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1 Introduction

Let E be a real Banach space with its dual E∗, and let C be a nonempty,
closed and convex subset of E. In 1994, Alber [1] introduced the generalized pro-
jections πC : E∗ → C and ΠC : E → C from Hilbert spaces to uniformly convex
and uniformly smooth Banach spaces and studied their properties in detail. In [2],
Alber presented some applications of the generalized projections to approximately
solving variational inequalities and Von Neumann intersection problem in Banach
space. In addition, Li [3] extended the generalized projections from uniformly
convex and uniformly smooth Banach spaces to reflexive Banach spaces, and es-
tablished a Mann type iterative scheme for finding the approximate solutions for
the classical variational inequality problem in compact subset of Banach spaces.

Recently, Wu and Huang [4] introduced a new generalized f -projection oper-
ator in Banach space. They extended the definition of the generalized projection
operators introduced by Abler [1] and proved some properties of the generalized
f -projection operator. Wu and Huang [5] continued their study and presented
some properties of the generalized f -projection operator. They showed an in-
teresting relation between the generalized f -projection operator and the resolvent
operator for the subdifferential of a proper, convex and lower semicontinuous func-
tional in reflexive and smooth Banach spaces. They also proved that the gener-
alized f -projection operator is maximal monotone. By employing the properties
of the generalized f -projection operator, Wu and Huang [6] established some new
existence theorems for the generalized set-valued variational inequality and the
generalized set-valued quasi-variational inequality in reflexive and smooth Banach
spaces, respectively.

Very recently, Fan et al. [7] presented some basic results for the generalized
f -projection operator, and discussed the existence of solutions and approximation
of the solutions for generalized variational inequalities in noncompact subsets of
Banach spaces by using iterative schemes.

Let E be a smooth Banach space and let E∗ be the dual of E. The function
φ : E × E → R is defined by

φ(y, x) = ‖y‖2 − 2 〈y, Jx〉+ ‖x‖2 (1.1)

for all x, y ∈ E, which was studied by Alber [2], Kamimura and Takahashi [8], and
Reich [9], where J is the normalized duality mapping from E to 2E

∗

defined by

J(x) =
{
f ∈ E∗ : 〈x, f〉 = ‖x‖2 = ‖f‖2

}
, (1.2)

where 〈·, ·〉 denotes the duality paring. It is well known that if E is smooth, then
J is single valued and if E is strictly convex, then J is injective (one-to-one).

In 2005, Matsushita and Takahashi [10] applied (1.1) to define the mapping
T : C → C called the relatively nonexpansive mapping where C is a nonempty
closed convex subset of a uniformly convex and uniformly smooth Banach space E
and they proposed the following projection algorithm based on the ideas of Nakajo
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and Takahashi [11] to find a fixed point of T :





x0 ∈ C chosen arbitrarily,

yn = J−1 (αnJxn + (1− αn)JTxn) ,

Cn = {z ∈ C : φ (z, yn) ≤ φ (z, xn)} ,

Qn = {z ∈ C : 〈xn − z, Jx0 − Jxn〉 ≥ 0} ,

xn+1 = ΠCn∩Qn
x0,

where {αn} ⊂ [0, 1] which satisfies some appropriate conditions and ΠCn∩Qn
is the

generalized projection from E onto Cn ∩Qn.
In 2007, Takahashi et al. [12] studied a strong convergence theorem for a

family of nonexpansive mappings in Hilbert spaces as follows: x0 ∈ H , C1 = C

and x1 = PC1
x0, and let






yn = αnxn + (1− αn)Tnxn,

Cn+1 = {z ∈ Cn : ‖yn − z‖ ≤ ‖xn − z‖},

xn+1 = PCn+1
x0, n ∈ N,

where 0 ≤ αn ≤ a < 1 for all n ∈ N and {Tn} is a sequence of nonexpansive map-

pings of C into itself such that
∞⋂

n=1
F (Tn) 6= ∅. They proved that if {Tn} satisfies

some appropriate conditions, then {xn} converges strongly to P⋂
∞

n=1
F (Tn)x0.

In 2010, Zhou and Gao [13] introduced the definition of a quasi-strict pseudo
contraction related to the function φ and proposed a projection algorithm for
finding a fixed point of a closed and quasi-strict pseudo contraction in more general
framework than uniformly smooth and uniformly convex Banach spaces as follows:





x0 ∈ E, chosen arbitrarily,

C1 = C,

x1 = ΠC1
(x0),

Cn+1 =




z ∈ Cn

∣∣∣∣∣∣

φ(xn, T xn)

6
2

1− k
〈xn − z, Jxn − JTxn〉






xn+1 = ΠCn+1
(x0),

(1.3)

where k ∈ [0, 1) and ΠCn+1
is the generalized projection from E onto Cn+1.

In 2012, K. Ungchittrakool [14] provided some examples of quasi-strict pseudo-
contractions related to the function φ in framework of smooth and strictly convex
Banach space. He obtained some strong convergence results in Banach spaces.

In 2013, Saewan et al. [15] introduced and studied the modified Mann type it-
erative algorithm for some mappings which related to asymptotically nonexpansive
mappings by using hybrid generalized f -projection method. Saewan and Kumam
[16] also provided and studied the new hybrid Ishikawa iteration process by the
generalized f -projection operator for finding a common element of the fixed point
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set for two countable families of weak relatively nonexpansive mappings and the
set of solutions of the system of generalized Ky Fan inequalities in a uniformly
convex and uniformly smooth Banach space. Some relevant papers, please see
([15]-[30]) for more details.

Recently, Li et al. [31] studied the following hybrid iterative scheme for a
relatively nonexpansive mapping by using the generalized f -projection operator in
Banach spaces as follows:





x0 ∈ C, C0 = C,

yn = J−1 (αnJxn + (1− αn)JTxn) ,

Cn+1 = {w ∈ Cn : G (w, Jyn) ≤ G (w, Jxn)} ,

xn+1 = Πf
Cn+1

x0, n ≥ 1.

Under some appropriate assumptions, they obtained strong convergence theorems
in Banach spaces.

Motivated and inspired by the work mentioned above, in this paper, we in-
troduce a mapping called G-quasi-strict pseudo-contractions in the framework of
smooth Banach spaces and also provide an inequality related to such a mappings.
The inequality was taken to create an iterative shrinking projection method for
finding fixed point problems of closed and G-quasi-strict pseudo-contractions. Its
results hold in reflexive, strictly convex and smooth Banach spaces with the prop-
erty (K). The results of this paper improve and extend the corresponding results
of Zhou and Gao [H. Zhou, E. Gao, An iterative method of fixed points for closed
and quasi-strict pseudo-contractions in Banach spaces, J. Appl. Math. Comput.
33 (2010) 227-237.] as well as other related results.

2 Preliminaries

In this paper, we denote by E and E∗ a real Banach space and the dual
space of E, respectively. Let C be a nonempty closed convex subset of E. We
denote by J the normalized duality mapping from E to 2E

∗

defined by (1.2). Let
S(E) := {x ∈ E : ‖x‖ = 1} be the unit sphere of E. Then a Banach space E is
said to be strictly convex ‖x+y

2 ‖ < 1 for all x, y ∈ S(E) and x 6= y. It is also said
to be uniformly convex if limn→∞ ‖xn− yn‖ = 0 for any two sequences {xn}, {yn}
in S(E) such that limn→∞ ‖xn+yn

2 ‖ = 1. The Banach space E is said to be smooth
provided

lim
t→0

‖x+ ty‖ − ‖x‖

t
(2.1)

exists for each x, y ∈ S(E). In this case, the norm of E is said to be Gâteaux
differentiable. The norm of E is said to be Fréchet differentiable if for each x ∈
S(E), the limit (2.1) is attained uniformly for y ∈ S(E). The norm of E is said to
be uniformly Fréchet differentiable (and E is said to be uniformly smooth) if the
limit (2.1) is attained uniformly for x, y ∈ S(E). For a sequence {xn} in E, we
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denote strong convergence of {xn} to x ∈ E by xn → x and weak convergence of
{xn} to x ∈ E by xn ⇀ x.

A Banach space E is said to have the property (K) (or Kadec-Klee property)
if for any sequence and {xn} ⊂ E, if xn ⇀ x and ‖xn‖ → ‖x‖, then ‖xn−x‖ → 0.

We also know the following properties (see [32]-[34] for details):

1. if E is smooth(⇔ E∗ is strictly convex), then J is single-valued;

2. if E is strictly convex(⇔ E∗ is smooth), then J is one-to-one (i.e., J(x) ∩
J(y) = ∅ for all x 6= y);

3. if E is reflexive(⇔ E∗ is reflexive), then J is surjective;

4. if E∗ is smooth and reflexive; then J−1 : E∗ → 2E is single-valued and demi-
continuous(i.e. if {x∗

n} ⊂ E∗ such that x∗
n → x∗, then J−1(x∗

n) → J−1(x∗));

5. If E is a reflexive, smooth and strictly convex Banach space, J∗ : E∗ → E

is the duality mapping of E∗, then J−1 = J∗, JJ∗ = I∗E , J
∗J = IE ;

6. E is uniformly smooth if and only if E∗ is uniformly convex;

7. if E is uniformly convex, then

• it is strictly convex;

• it is reflexive;

• satisfy the property (K);

8. if E is a Hilbert space, then J is the identity operator.

It is obvious from the definition of function φ that

(‖y‖ − ‖x‖)2 ≤ φ(x, y) ≤ (‖y‖+ ‖x‖)2

and
φ(x, y) = φ(x, z) + φ(z, y) + 2〈x− z, Jz − Jy〉

for all x, y ∈ E. Next we recall the concept of the generalized f -projection oper-
ator, together with its properties. Let G : C × E∗ → R ∪ {+∞} be a functional
defined as follows:

G(ξ, ϕ) = ‖ξ‖2 − 2〈ξ, ϕ〉+ ‖ϕ‖2 + 2ρf(ξ), (2.2)

where ξ ∈ C,ϕ ∈ E∗, ρ is a positive number and f : C → R ∪ {+∞} is proper,
convex and lower semicontinuous. It is obvious from the definition of function G

that

G(x, Jy) = G(x, Jz) +G(z, Jy) + 2〈x− z, Jz − Jy〉 − 2ρf(z) (2.3)

for all x, y, z ∈ C.
From the definitions of G and f , it is easy to see the following properties:

1. G(ξ, ϕ) is convex and continuous with respect to ϕ when ξ is fixed;
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2. G(ξ, ϕ) is convex and lower semicontinuous with respect to ξ when ϕ is
fixed.

Definition 2.1 ([4]). Let E be a real Banach space with its dual E∗. Let C be

a nonempty, closed and convex subset of E. We say that πf
C(ϕ) : E∗ → 2C is a

generalized f -projection operator if

π
f
Cϕ =

{
u ∈ C : G(u, ϕ) = inf

ξ∈C
G(ξ, ϕ)

}
, ∀ϕ ∈ E∗.

For the generalized f -projector operator, Wu and Huang [4] proved the following
basic properties.

Lemma 2.2 ([4]). Let E be a real reflexive Banach space with its dual E∗ and C

is a nonempty closed convex subset of E. The following statements hold:

1. π
f
C(ϕ) is a nonempty closed convex subset of C for all ϕ ∈ E∗

2. if E is smooth, then for all ϕ ∈ E∗, x ∈ π
f
C(ϕ) if and only if

〈x− y, ϕ− Jx〉+ ρf(y)− ρf(x) ≥ 0, ∀y ∈ C;

3. if E is strictly convex and f : C → R ∪ +∞ is positive homogeneous (i.e.,

f(tx) = tf(x) for all t > 0 such that tx ∈ C where x ∈ C), then π
f
C is a

single valued mapping.

Recently, Fan et al. [3] showed that the condition f is positive homogeneous
of 3) in Lemma 2.2 can be removed.

Lemma 2.3 ([3]). Let E be a real reflexive Banach space with its dual E∗ and C

is a nonempty closed convex subset of E. If E is strictly convex, then π
f
C is single

valued.

Recall that the operator J is a single valued mapping when E is a smooth
Banach space. There exists a unique element ϕ ∈ E∗ such that ϕ = Jx for each
x ∈ E. This substitution for (2.2) gives

G(ξ, Jx) = ‖ξ‖2 − 2〈ξ, Jx〉+ ‖x‖2 + 2ρf(ξ). (2.4)

Now we consider the second generalized f -projection operator (2.4) in a Banach
space.

Definition 2.4. Let E be a real smooth Banach space and C be a nonempty, closed
and convex subset of E. We say that Πf

C : E → 2C is a generalized f -projection
operator if

Πf
Cx =

{
u ∈ C : G(u, Jx) = inf

ξ∈C
G(ξ, Jx)

}
, ∀x ∈ E.
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In order to obtain our results, the following lemmas are crucial to us.

Lemma 2.5 (Takahashi [35]). Let {an} be a sequence of real numbers. Then,
lim
n→∞

an = 0 if and only if for any subsequence {ani
} of {an}, there exists a sub-

sequence
{
anij

}
of {ani

} such that lim
j→∞

anij
= 0.

Lemma 2.6 ([36]). Let E be a real Banach space and f : E → R ∪ {+∞} be a
lower semicontinuous convex functional. Then there exist x∗ ∈ E∗and α ∈ R such
that

f(x) ≥ 〈x, x∗〉+ α, ∀x ∈ E.

Lemma 2.7 ([8]). Let E be a uniformly convex and smooth Banach space and
let {yn}, {zn} be two sequences of E. If φ(yn, zn) → 0 and either {yn} or {zn} is
bounded, then yn − zn → 0.

Lemma 2.8 ([31]). Let E be a real reflexive and smooth Banach space and let C
be a nonempty closed convex subset of E. The following statements hold:

1. Πf
Cx is a nonempty closed convex subset of C for all x ∈ E;

2. for all x ∈ E, x̂ ∈ Πf
Cx if and only if

〈x̂ − y, Jx− Jx̂〉+ ρf(y)− ρf(x̂) ≥ 0, ∀y ∈ C; (2.5)

3. If E is strictly convex , then Πf
Cx is a single valued mapping.

Lemma 2.9 ([31]). Let E be real reflexive and smooth a Banach space, let C be

a nonempty closed convex subset of E, and let x ∈ E, x̂ ∈ Πf
Cx. Then

φ(y, x̂) +G(x̂, Jx) ≤ G(y, Jx), ∀y ∈ C. (2.6)

Definition 2.10. A mapping T : C → C is said to be G-quasi-strict pseudo-
contraction if F (T ) 6= ∅ and for p ∈ F (T ), then there exists κ ∈ [0, 1) such that

G(p, JTx) ≤ G(p, Jx) + κ(G(x, JTx)− 2ρf(p)), ∀ x ∈ C. (2.7)

It is obvious from above definition that (2.7) equivalent to

φ(p, Tx) ≤ φ(p, x) + κφ(x, Tx) + 2κρ(f(x)− f(p)), ∀x ∈ C and p ∈ F (T ).

Definition 2.11. A mapping T : C → C is said to be closed if for any sequence
{xn} ⊂ C with xn → x, and Txn → y, then Tx = y.

Before providing some examples of this mapping, let us consider the following
remark.

Remark 2.12. Let α be any real number be such that α ∈ (−∞,−1]∪ [1, 2). Then
α2−1

(1−α)2+2
∈ [0, 1).
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Proof Since α ≤ −1 or α ≥ 1, it is easy to obtain that α2 − 1 ≥ 0. Notice that

(1− α)
2
+ 2 ≥ 2. Then α2−1

(1−α)2+2
≥ 0 for any α ∈ (−∞,−1] ∪ [1, 2). It remains to

shows that α2−1
(1−α)2+2

< 1. It can be found that if α < 2(α ≤ −1), then

0 < 2(2− α) = 1 + (1− 2α) + 2. (2.8)

Adding to both sides of (2.8) with α2, we obtain

α2 < 1 + (1− 2α+ α2) + 2 = 1 + (1 − α)2 + 2.

By a simple calculation, we find that α2−1
(1−α)2+2

< 1. This completes the proof.

Example 2.13. Let E be a smooth Banach space, α ∈ (−∞,−1] ∪ [1, 2) and
Tα : E → E be a mapping defined by Tαx = αx for all x ∈ E. Then, Tα is
G-quasi-strict pseudo-contraction.

Proof It is easy to see that F (T ) = {x ∈ E : Tx = x} = {0}. By Remark 2.12,

we can find κ ∈ [0, 1) such that α2−1
(1−α)2+2

≤ κ. Moreover, it is found that

φ (0, T x) = ‖0‖2 − 2 〈0, J (αx)〉+ ‖αx‖2 = α2‖x‖2 =
(
1 + α2 − 1

)
‖x‖2

=

(
1 +

(
(1− α)2 + 2

(1− α)
2
+ 2

)
(
α2 − 1

)
)
‖x‖2

=

(
1 + (1− α)

2

(
α2 − 1

)

(1− α)
2
+ 2

+ 2

(
α2 − 1

)

(1− α)
2
+ 2

)
‖x‖2

≤
(
1 + (1− α)2κ+ 2κ

)
‖x‖2 =

(
1 +

(
1− 2α+ α2

)
κ+ 2κ

)
‖x‖2

= ‖x‖2 + κ
(
‖x‖2 − 2α‖x‖2 + α2‖x‖2

)
+ 2κ‖x‖2

= φ (0, x) + κ
(
‖x‖2 − 2 〈x, J (αx)〉+ ‖αx‖2

)
+ 2κ(1)

(
‖x‖2 − ‖0‖2

)

= φ (0, x) + κ
(
‖x‖2 − 2 〈x, J (Tx)〉+ ‖Tx‖2

)
+ 2κ(1)

(
‖x‖2 − ‖0‖2

)

= φ (0, x) + κφ (x, Tx) + 2κ(1)
(
‖x‖2 − ‖0‖2

)

for all x ∈ E, where ρ = 1 and f = ‖ · ‖2. Furthermore, if {xn} ⊂ E such that
xn → x, then we have Tαxn = αxn → αx. Notice that Tαx = αx. This means
that Tα is closed and quasi-strict G-pseudo contraction. This completes the proof.

Lemma 2.14. Let E be a Banach space and ∅ 6= C ⊂ E be a closed convex set,
a ∈ R and

K = {v ∈ C : a ≤ g(v)},

where g is upper semicontinuous and concave functional. Then the set K is closed
and convex.
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Proof Firstly, we wish to show that K is closed. Let {xn} ⊂ K be such that
xn → x ∈ C. Thus we have a ≤ g(xn) for all n ∈ N and then a ≤ lim sup

n→∞
g(xn) ≤

g(x). Therefore, x ∈ K and hence K is closed. For the convexity of K, we notice
that for all x, y ∈ K and t ∈ [0, 1], we have tx+ (1− t)y ∈ C, g(x) ≥ a, g(y) ≥ a,

and then the concavity of g allows

g(tx+ (1− t)y) ≥ tg(x) + (1 − t)g(y) ≥ ta+ (1− t)a = a.

This shows that K is convex.

3 Main Results

In this section, some available properties of G-quasi-strict pseudo-contractions
are used to prove that the set of fixed points is closed and convex. An iterative
shrinking generalized f -projection method is provided in order to find a fixed point
of G-quasi-strict pseudo-contractions.

Lemma 3.1. Let C be a nonempty closed convex subset of a smooth Banach space
E and T : C → C be a G-quasi-strict pseudo-contraction. Then the fixed point set
F (T ) of T is closed and convex.

Proof Firstly, we wish to show that F (T ) is closed. Let {pn} be a sequence in
F (T ) such that pn → p ∈ C as n → ∞. From the definition of T , we have

G(pn, JT p) ≤ G(pn, Jp) + κ(G(p, JTp)− 2ρf(pn)).

By using (2.3), we obtain

G(pn, Jp) +G(p, JTp) + 2〈pn − p, Jp− JTp〉 − 2ρf(p)

≤ G(pn, Jp) + κ(G(p, JTp)− 2ρf(pn)).

By simple calculation, we have

(1− κ)G(p, JTp) ≤ 2〈p− pn, Jp− JTp〉+ 2ρf(p)− 2κρf(pn).

Next, it becomes

(1− κ)φ(p, T p) + (1− κ)2ρf(p) ≤ 2〈p− pn, Jp− JTp〉+ 2ρf(p)− 2κρf(pn).

And hence

φ(p, T p) ≤
2

1− κ
〈p− pn, Jp− JTp〉+

2κρ

1− κ
(f(p)− f(pn)). (3.1)
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Take lim supn→∞ on the both sides of (3.1), so we have

φ(p, T p) = lim sup
n→∞

φ(p, T p)

= lim sup
n→∞

(
2

1− κ
〈p− pn, Jp− JTp〉+

2κρ

1− κ
(f(p)− f(pn))

)

≤
2

1− κ
lim sup
n→∞

〈p− pn, Jp− JTp〉+
2κρ

1− κ
lim sup
n→∞

(f(p)− f(pn))

≤
2κρ

1− κ

(
lim sup
n→∞

f(p) + lim sup
n→∞

(−f(pn))

)

=
2κρ

1− κ

(
f(p)− lim inf

n→∞
f(pn)

)
≤ 0.

This means that p = Tp.
We next show that F (T ) is convex. For arbitrary p1, p2 ∈ F (T ) and t ∈ (0, 1),

we let pt = tp1 + (1− t)p2. By the definition of T , we have

G(p1, JT pt) ≤ G(p1, Jpt) + κ(G(pt, JT pt)− 2ρf(p1)) (3.2)

and
G(p2, JT pt) ≤ G(p2, Jpt) + κ(G(pt, JT pt)− 2ρf(p2)). (3.3)

By (2.3) it is easy to see that (3.2) and (3.3) are equivalent to

φ(pt, T pt) ≤
2

1− κ
〈pt − p1, Jpt − JTpt〉+

2κρ

1− κ
(f(pt)− f(p1)) (3.4)

and

φ(pt, T pt) ≤
2

1− κ
〈pt − p2, Jpt − JTpt〉+

2κρ

1− κ
(f(pt)− f(p2)), (3.5)

respectively. Multiply into both sides of (3.4) and (3.5) with t and (1− t), respec-
tively. And then adding two equations together with the property of convexity of
f , we have

φ(pt, T pt) ≤
2

1− κ
〈pt−pt, Jpt−JTpt〉+

2κρ

1− κ
(f(pt)− tf(p1)− (1− t)f(p2)) ≤ 0.

Hence Tpt = pt. This completes the proof.

Theorem 3.2. Let E be a reflexive, strictly convex and smooth Banach space
such that E and E∗ have the property (K). Assume that C is a nonempty closed
convex subset of E, T : C → C is closed and G-quasi-strict pseudo-contraction
and f : E → R ∪ {+∞} is a proper, convex and lower semicontinuous mapping.
Define a sequence {xn} of C as follows:





x0 ∈ C,

C1 = C,

x1 = Πf
C1

(x0),

Cn+1 =
{
z ∈ Cn

∣∣∣ φ(xn, T xn) ≤
2

1−κ
〈xn − z, Jxn − JTxn〉+

2κρ
1−κ

(f(xn)− f(z))
}
,

xn+1 = Πf
Cn+1

(x0), n ≥ 0,



An Iterative Generalized f -Projection Method ... 603

where κ ∈ [0, 1). Then {xn} converges strongly to Πf

F (T )(x0).

Proof We split the proof into seven steps.

Step 1. Show that F (T ) is closed and convex.

Since T is a G-quasi-strict pseudo-contraction, F (T ) 6= ∅. It follows from

Lemma 3.1 that F (T ) is closed and convex. Therefore, Πf

F (T )(x0) is well defined

for every x0 ∈ E.

Step 2. Show that Cn is closed and convex for all n ≥ 1.

For k = 1, C1 = C is closed and convex. Assume that Ck is closed and convex
for some k ∈ N. For z ∈ Ck+1, we have that

φ(xk, T xk) ≤
2

1− κ
〈xk − z, Jxk − JTxk〉

+
2κρ

1− κ
(f(xk)− f(z)).

Define gk (·) :=
1

1−κ
2 〈xk − (·) , Jxk − JTxk〉 +

2κρ
1−κ

(f(xk)− f (·)). It is not hard
to see that the linearity of 〈xk − (·) , Jxk − JTxk〉 together with the upper semi-
continuity and concavity of−f(·) allow gk to be upper semicontinuous and concave.
By applying Lemma 2.14, Ck+1 is closed and convex. By mathematical induction,
we obtain that Cn is convex for all n ∈ N.

Step 3. Show that F (T ) ⊂ Cn for all n ≥ 1.

It is obvious that F (T ) ⊂ C = C1. Suppose that F (T ) ⊂ Ck for some k ∈ N.
For any p′ ∈ F (T ), one has p′ ∈ Ck. By using the definition of T , we have

G(p′, JTxk) ≤ G(p′, Jxk) + κ(G(xk, JTxk)− 2ρf(p′)).

Using (2.3) and by a simple calculation, we obtain

φ(xk, T xk) ≤
2

1− κ
〈xk − p′, Jxk − JTxk〉

+
2κρ

1− κ
(f(xk)− f(p′)),

which implies that p′ ∈ Ck+1. This implies that F (T ) ⊂ Cn for all n ≥ 1.
Therefore, F (T ) ⊂

⋂∞
n=1 Cn 6= ∅ := D.

Step 4. Show that {xn} is bounded and the limit of G(xn, Jx0) exists.

By the properties of f together with Lemma 2.6, we see that there exists
x∗ ∈ E∗ and α ∈ R such that

f(y) ≥ 〈y, x∗〉+ α, ∀y ∈ E.
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It follows that

G(xn, Jx0) = ‖xn‖
2 − 2〈xn, Jx0〉+ ‖x0‖

2 + 2ρf(xn)

≥ ‖xn‖
2 − 2〈xn, Jx0〉+ ‖x0‖

2

+ 2ρ〈xn, x
∗〉+ 2ρα

= ‖xn‖
2 − 2〈xn, Jx0 − ρx∗〉+ ‖x0‖

2 + 2ρα

≥ ‖xn‖
2 − 2‖Jx0 − ρx∗‖‖xn‖+ ‖x0‖

2 + 2ρα

= (‖xn‖ − ‖Jx0 − ρx∗‖)2

+ ‖x0‖
2 − ‖Jx0 − ρx∗‖2 + 2ρα. (3.6)

Since xn = Πf
Cn

(x0), it follows from (3.6) that

G(u, Jx0) ≥ G(xn, Jx0)

≥ (‖xn‖ − ‖Jx0 − ρx∗‖)2

+ ‖x0‖
2 − ‖Jx0 − ρx∗‖2 + 2ρα

for each u ∈ F (T ). This implies that {xn} is bounded and so is {G(xn, Jx0)}. By
the fact that xn+1 ∈ Cn+1 ⊂ Cn and (2.6) of Lemma 2.9, we obtain

φ(xn+1, xn) +G(xn, Jx0) ≤ G(xn+1, Jx0).

Since φ(xn+1, xn) ≥ 0, {G(xn, Jx0)} is nondecreasing. Therefore, the limit of
{G(xn, Jx0)} exists.

Step 5. Show that xn → p as n → ∞, where p = Πf
Dx0.

Let {xnk
} ⊂ {xn}. From the boundedness of {xnk

} there exists {xnkj
} ⊂

{xnk
} such that xnkj

⇀ p. Write x̃j := xnkj
, it is easy to see that p ∈ C̃j where

C̃j := Cnkj
. Note that

G(x̃j , Jx0) = inf
ξ∈C̃j

G(ξ, Jx0) ≤ G(p, Jx0). (3.7)

On the other hand, since x̃j ⇀ p, the weakly lower semicontinuity of ‖ · ‖2 and f

yields
φ(p, x0) ≤ lim inf

j→∞
φ(x̃j , x0), (3.8)

and
f(p) ≤ lim inf

j→∞
f(x̃j). (3.9)

By (3.8) and (3.9), we obtain

G(p, Jx0) = φ(p, x0) + 2ρf(p)

≤ lim inf
j→∞

φ(x̃j , x0) + 2ρ lim inf
j→∞

f(x̃j)

≤ lim inf
j→∞

(φ(x̃j , x0) + 2ρf(x̃j))

= lim inf
j→∞

G(x̃j , Jx0). (3.10)
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By connecting (3.7) and (3.10), we have

G(p, Jx0) ≤ lim inf
j→∞

G(x̃j , Jx0) ≤ lim sup
j→∞

G(x̃j , Jx0)

≤ G(p, Jx0),

and then
lim
j→∞

G(x̃j , Jx0) = G(p, Jx0).

Next, we consider

lim sup
j→∞

φ(x̃j , x0) = lim sup
j→∞

(G(x̃j , Jx0)− 2ρf(x̃j))

≤ G(p, Jx0)− 2ρ lim inf
j→∞

f(x̃j)

≤ G(p, Jx0)− 2ρf(p) = φ(p, x0). (3.11)

Combine (3.8) and (3.11), we obtain

φ(p, x0) ≤ lim inf
j→∞

φ(x̃j , x0) ≤ lim sup
j→∞

φ(x̃j , x0) ≤ φ(p, x0),

and then
lim
j→∞

φ(x̃j , x0) = φ(p, x0).

Note that f(x̃j) =
1
2ρ (G(x̃j , Jx0)− φ(x̃j , x0)). Then, we have

lim
j→∞

f(x̃j) =
1

2ρ
lim
j→∞

(G(x̃j , Jx0)− φ(x̃j , x0))

=
1

2ρ
(G(p, Jx0)− φ(p, x0))

=
1

2ρ
(2ρf(p)) = f(p).

The virtue of Lemma 2.5 implies that

lim
n→∞

f(xn) = f(p).

Notice that x̃j = Πf

C̃j

x0, by using Lemma 2.9 we obtain

φ(p, x̃j) ≤ G(p, Jx0)−G(x̃j , Jx0). (3.12)

Taking j → ∞ in (3.12), we obtain

lim
j→∞

φ(p, x̃j) = 0.

By virtue of Lemma 2.7, it follows that x̃j → p as j → ∞. This implies by Lemma

2.5 that xn → p as n → ∞. It follows from xn = Πf
Cn

x0 and (2.5) of Lemma 2.8
that

〈xn − y, Jx0 − Jxn〉+ ρf(y)− ρf(xn) ≥ 0, ∀y ∈ Cn.
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In particular, because we know that D =
⋂∞

n=1 Cn ⊂ Cn for all n ≥ 0 so we have

〈xn − y, Jx0 − Jxn〉+ ρf(y)− ρf(xn) ≥ 0, ∀y ∈ D. (3.13)

Taking n → ∞ on (3.13) to get

〈p− y, Jx0 − Jp〉+ ρf(y)− ρf(p) ≥ 0, ∀y ∈ D. (3.14)

By applying (2.5) of Lemma 2.8 to (3.14) we obtain p = Πf
Dx0.

Step 6. Show that p ∈ F (T ).
Firstly, we wish to prove that {Txn} is bounded. Indeed, take q ∈ F (T ) ⊂

Cn+1, we have

φ(xn, T xn) ≤
2

1− κ
〈xn − q, Jxn − JTxn〉+

2κρ

1− κ
(f(xn)− f(q)).

i.e.,

‖xn‖
2−2〈xn, JTxn〉+‖Txn‖

2 ≤
2

1− κ
‖xn−q‖(‖xn‖+‖Txn‖)+

2κρ

1− κ
(f(xn)−f(q)).

It follows that

‖Txn‖
2 ≤

2

1− κ
‖xn − q‖‖xn‖ − ‖xn‖

2 +

(
2

1− κ
‖xn − q‖+ 2‖xn‖

)
‖Txn‖

+
2κρ

1− κ
(f(xn)− f(q)).

Since {‖xn‖} and {f(xn)} are bounded, we obtain that {‖Txn‖} is bounded. From
xn+1 ∈ Cn+1, one has

φ(xn, T xn) ≤
1

1− κ
2〈xn−xn+1, Jxn−JTxn〉+

κ

1− κ
2ρ(f(xn)−f(xn+1)). (3.15)

By step 5, we obtain that xn+1 − xn → 0 and limn→∞ f(xn) = f(p). Taking limit
on the both sides of (3.15), we obtain that φ(xn, T xn) → 0 as n → ∞. Noting
that 0 ≤ (‖xn‖ − ‖Txn‖)2 ≤ φ(xn, T xn). Hence ‖Txn‖ → ‖p‖ and consequently
‖J(Txn)‖ → ‖Jp‖. This implies that {‖J(Txn)‖} is bounded. Since E is reflexive,
E∗ is also reflexive. So we can assume that

J(Txn) ⇀ f0 ∈ E∗.

On the other hand, in view of the reflexivity of E, one has J(E) = E∗, which
means that for f0 ∈ E∗, there exists x ∈ E, such that Jx = f0. It follows that

φ(xn, T xn) = ‖xn‖
2 − 2〈xn, JTxn〉+ ‖Txn‖

2

= ‖xn‖
2 − 2〈xn, JTxn〉+ ‖J(Txn)‖

2,
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taking lim infn→∞ on the both sides of equality above, we have

0 ≥ ‖p‖2 − 2〈p, f0〉+ ‖f0‖
2

= ‖p‖2 − 2〈p, Jx〉+ ‖Jx‖2

= φ(p, x).

We have φ(p, x) = 0 and consequently p = x, which implies that f0 = Jp. Hence

J(Txn) ⇀ Jp ∈ E∗.

Since ‖J(Txn)‖ → ‖Jp‖ and E∗ has the property (K), we have

‖J(Txn)− Jp‖ → 0.

Noting that J−1 : E∗ → E is demi-continuous, we have

Txn ⇀ p ∈ E.

Since ‖Txn‖ → ‖p‖ and E has the property (K), we obtain that Txn → p as
n → ∞. From xn → p and the closeness property of T , we have p ∈ F (T ).

Step 7. Show that p = Πf

F (T )x0.

It follows from steps 5 and 6 that

G (p, x0) = G
(
Πf

Dx0, x0

)
= inf

ξ∈D
G (ξ, x0)

≤ G
(
Πf

F (T )x0, x0

)

≤ G (p, x0) ,

which implies that G
(
Πf

F (T )x0, x0

)
= G (p, x0). It follows from the uniqueness,

we can conclude that p = Πf

F (T )x0. This completes the proof.

If f(x) = ‖x‖2 for all x ∈ E, then G(ξ, Jx) = φ(ξ, x) + 2ρ‖ξ‖2 and Πf
Cx =

Π
‖·‖2

C x. By Theorem 3.2, we obtain the following corollary.

Corollary 3.3. Let E be a reflexive, strictly convex and smooth Banach space such
that E and E∗ have the property (K). Assume that C is a nonempty closed convex
subset of E, T : C → C is closed and G-quasi-strict pseudo-contraction(where
f(·) = ‖ · ‖2). Define a sequence {xn} of C as follows:






x0 ∈ C, C1 = C,

x1 = Πf
C1

(x0),

Cn+1 =




z ∈ Cn

∣∣∣∣∣∣∣∣∣

φ(xn, T xn)

≤
2

1− κ
〈xn − z, Jxn − JTxn〉

+
2κρ

1− κ
(‖xn‖

2 − ‖z‖2)





,

xn+1 = Π
‖·‖2

Cn+1
(x0), n ≥ 0,
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where κ ∈ [0, 1). Then {xn} converges strongly to Π
‖·‖2

F (T )(x0).

If f(x) = 0 for all x ∈ E, then G(ξ, Jx) = φ(ξ, x) and Πf
Cx = ΠCx. By

Theorem 3.2, we obtain the following corollary.

Corollary 3.4 (Zhou and Gao [13]). Let E be a reflexive, strictly convex and
smooth Banach space such that E and E∗ have the property (K). Assume that
C is a nonempty closed convex subset of E. Let T : C → C be a closed and
quasi-strict pseudo-contraction. Define a sequence {xn} as in (1.3). Then {xn}
converges strongly to p0 = ΠF (T )x0.

Acknowledgement. The first and the second authors would like to thank the
National Research Council of Thailand, Grant R2557B051 for financial support.

References

[1] Ya. Alber, Generalized projection operators in Banach spaces: properties and
applications, in: Proceedings of the Israel Seminar, Ariel, Israel, in: Funct.
Differential Equation. 1 (1994) 1–21.

[2] Ya.I. Alber, Metric and generalized projection operators in Banach spaces:
properties and applications, in: A.G. Kartsatos (Ed.), Theory and Applica-
tions of Nonlinear Operator of Accretive and Monotone Type, Marcel Dekker,
New York. (1996) 15–50.

[3] X. Li, The generalized projection operator on reflexive Banach spaces and its
application, J. Math. Anal. Appl. 306 (2005) 377–388.

[4] K.Q. Wu, N.J. Huang, The generalised f -projection operator with an appli-
cation, Bull. Aust. Math. Soc. 73 (2006) 307-317.

[5] K.Q. Wu, N.J. Huang, Properties of the generalized f -projection operator and
its applications in Banach spaces, Comput. Math. Appl. 54 (2007) 399–406.

[6] K.Q. Wu, N.J. Huang, The generalized f -projection operator and set-valued
variational inequalities in Banach spaces, Nonlinear Anal. 71 (2009) 2481–
2490.

[7] J.H. Fan, X. Liu, J.L. Li, Iterative schemes for approximating solutions of gen-
eralized variational inequalities in Banach spaces, Nonlinear Anal. 70 (2009)
3997–4007.

[8] S. Kamimura, W. Takahashi, Strong convergence of a proximal-type algo-
rithm in a Banach space. SIAM J. Optim. 13 (2002) 938–945.

[9] S. Reich, A weak convergence theorem for the alternating method with Breg-
man distance, in: A.G. Kartsatos (Ed.), Theory and Applications of Nonlin-
ear Operators of Accretive and Monotone Type, Marcel Dekker, New York,
(1996) 313–318.



An Iterative Generalized f -Projection Method ... 609

[10] S. Matsushita, W. Takahashi, A strong convergence theorems for relatively
nonexpansive mappings in a Banach space, J. Approx. Theory. 134 (2005)
257–266.

[11] K. Nakajo, W. Takahashi, Strong convergence theorems for nonexpansive
mappings and nonexpansive semigroups, J. Math. Anal. Appl. 279 (2003)
372–379.

[12] W. Takahashi, Y. Takeuchi, R. Kubota, Strong convergence theorems by
hybrid methods for families of nonexpansive mappings in Hilbert spaces, J.
Math. Anal. Appl. 341 (2008) 276–286.

[13] H. Zhou, E. Gao, An iterative method of fixed points for closed and quasi-
strict pseudocontractions in Banach spaces, J. Appl. Math. Comput. 33 (2010)
227–237.

[14] K. Ungchittrakool, An iterative shrinking projection method for solving fixed
point problems of closed and φ-quasi-strict pseudo-contractions along with
generalized mixed equilibrium problems in Banach spaces, Abstr. Appl. Anal.
2012 (2012), Article ID 536283, 20 pages.

[15] S. Saewan, P. Kanjanasamranwong, P. Kumam, Y. J. Cho, The modified
Mann type iterative algorithm for a countable family of totally quasi-φ-
asymptotically nonexpansive mappings by hybrid generalized f -projection
method, Fixed Point Theory Appl. 2013, 63 (2013), 15 pages.

[16] S. Saewan, P. Kumam, A generalized f -projection method for countable fam-
ilies of weak relatively nonexpansive mappings and the system of generalized
Ky Fan inequalities, J. Global Optim. 56 (2) (2013) 623–645.

[17] C. Jaiboon, P. Kumam, Strong convergence theorems for solving equilibrium
problems and fixed point problems of ξ-strict pseudo-contraction mappings by
two hybrid projection methods, J. Comput. Appl. Math. 234 (2010) 722–732.

[18] T. Jitpeera, P. Kumam, The shrinking projection method for a system of
generalized mixed equilibrium problems and fixed point problems for pseu-
docontractive mappings, J. Inequal. Appl. 2011 (2011) Article ID 840319, 25
pages.

[19] P. Katchang, P. Kumam, Modified Mann iterative algorithms by hybrid pro-
jection methods for nonexpansive semigroups and mixed equilibrium prob-
lems, J. Appl. Anal. 18(2) (2012) 259–273.

[20] W. Kumam, C. Jaiboon, P. Kumam, A. Singta, A shrinking projection
method for generalized mixed equilibrium problems, variational inclusion
problems and a finite family of quasi-nonexpansive mappings, Journal of In-
equalities and Applications, J. Inequal. Appl. 2010 (2010) Article ID 458247,
25 pages.



610 Thai J. Math. 13 (2015)/ K. Ungchittrakool et al.

[21] W. Kumam, P. Junlouchai, P. Kumam, Generalized systems of variational
inequalities and projection methods for inverse-strongly monotone mappings,
Discrete Dyn. Nat. Soc. 2011 (2011) Article ID 976505, 24 pages.

[22] N. Petrot, K. Wattanawitoon, P. Kumam, A hybrid projection method for
generalized mixed equilibrium problems and fixed point problems in Banach
spaces, Nonlinear Anal.: Hybrid Systems 4 (2010) 631–643.

[23] P. Phuangphoo, P. Kumam, Two block hybrid projection method for Solving
a Common Solution for A System of Generalized Equilibrium Problems and
Fixed Point Problems for two countable families, Optim. Lett. 7 (8) (2013)
1745–1763.

[24] S. Saewan, P. Kumam, A modified hybrid projection method for solving
generalized mixed equilibrium problems and fixed point problems in Banach
spaces, Comput. Math. Appl. 62 (2011) 1723–1735.

[25] S. Saewan, P. Kumam, A strong convergence theorem concerning a hybrid
projection method for finding common fixed points of a countable family of
relatively quasi-nonexpansive mappings, J. Nonlinear Convex Anal. 13 (2)
(2012) 313–330.

[26] S. Saewan, P. Kumam, Computational of generalized projection method
for maximal monotone operator and a countable family of relatively quasi-
nonexpansive mappings, Optim. 64 (12) (2013) 1–22.

[27] S. Saewan, P. Kumam, The shrinking projection method for solving gen-
eralized equilibrium problem and common fixed points for asymptotically
quasi-φ-nonexpansive mappings, Fixed Point Theory Appl. 2011, 9 (2011),
25 pages.

[28] S. Saewan, P. Kumam, K. Wattanawitoon, Convergence theorem based on
a new hybrid projection method for finding a common solution of general-
ized equilibrium and variational inequality problems in Banach spaces, Abstr.
Appl. Anal. 2010 (2010), Article ID 734126, 25 pages.

[29] C. Watchararuangwit, P. Phuangphoo, P. Kumam, A hybrid projection
method for solving a common solution of a system of equilibrium problems
and fixed point problems for asymptotically strict pseudocontractions in the
intermediate sense in Hilbert spaces, J. Inequal. Appl. 2012 (2015), Article
ID 840319, 25 pages.

[30] K. Wattanawitoon, P. Kumam, Strong convergence theorems of a new hy-
brid projection method for finite family of two hemi-relatively nonexpansive
mappings in a Banach space, Banach Center Publ. 92 (2011) 379–390.

[31] X. Li, N. Huang, D. O’Regan, Strong convergence theorems for relatively
nonexpansive mappings in Banach spaces with applications, Comput. Math.
Appl. 60 (2010) 1322–1331.

[32] W. Takahashi, Nonlinear Functional Analysis, Yokohama-Publishers. (2000).



An Iterative Generalized f -Projection Method ... 611

[33] S. Reich, Review of Geometry of Banach spaces, Duality Mappings and
Nonlinear Problems by loana Cioranescu, Kluwer Academic Publishers, Dor-
drecht, 1990, Bull. Amer. Math. Soc. 26 (1992) 367–370.

[34] I. Cioranescu, Geometry of Banach spaces, Duality Mappings and Nonlinear
Problem, Kluwer, Dordrecht, 1990.

[35] W. Takahashi, Introduction to Nonlinear and Convex Analysis, Yokohama
Publishers, Yokohama, 2009.

[36] K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, Berlin, Heidel-
berg, New York, Tokyo, 1985.

(Received 26 April 2014)
(Accepted 9 May 2014)

Thai J. Math. Online @ http://thaijmath.in.cmu.ac.th

http://thaijmath.in.cmu.ac.th

	Introduction
	Preliminaries
	Main Results

