + d(T nyn, xn)

≤ αnd(xn, zn) + knφ(M) + sn + d(T nyn, zn) + d(zn, xn)

= (1 + αn)d(xn, zn) + d(T nyn, zn) + knφ(M) + sn.

Then, by (3.5) and (3.8), we get

lim
n→∞

d(T nxn, xn) = 0. (3.9)
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By the uniform continuity of T , we have

lim
n→∞

d(T n+1xn, T xn) = 0. (3.10)

Consider,

d(xn, xn+1) ≤ (1− βn)d(xn, zn) + βnd(xn, T
nyn)

≤ (1− βn)d(xn, zn) + βn(d(xn, T
nxn) + d(T nxn, T

nyn))

≤ (1− βn)d(xn, zn) + βn(d(xn, T
nxn) + d(xn, yn) + knφ(d(xn, yn)) + sn)

≤ (1− βn)d(xn, zn) + βn(d(xn, T
nxn) + d(xn, yn) + knφ(M) + sn)

≤ (1− βn)d(xn, zn) + βn(d(xn, T
nxn) + αnd(xn, zn) + knφ(M) + sn)

= (1− βn + βnαn)d(xn, zn) + βn(d(xn, T
nxn) + knφ(M) + sn).

This implies by (3.8) and (3.9) that

lim
n→∞

d(xn, xn+1) = 0. (3.11)

By (3.9), (3.10), and (3.11), we have

d(xn, T xn) ≤ d(xn, xn+1) + d(xn+1, T
n+1xn+1) + d(T n+1xn+1, T

n+1xn)

+ d(T n+1xn, T xn)

≤ 2d(xn, xn+1) + d(xn+1, T
n+1xn+1) + kn+1φ(M) + sn+1

+ d(T n+1xn, T xn) → 0 as n → ∞.

This completes the proof.

Now, we prove a ∆-convergence theorem for a pair of a total asymptotically
nonexpansive single-valued mapping and a multi-valued mapping satisfying the
condition (Cλ) and (E) in complete CAT(κ) spaces.

Theorem 3.4. Let κ > 0, X be a complete CAT(κ) space with diam(X) ≤
π
2
−ε

√
κ

for some ε ∈ (0, π
2
), and K be a nonempty closed convex subset of X. Let T :

K → K be a uniformly continuous and total asymptotically nonexpansive single-
valued mapping with sequences {kn}, {sn} ⊂ [0,∞) such that

∑∞
n=1

kn < ∞ and
∑∞

n=1
sn < ∞, and S : K → CC(K) be a multi-valued mapping satisfying the

condition (Cλ) and (E). Assume that F := F (T )∩F (S) is nonempty and Sp = {p}
for all p ∈ F. For x1 ∈ K, the sequence {xn} generated by (3.1), where {αn} and
{βn} are sequences in (0, 1) such that 0 < a ≤ αn, βn ≤ b < 1. Then the sequence
{xn} ∆-converges to a point in F.

Proof. By Lemma 3.2, it implies that {xn} is bounded. Let ω∆(xn) =
⋃

A({un})
where the union is taken over all subsequences {un} of {xn}. First, we show that
ω∆(xn) ⊆ F. To show this, we let u ∈ ω∆(xn). Then there exists a subsequence
{un} of {xn} such that A({un}) = {u}. By Lemma 2.4, there exists a subsequence
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{unj
} of {un} such that ∆-limj→∞ unj

= v ∈ K. From Lemma 3.3, we have
limj→∞ dist(unj

, Sunj
) = 0 and limj→∞ d(unj

, T unj
) = 0. It implies by Lemma

3.3 and Lemma 2.11 that v ∈ F (T ). Since Sv is compact, for all j ∈ N, we can
choose qnj

∈ Sv such that d(unj
, qnj

) = dist(unj
, Sv) and the sequence {qnj

} has
a convergent subsequence {qnk

} with limk→∞ qnk
= q ∈ Sv. By condition (E),

there exists µ ≥ 1 such that

dist(unk
, Sv) ≤ µdist(unk

, Sunk
) + d(unk

, v).

Then we have

d(unk
, q) ≤ d(unk

, qnk
) + d(qnk

, q)

= dist(unk
, Sv) + d(qnk

, q)

≤ µdist(unk
, Sunk

) + d(unk
, v) + d(qnk

, q).

This implies that

lim sup
k→∞

d(unk
, q) ≤ lim sup

k→∞
d(unk

, v).

By the uniqueness of asymptotic centers, we have v = q ∈ Sv.
Hence, we obtain v ∈ F and so limn→∞ d(xn, v) exists. Suppose that u 6= v.

By the uniqueness of asymptotic centers, we get

lim sup
k→∞

d(unk
, v) < lim sup

k→∞
d(unk

, u)

≤ lim sup
n→∞

d(un, u)

< lim sup
n→∞

d(un, v)

= lim sup
n→∞

d(xn, v)

= lim sup
k→∞

d(unk
, v).

This is a contradiction. Then we have u = v ∈ F. This shows that ω∆(xn) ⊆ F.
To show that {xn} ∆-converges to a point in F, it is sufficient to show that

ω∆(xn) consists of exactly one point. Let {un} be a subsequence of {xn} with
A({un}) = {u} and let A({xn}) = {z}. Since u ∈ ω∆(xn) ⊆ F, it follows that
limn→∞ d(xn, u) exists. By Lemma 2.6, u = z. This completes the proof.

We now get a strong convergence theorem of modified S-iteration for a pair
of a total asymptotically nonexpansive single-valued mapping and a multi-valued
mapping satisfying the condition (Cλ) and (E) in complete CAT(κ) spaces.

Theorem 3.5. Let κ > 0, X be a complete CAT(κ) space with diam(X) ≤
π
2
−ε

√
κ

for some ε ∈ (0, π
2
), and K be a nonempty compact convex subset of X. Let

T : K → K be a uniformly continuous and total asymptotically nonexpansive
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single-valued mapping with sequences {kn}, {sn} ⊂ [0,∞) such that
∑∞

n=1
kn < ∞

and
∑∞

n=1
sn < ∞, and S : K → CB(K) be a multi-valued mapping satisfying

the condition (Cλ) and (E). Assume that F := F (T ) ∩ F (S) is nonempty and
Sp = {p} for all p ∈ F. For x1 ∈ K, the sequence {xn} generated by (3.1), where
{αn} and {βn} are sequences in (0, 1) such that 0 < a ≤ αn, βn ≤ b < 1. Then
the sequence {xn} converges strongly to a point in F.

Proof. By Lemma 3.2, we have {xn} is bounded. Since K is compact, there exists
a subsequence {xni

} of {xn} converges strongly to p in K. By condition (E), there
exists µ ≥ 1 such that

dist(p, Sp) ≤ d(p, xni
) + dist(xni

, Sp)

≤ d(xni
, p) + µdist(xni

, Sxni
) + d(xni

, p)

= 2d(xni
, p) + µdist(xni

, Sxni
).

Then, by Lemma 3.3, we have p ∈ F (S). Again, by Lemma 3.3 and the uniform
continuity of T , we have

d(Tp, p) ≤ d(Tp, Txni
) + d(Txni

, xni
) + d(xni

, p) → 0 as n → ∞.

That is, p ∈ F (T ). Therefore, p ∈ F. By Lemma 3.2, limn→∞ d(xn, p) exists, thus
p is the strong limit of the sequence {xn} itself.

Recall that a single-valued mapping T : K → K is said to be semi-compact if
for any bounded sequence {xn} in K such that limn→∞ dist(xn, T xn) = 0, there
exists a subsequence {xni

} of {xn} such that {xni
} converges strongly to p ∈ K.

The following theorem, we show that the compactness of K in Theorem 3.5 can
be dropped if a single-valued mapping Tm is semi-compact for some m ∈ N.

Theorem 3.6. Let κ > 0, X be a complete CAT(κ) space with diam(X) ≤
π
2
−ε

√
κ

for some ε ∈ (0, π
2
), and K be a nonempty closed convex subset of X. Let T :

K → K be a uniformly continuous and total asymptotically nonexpansive single-
valued mapping with sequences {kn}, {sn} ⊂ [0,∞) such that

∑∞
n=1

kn < ∞ and
∑∞

n=1
sn < ∞, and S : K → CB(K) be a multi-valued mapping satisfying the

condition (Cλ) and (E). Assume that F := F (T )∩F (S) is nonempty and Sp = {p}
for all p ∈ F. For x1 ∈ K, the sequence {xn} generated by (3.1), where {αn} and
{βn} are sequences in (0, 1) such that 0 < a ≤ αn, βn ≤ b < 1. If Tm is semi-
compact for some m ∈ N, then the sequence {xn} converges strongly to a point in
F.

Proof. By Lemma 3.3, we have limn→∞ d(xn, T xn) = 0. This follows by the
uniform continuity of T that

d(xn, T
mxn) ≤ d(xn, T xn) + d(Txn, T

2xn) + · · ·+ d(Tm−1xn, T
mxn) → 0,

as n → ∞. By the semi-compactness of Tm, there exist a subsequence {xni
}

of {xn} converges strongly to p in K for some p ∈ K. As in the proof of
Theorem 3.5, we obtain that the sequence {xn} converges strongly to a point
in F.
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Recall that a multi-valued mapping S : K → CB(K) is said to be hemi-
compact if for any bounded sequence {xn} in K such that limn→∞ dist(xn, Sxn) =
0, there exists a subsequence {xni

} of {xn} such that {xni
} converges strongly

to p ∈ K. The following theorem, we show that the compactness of K in
Theorem 3.5 can be dropped if a multi-valued mapping S is hemi-compact.

Theorem 3.7. Let κ > 0, X be a complete CAT(κ) space with diam(X) ≤
π
2
−ε

√
κ

for some ε ∈ (0, π
2
), and K be a nonempty closed convex subset of X. Let T :

K → K be a uniformly continuous and total asymptotically nonexpansive single-
valued mapping with sequences {kn}, {sn} ⊂ [0,∞) such that

∑∞
n=1

kn < ∞ and
∑∞

n=1
sn < ∞, and S : K → CB(K) be a multi-valued mapping satisfying the

condition (Cλ) and (E). Assume that F := F (T )∩F (S) is nonempty and Sp = {p}
for all p ∈ F. For x1 ∈ K, the sequence {xn} generated by (3.1), where {αn} and
{βn} are sequences in (0, 1) such that 0 < a ≤ αn, βn ≤ b < 1. If S is hemi-
compact, then the sequence {xn} converges strongly to a point in F.

Proof. Since S is hemi-compact, there exists a subsequence {xni
} of {xn}

converges strongly to p in K for some p ∈ K. As in the proof of Theorem 3.5, we
obtain that the sequence {xn} converges strongly to a point in F.
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