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Abstract : In this paper, we introduce a new m-step iterative process for finite
family of k−strictly pseudononspreading multivalued mappings in R-trees. We
obtain a strong convergence theorem of m-step iterative method to a common
fixed point of a finite family of those multivalued mappings in R-trees. Our results
extend many known recent results in the literature. We close this work with the
first examples of k−strictly pseudononspreading multivalued mappings in R-trees.
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1 Introduction

Fixed point theory for single-valued mappings in R-trees was first studied by
Kirk [1]. He proved that every continuous single-valued mappings defined on a
geodesically bounded complete R-tree always has a fixed point. His works are
followed by a series of new works by many authors(see, e.g., [2]-[6]). It is worth
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mentioning that fixed point theorems in R-trees can be applied to graph theory,
biology and computer science (see e.g., [7]-[10]).

In 2009, Shahzad and Zegeye [11] proved strong convergence theorems of the
Ishikawa iteration for quasi-nonexpansive multivalued mappings satisfying the end-
point condition in Banach spaces. Later in 2010, Puttasontiphot [12] obtained
similar results in complete CAT(0) spaces. In 2012, Samanmit and Panyanak [13]
introduced a condition on mappings in R-trees which is weaker than the endpoint
condition, is called the gate condition. They proved strong convergence theorems
of a modified Ishikawa iteration for quasi-nonexpansive multivalued mappings sat-
isfying such condition.

In 2011, Osilike and Isiogugu [14] introduced a new class of single-valued k-
strictly pseudononspreading mappings in Hilbert space as follows: A mapping
T : E → E is called k-strictly pseudononspreading if

‖Tx− Ty‖2 ≤ ‖x− y‖2 + k‖x− Tx− (y − Ty)‖2 + 2〈x− Tx, y − Ty〉

for all x, y ∈ E. In a Hilbert space, the aboved inequality is equivalent to

(2− k)‖Tx− Ty‖2 ≤ k‖x− y‖2 + (1− k)‖y − Tx‖2 + (1− k)‖x− Ty‖2

+ k‖x− Tx‖2 + k‖y − Ty‖2

for all x, y ∈ E. They proved weak and strong convergence theorems for those
class of mappings in Hilbert spaces.

Recently, Phuengrattana[15] introduced a new class of multivalued k-strictly
pseudononspreading mappings in R-trees. He proved strong convergence theo-
rems of a new two-step iterative process for two k-strictly pseudononspreading
multivalued mappings having the gate condition.

In this paper, motivate by the above results, we introduce a new m-step it-
erative process for finite k-strictly pseudononspreading multivalued mappings in
R-trees. We also obtain the strong convergence theorem for approximating a com-
mon fixed point of those multivalued mappings in R-trees by assuming the gate
condition. Finally, we close this work with the first example for class of k-strictly
pseudononspreading multivalued mappings in R-trees.

2 Preliminaries

Let (X, d) be a metric space. A geodesic path joining x ∈ X to y ∈ X is
a map c from a closed interval [0, l] ⊂ R to X such that c(0) = x, c(l) = y,
and d(c(t), c(t′)) = |t − t′| for all t, t′ ∈ [0, l]. In particular, c is an isometry and
d(x, y) = l. The image of c is called a geodesic segment joining x and y. When it
is unique this geodesic is denoted by [x, y]. For x, y ∈ X and α ∈ [0, 1], we denote
the point z ∈ [x, y] such that d(x, z) = αd(x, y) by (1−α)x⊕αy. The space (X, d)
is said to be a geodesic space if every two points of X are joined by a geodesic,
and X is said to be uniquely geodesic if there is exactly one geodesic joining x
and y for each x, y ∈ X. A subset E of X is said to be convex if E includes every
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geodesic segment joining any two of its points. If x ∈ X and E ⊂ X, then the
distance from x to E is defined by

d(x,E) = inf{d(x, y) : y ∈ E}.

The set E is called proximinal if for each x ∈ X, there exists an element y ∈ E
such that d(x, y) = d(x,E), and E is said to be gated if for any point x /∈ E there
is a unique point yx such that for any z ∈ E,

d(x, z) = d(x, yx) + d(yx, z).

Clearly gated sets in a complete geodesic space are always closed and convex. The
point yx is called the gate of x in E. It is easy to see that yx is also the unique
nearest point of x in E. We shall denote by CB(E) the family of nonempty closed
bounded subsets of E, by CC(E) the family of nonempty closed convex subsets of
E and by KC(E) the family of nonempty compact convex subsets of E. Let H(·, ·)
be the Hausdorff distance on CB(E), i.e.,

H(A,B) = max

{

sup
a∈A

d(a,B), sup
b∈B

d(b, A)

}

, A,B ∈ CB(E).

Let T : E → CB(E) be a multivalued mapping. For each x ∈ E, we let

PTx(x) = {u ∈ Tx : d(x, u) = d(x, Tx)}.

In the case of PTx(x) is a singleton we will assume, without loss of generality, that
PTx(x) is a point in E. A point x ∈ E is called a fixed point of T if x ∈ Tx. A point
x ∈ E is called an endpoint of T if x is a fixed point of T and T (x) = {x}[16]. We
shall denote by F (T ) the set of all fixed points of T and by E(T ) the set of all
endpoints of T. We see that for each mapping T, E(T ) ⊆ F (T ) and the converse
is not true in general. A mapping T is said to satisfies the endpoint condition if
E(T ) = F (T ).

An R−tree is a special case of a CAT(0) space. For a thorough discussion of
these spaces and their applications, see [17]. We now collect some basic properties
of R−trees.

Lemma 2.1. Let X be a complete R−tree and E be a nonempty subset of X. Then
the following statements hold:
(i) [18, page 1048] the gate subsets of X are precisely its closed and convex subsets;
(ii) [17, page 176] if E is closed and convex, then for each x ∈ X, there exists a
unique point PE(x) ∈ E such that

d(x, PE(x)) = d(x,E).

That is, every nonempty closed convex subset of a complete R−tree is proximinal.
(iii) [17, page 176] if E is closed convex and x′ belong to [x, PE(x)], then PE(x

′) =
PE(x);
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(iv) [6, Lemma 3.1] if A and B are bounded closed convex subsets of X, then for
any u ∈ X,

d(PA(u), PB(u)) ≤ H(A,B);

(v) [19, Lemma 2.5] if x, y, z ∈ X and α ∈ [0, 1], then

d2((1 − α)x ⊕ αy, z) ≤ (1− α)d2(x, z) + αd2(y, z)− α(1− α)d2(x, y);

(vi) [19, Lemma 2.3] if x, y, z ∈ X, then d(x, z) + d(z, y) = d(x, y) if and only if
z ∈ [x, y].

We state the following conditions in R-trees:

A multivalued mapping T : E → CB(E) is said to satisfy condition (I) if there
exists a nondecreasing function f : [0,∞) → [0,∞) with f(0) = 0 and f(r) > 0
for all r > 0 such that d(x, Tx) ≥ f(d(x, F (T ))) for all x ∈ E.

A finite family of multivalued mappings {Ti}mi=1 of E into CB(E) is said to
satisfy condition(m) if there exists a nondecreasing function f : [0,∞) → [0,∞)
with f(0) = 0 and f(r) > 0 for all r > 0 such that d(x, Tix) ≥ f(d(x,F)) for some
i ∈ {1, 2, ...,m} and for all x ∈ E, where F =

⋂m

i=1 F (Ti).

The following proposition is also needed.

Proposition 2.2 ([20]). Let (X, d) be a complete metric space and F be a nonempty
closed subset of X. Let {xn} be a sequence in X such that d(xn+1, p) ≤ d(xn, p)
for all p ∈ F and n ∈ N. Then {xn} converges strongly to some point in F if and
only if limn→∞ d(xn, F ) = 0.

3 Main Results

Definition 3.1. Let E be a nonempty subset of a complete R-tree X . A multi-
valued mapping T : E → CB(E) is called

(i) nonspreading if

2H2(Tx, T y) ≤ d2(y, Tx) + d2(x, T y)

for all x, y ∈ E.

(ii) k-strictly pseudononspreading if there exists k ∈ [0, 1) such that

(2− k)H2(Tx, T y) ≤ kd2(x, y) + (1 − k) d2(y, Tx) + (1− k) d2(x, T y)

+ k d2(x, Tx) + k d2(y, T y)

for all x, y ∈ E.
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It is easy to see that every nonspreading multivalued mapping is 0-strictly
pseudononspreading. Moreover, if T is k-strictly pseudononspreading with F (T ) 6=
∅, then for all x ∈ E and p ∈ F (T ) we have

H2(Tx, Tp) ≤ d2(x, p) + k d2(x, Tx).

Thus T may not be quasi-nonexpansive. It is easy to show that if T is a k-strictly
pseudononspreading multivalued mapping with F (T ) 6= ∅, then F (T ) is closed.

The following result can be found in [15].

Lemma 3.1. Let E be a nonempty closed convex subset of a complete R-tree
X. Assume that T : E → KC(E) is a k-strictly pseudononspreading multivalued
mapping. If {xn} is a sequence in E such that xn → x and d(xn, T xn) → 0 as
n → ∞, then x ∈ Tx.

Now, we are ready to prove the main theorem.

Theorem 3.2. Let E be a nonempty closed convex subset of a complete R-tree X.
Let T1 : E → KC(E) be a k-strictly pseudononspreading multivalued mapping and
T2, T3, ..., Tm : E → KC(E) be k-strictly pseudononspreading and L-Lipschitzian
multivalued mappings with F =

⋂m

i=1 F (Ti) 6= ∅. Suppose that T1, T2, ..., Tm satisfy
the gate condition. Let u1, u2, ..., um be keys of T1, T2, ..., Tm, respectively. For
x1 ∈ E, the sequence {xn} generated by

y(1)n = α(1)
n z(1)n ⊕ (1− α(1)

n )xn for all n ∈ N,

where z
(1)
n is the gate of u1 in T1xn, and

y(2)n = α(2)
n z(2)n ⊕ (1 − α(2)

n )y(1)n for all n ∈ N,

where z
(2)
n is the gate of u2 in T2y

(1)
n , and

...

y(m−1)
n = α(m−1)

n z(m−1)
n ⊕ (1− α(m−1)

n )y(m−2)
n for all n ∈ N,

where z
(m−1)
n is the gate of um−1 in Tm−1y

(m−2)
n , and

xn+1 = α(m)
n z(m)

n ⊕ (1− α(m)
n )y(m−1)

n for all n ∈ N,

where z
(m)
n is the gate of um in Tmy

(m−1)
n . Let {α

(i)
n } be sequences in [0, 1] such

that 0 < a ≤ α
(i)
n ≤ b < 1 − k for each i ∈ {1, 2, ...,m}. If one of the following is

satisfied:

(i) {Ti}mi=1 satisfies condition(m),

(ii) one member of the family {Ti}mi=1 is hemicompact,
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then {xn} converges strongly to an element of F .

Proof. Let p ∈ F . By the gate condition and Lemma 2.1(v), we have

d
2(xn+1, p)

= d
2(α(m)

n z
(m)
n ⊕ (1− α

(m)
n )y(m−1)

n , p)

≤ (1− α
(m)
n )d2(y(m−1)

n , p) + α
(m)
n d

2(z(m)
n , p)− α

(m)
n (1− α

(m)
n )d2(y(m−1)

n , z
(m)
n )

≤ (1− α
(m)
n )d2(y(m−1)

n , p) + α
(m)
n d

2(P
Tmy

(m−1)
n

(um), PTmp(um))

− α
(m)
n (1− α

(m)
n )d2(y(m−1)

n , z
(m)
n )

≤ (1− α
(m)
n )d2(y(m−1)

n , p) + α
(m)
n H

2(Tmy
(m−1)
n , Tmp)− α

(m)
n (1− α

(m)
n )d2(y(m−1)

n , z
(m)
n )

≤ (1− α
(m)
n )d2(y(m−1)

n , p) + α
(m)
n (d2(y(m−1)

n , p) + k d2(y(m−1)
n , Tmy

(m−1)
n ))

− α
(m)
n (1− α

(m)
n )d2(y(m−1)

n , z
(m)
n )

= d
2(y(m−1)

n , p)− α
(m)
n (1− k − α

(m)
n )d2(y(m−1)

n , z
(m)
n )

≤ (1− α
(m−1)
n )d2(y(m−2)

n , p) + α
(m−1)
n d

2(z(m−1)
n , p)− α

(m−1)
n (1− α

(m−1)
n )d2(y(m−2)

n , z
(m−1)
n )

− α
(m)
n (1− k − α

(m)
n )d2(y(m−1)

n , z
(m)
n )

≤ (1− α
(m−1)
n )d2(y(m−2)

n , p) + α
(m−1)
n d

2(P
T(m−1)y

(m−2)
n

(u(m−1)), PT(m−1)p(u(m−1)))

− α
(m−1)
n (1− α

(m−1)
n )d2(y(m−2)

n , z
(m−1)
n )− α

(m)
n (1− k − α

(m)
n )d2(y(m−1)

n , z
(m)
n )

≤ (1− α
(m−1)
n )d2(y(m−2)

n , p) + α
(m−1)
n H

2(T(m−1)y
(m−2)
n , T(m−1)p)

− α
(m−1)
n (1− α

(m−1)
n )d2(y(m−2)

n , z
(m−1)
n )− α

(m)
n (1− k − α

(m)
n )d2(y(m−1)

n , z
(m)
n )

≤ (1− α
(m−1)
n )d2(y(m−2)

n , p) + α
(m−1)
n (d2(y(m−2)

n , p) + k d2(y(m−2)
n , T(m−1)y

(m−2)
n ))

− α
(m−1)
n (1− k − α

(m−1)
n )d2(y(m−2)

n , z
(m−1)
n )− α

(m)
n (1− k − α

(m)
n )d2(y(m−1)

n , z
(m)
n )

= d
2(y(m−2)

n , p)− α
(m−1)
n (1− k − α

(m−1)
n )d2(y(m−2)

n , z
(m−1)
n )

− α
(m)
n (1− k − α

(m)
n )d2(y(m−1)

n , z
(m)
n )

...

≤ d
2(xn, p)− α

(1)
n (1− k − α

(1)
n )d2(xn, z

(1)
n )− α

(2)
n (1− k − α

(2)
n )d2(y(1)

n , z
(2)
n )− ...−

α
(m−1)
n (1− k − α

(m−1)
n )d2(y(m−2)

n , z
(m−1)
n )− α

(m)
n (1− k − α

(m)
n )d2(y(m−1)

n , z
(m)
n ).

(3.1)

From α
(i)
n < 1− k for each i ∈ {1, 2, ...,m}, we obtain d(xn+1, p) ≤ d(xn, p)

for all n ∈ N. This implies that {d(xn, p)} is nonincreasing and bounded
below. Hence limn→∞ d(xn, p) exists for each p ∈ F . By (3.1), we have

α
(1)
n (1−k−α

(1)
n )d2(xn, z

(1)
n )+α

(2)
n (1−k−α

(2)
n )d2(y

(1)
n , z

(2)
n )+...+α

(m−1)
n (1−

k−α
(m−1)
n )d2(y

(m−2)
n , z

(m−1)
n )+α

(m)
n (1−k−α

(m)
n )d2(y

(m−1)
n , z

(m)
n ) ≤ d2(xn, p)−

d2(xn+1, p).
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Thus, by 0 < a ≤ α
(i)
n ≤ b < 1− k for each i ∈ {1, 2, ...,m}, we have

lim
n→∞

d(xn, z
(1)
n ) = 0 and lim

n→∞

d(y(i−1)
n , z(i)n ) = 0 for each i ∈ {2, 3, ...,m}.

(3.2)

Also, with d(xn, T1xn) ≤ d(xn, z
(1)
n ), we have

lim
n→∞

d(xn, T1xn) = 0. (3.3)

By using the definition of T2, we have

d(xn, T2xn) ≤ d(xn, T2y
(1)
n ) +H(T2y

(1)
n , T2xn)

≤ d(xn, z
(2)
n ) + Ld(y(1)n , xn)

≤ d(xn, y
(1)
n ) + d(y(1)n , z(2)n ) + Ld(y(1)n , xn)

= (1 + L)d(xn, y
(1)
n ) + d(y(1)n , z(2)n )

≤ (1 + L)(d(xn, z
(1)
n ) + d(z(1)n , y(1)n )) + d(y(1)n , z(2)n )

= (1 + L)(d(xn, z
(1)
n ) + (1− α(1)

n )d(z(1)n , xn)) + d(y(1)n , z(2)n )

= (1 + L)(2− α(1)
n )d(xn, z

(1)
n ) + d(y(1)n , z(2)n )

≤ (1 + L)(2− a)d(xn, z
(1)
n ) + d(y(1)n , z(2)n ).

Thus by (3.2), we have

lim
n→∞

d(xn, T2xn) = 0. (3.4)

Similaly, by using the definition of T3, we have

d(xn, T3xn)

≤ (1 + L2)(2− a)d(xn, z
(1)
n ) + (1 + L1)(2− a)d(y(1)n , z(2)n ) + d(y(2)n , z(3)n )

and also

lim
n→∞

d(xn, T3xn) = 0. (3.5)

By using the same way, we have

lim
n→∞

d(xn, Tjxn) = 0 (3.6)

for all j ∈ {4, 5, ...,m}.
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Case (i): {Ti}
m
i=1 satisfies condition(m). Then there exists a nonde-

creasing function f : [0,∞) → [0,∞) with f(0) = 0 and f(r) > 0 for all
r > 0 such that d(x, Tix) ≥ f(d(x,F)) for some i ∈ {1, 2, ...,m} and for all
x ∈ E, where F =

⋂m
i=1 F (Ti).

If d(x, T1x) ≥ f(d(x,F)) for all x ∈ E. For eaah n ∈ N, we have
xn ∈ E. By using (3.3), we obtain

0 = lim
n→∞

d(xn, T1xn) ≥ lim
n→∞

(f(d(xn,F))) = f( lim
n→∞

(d(xn,F))) ≥ 0.

Hence f(limn→∞(d(xn,F))) = 0, therefore limn→∞(d(xn,F)) = 0. Simi-
larly in other cases, we can use (3.4), (3.5) and (3.6) to show that
limn→∞(d(xn,F))= 0. By the closedness of F and Proposition 2.2, we have
{xn} converges strongly to some point in F .

Case (ii): One member of the family {Ti}
m
i=1 is hemicompact. Without

loss of generality, we assume that T1 is hemicompact. Then there exists
a subsequence {xnl

} of {xn} such that {xnl
} converges strongly to z ∈

E. By (3.3), (3.4), (3.5) and (3.6), it follows by Lemma 3.1 that z ∈ F .
Since limn→∞ d(xn, p) exists for each p ∈ F , it implies that {xn} converges
strongly to z ∈ F .

As a direct consequence of Theorem 3.2, we obtain the following corollary.

Corollary 3.3. Let E be a nonempty closed convex subset of a complete R-tree X.
Let T1 : E → KC(E) be a nonspreading multivalued mapping and T2, T3, ..., Tm :
E → KC(E) be nonspreading and L-Lipschitzian multivalued mappings with F =
⋂m

i=1 F (Ti) 6= ∅. Suppose that T1, T2, ..., Tm satisfy the gate condition. Let u1, u2,
..., um be keys of T1, T2, ..., Tm, respectively. For x1 ∈ E, the sequence {xn} gen-
erated by

y(1)n = α(1)
n z(1)n ⊕ (1− α(1)

n )xn for all n ∈ N,

where z
(1)
n is the gate of u1 in T1xn, and

y(2)n = α(2)
n z(2)n ⊕ (1− α(2)

n )y(1)n for all n ∈ N,

where z
(2)
n is the gate of u2 in T2y

(1)
n , and

...

y(m−1)
n = α(m−1)

n z(m−1)
n ⊕ (1 − α(m−1)

n )y(m−2)
n for all n ∈ N,

where z
(m−1)
n is the gate of um−1 in Tm−1y

(m−2)
n , and

xn+1 = α(m)
n z(m)

n ⊕ (1 − α(m)
n )y(m−1)

n for all n ∈ N,
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where z
(m)
n is the gate of um in Tmy

(m−1)
n . Let {α

(i)
n } be sequences in [0, 1] such

that 0 < a ≤ α
(i)
n ≤ b < 1 − k for each i ∈ {1, 2, ...,m}. If one of the following is

satisfied:

(i) {Ti}mi=1 satisfies condition(m),

(ii) one member of the family {Ti}mi=1 is hemicompact,

then {xn} converges strongly to an element of F .

Next, this is the first example of that class in the literature.

Example 3.4. (For k-strictly pseudononspreading multivalued mappings.)
(1.) Let E = [0,∞), k ∈ [0, 1) and T : E → KC(E) be defined by

Tx = [0, (
k

b
)x] for all x ∈ E and b ≥ 2.

Then T is k−strictly pseudononspreading.
(2.) Let E = [0,∞), k ∈ [0, 1) and S : E → KC(E) be defined by

S(x) = [((
k

b
)− (

k

b
)2)x, (

k

b
)x] for all x ∈ E and b ≥ 2.

Then S is k−strictly pseudononspreading.

Proof. (1.) We see that H(Tx, T y) = (k
b
)|x, y|.

Since b ≥ 2, we obtain b2 ≥ 2b and b > k.
So we have 2b > 2k and this show that b2 ≥ 2b > 2k ≥ 2k − k2.
From 2k − k2 < b2, we have

(2− k)k2 = 2k2 − k3 ≤ b2k.

This show that

(2− k)(
k

b
)2 ≤ k. (3.7)

From (3.7), we obtain

(2− k)H2(Tx, T y) = (2− k)|(
k

b
)x− (

k

b
)y|2

= (2− k)(
k

b
)2|x− y|2

≤ k|x− y|2 = kd2(x, y)

≤ kd2(x, y) + (1− k)d2(y, Tx) + (1− k)d2(x, T y)

+ kd2(x, Tx) + kd2(y, T y).

Hence T is k−strictly pseudononspreading.

(2.) Similarly.
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