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1 Introduction

Existence of fixed points in partially ordered metric spaces was initiated by
Ran and Reurings [1]. Afterwards in 2006, Bhaskar and Lakshmikantam [2] proved
some coupled fixed point theorems for mixed monotone mappings and discussed
the existence and uniqueness of solutions for a periodic boundary value problem.
Later in 2009, the results of Lakshmikantham and Bhaskar were extended to two
mappings by Lakshmikantham and Ciric [3].

In 2010, Choudhury and Kundu [4] introduced the notion of compatibility in
the concept of coupled coincidence points and generalized the results of Laksh-
mikantham and Ciric [3]. Recently, Abbas et al. [5] have introduced the concept
of w-compatible maps and obtained coupled coincidence points for non-linear con-
tractive mappings in cone metric spaces. For more literature on the existence of
coupled fixed points, we refer [1, 3, 6–23].

Definition 1.1. Let X be a nonempty set. A partial order is a binary relation �
over X which is reflexive, anti-symmetric and transitive. A set X together with
the binary relation � is called a partially ordered set, which is denoted by (X,�).

Definition 1.2. Let (X,�) be a partially ordered set. A selfmap g on X is said
to be

(i) nondecreasing if for all x1, x2 ∈ X , x1 � x2 implies g(x1) � g(x2);

(ii) nonincreasing if for all x1, x2 ∈ X , x1 � x2 implies g(x1) � g(x2).

Definition 1.3 ([2]). Let (X,�) be a partially ordered set and F : X ×X → X .
F is said to have mixed monotone property if F (x, y) is monotone nondecreasing
in x and monotone nonincreasing in y i.e., for any x1, x2 ∈ X with x1 � x2

implies F (x1, y) � F (x2, y) and for all y in X and for any y1, y2 ∈ X with y1 � y2
implies F (x, y1) � (F (x, y2) for all x in X .

Definition 1.4 ([2]). Let X be a nonempty set. An element (x, y) ∈ X × X is
called a coupled fixed point of the mapping F : X ×X → X if x = F (x, y) and
y = F (y, x).

Definition 1.5 ([3]). Let (X,�) be a partially ordered set and F : X×X → X and
g : X → X . We say that F has mixed g-monotone property if g is nondecreasing in
its first argument and nonincreasing in second argument. i.e., for any x1, x2 ∈ X
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with gx1 � gx2 implies F (x1, y) � F (x2, y) for all y ∈ X and for any y1, y2 ∈ X

with gy1 � gy2 implies F (x, y1) � F (x, y2) for all x in X .

Definition 1.6 ([3]). Let X be a nonempty set. An element (x, y) ∈ X × X is
called a coupled coincidence point of the mappings F : X×X → X and g : X → X

if gx = F (x, y) and gy = F (y, x).

Definition 1.7 ([3]). Let X be a nonempty set. An element (x, y) ∈ X × X

is called a common coupled fixed point of the mappings F : X × X → X and
g : X → X if x = gx = F (x, y) and y = gy = F (y, x).

Definition 1.8 ([4]). Let (X, d) be metric space. F : X×X → X and g : X → X

be two mappings. F and g are said to be compatible if

lim
n→∞

d(g(F (xn, yn)), F (gxn, gyn)) = 0

and
lim
n→∞

d(g(F (yn, xn)), F (gyn, gxn)) = 0

whenever {xn} and {yn} are sequences in X such that limn→∞ F (xn, yn) =
limn→∞ gxn = x and limn→∞ F (yn, xn) = limn→∞ gyn = y for some x, y ∈ X .

Definition 1.9 ([5]). Let (X, d) be metric space. Let F : X × X → X and
g : X → X be two mappings. F and g are said to be w-compatible if g(F (x, y)) =
F (gx, gy) whenever gx = F (x, y) and gy = F (y, x).

Clearly, compatibility implies w−compatible but its converse need not be true.

Example 1.10. Let X = [0, 1] with the usual metric. We define
F : X ×X → X and g : X → X by

F (x, y) =







x
4 + y

4 if x ∈ [0, 1
2 ] and y ∈ [0, 1]

x
3 + y

3 if x ∈ (12 , 1] and y ∈ [0, 1]
and gx =







x
2 if x ∈ [0, 12 ]

2x
3 if x ∈ (12 , 1].

We consider the following four cases to show F and g are w-compatible on X.

Case (1): Let x ∈ [0, 12 ], y ∈ [0, 1
2 ]. Then F (x, y) = x

4 + y
4 = gx = x

2 and
F (y, x) = y

4 + x
4 = gy = y

2 implies x = y. Also, g(F (x, x)) = x
4 and F (gx, gx) =

F (x2 ,
x
2 ) =

x
4 . Hence g(F (x, x)) = F (gx, gy).

Case (2): Let x ∈ [0, 12 ], y ∈ [ 12 , 1]. Then F (x, y) = x
4 + y

4 = gx = x
2 and

F (y, x) = y
3 + x

3 = gy = 2y
3 implies x = y = 1

2 . Now g(F (12 ,
1
2 )) =

1
8 = F (g 1

2 , g
1
2 ).

Case (3): Let x ∈ (12 , 1], y ∈ (12 , 1]. Then F (x, y) = x
3 + y

3 = gx = 2x
3 and

F (y, x) = y
3 + x

3 = gy = 2y
3 implies x = y.Now g(F (x, x)) = g(x3 + x

3 ) =
4x
9 and

F (gx, gx) = 4x
9 .

Case (4): Let x ∈ (12 , 1], y ∈ [0, 1
2 ]. Then F (x, y) = x

3 + y
3 = gx = 2x

3 and
F (y, x) = y

4 + x
4 = gy = y

2 implies x = y. Hence F and g are w-compatible.
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From the above four cases, we have F and g are w-compatible on X.

We observe that F and g are not compatible. Let xn = 1
2 +

1
n
and yn = 1

2 −
1
n
.

Then F (xn, yn) = F (12 + 1
n
, 1
2 − 1

n
) =

1

2
+ 1

n
+ 1

2
−

1

n

3 = 1
3 and gxn = g(12 + 1

n
) =

2
3 (

1
2 + 1

n
) = 1

3 + 2
3n . Hence lim

n→∞

= F (xn, yn) = lim
n→∞

gxn = 1
3 . Also, F (yn, xn) =

F (12−
1
n
, 1
2+

1
n
) =

( 1

2
−

1

n
+ 1

2
+ 1

n
)

4 = 1
4 and gyn = g(12−

1
n
) = 1

2 (
1
2−

1
n
) = 1

4−
1
2n . Hence

lim
n→∞

= F (yn, xn) = lim
n→∞

gyn = 1
4 . Now lim

n→∞

d(F (gxn, gyn), g(F (xn, yn)) =

lim
n→∞

d(
1

3
+ 2

2n
+ 1

4
−

1

2n

4 , g(13 )) = lim
n→∞

| 1548 + 1
2n | 6= 0.

The following theorem was proved by Bhaskar and Lakshmikantham [2].

Theorem 1.1 ([2]). Let (X,�) be a partially ordered set and suppose that there
is a metric d on X such that (X, d) is a complete metric space. Suppose that
F : X × X → X is mapping such that F has mixed monotone property on X.
Assume that there exists k ∈ [0, 1) with

d(F (x, y), F (u, v)) =
k

2
[d(x, u) + d(y, v)] (1.1)

for all x, y, u, v ∈ X with x � u and y � v. If there exists x0, y0 ∈ X such that

x0 � F (x0, y0) and y0 � F (y0, x0).

Suppose that either

(i) F is continuous, or

(ii) X has the following property:

(a) if {xn} is a non-decreasing sequence with xn → x then xn � x

for all n.

(b) if {yn} is a non-increasing sequence with yn → y then y � yn

for all n.

Then x = F (x, y) and y = F (y, x). i.e., F has a coupled fixed point in X.

In 2008, Babu et al. [24] considered the following class of mappings satisfying
condition (B).

Let (X, d) be a metric space. A map T : X → X is said to satisfy condition
(B), if there exist δ ∈ (0, 1) for some L ≥ 0 such that

d(Tx, T y) ≤ δd(x, y) + Lmin{d(x, Tx), d(y, T y), d(x, T y), d(y, Tx)}

for all x, y ∈ X .

Using an analogue of condition (B) Luong and Thuan [17] generalized the
results of Bhaskar and Lakshmikantham [2] and proved the following fixed point
theorem.
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Theorem 1.2 ([17]). Let (X,�) be a partially ordered set and suppose that there
is a metric d on X such that (X, d) is a complete metric space. Suppose that
F : X × X → X is a mapping such that F has mixed monotone property on X

and assume that there exist α, β ∈ [0, 1) and L ≥ 0 with α+ β < 1 such that

d(F (x, y), F (u, v)) ≤ αd(x, u) + βd(y, v) + Lmin{d(F (x, y), u), d(F (u, v), x),

d(F (x, y), x), d(F (u, v), u)} (1.2)
for all x, y, u, v ∈ X with x � u and y � v. If there exists x0, y0 ∈ X such that

x0 � F (x0, y0) and y0 � F (y0, x0).

Suppose that either

(i) F is continuous, or

(ii) X has the following property:

(a) if {xn} is a non-decreasing sequence such that xn → x then xn � x

for all n.

(b) if {yn} is a non-increasing sequence such that yn → y then

y � yn for all n.
Then x = F (x, y) and y = F (y, x). i.e., F has a coupled fixed point in X. More-
over, F has a unique coupled fixed point if (x, y) ∈ X × X is comparable with
(u, v) ∈ X ×X.

Remark 1.11. In Theorem 1.1 by taking α = β and L = 0, we get Theorem 1.2.

In 2009, Lakshmikantham and Ciric [3] extended Theorem 1.1 to two com-
muting mappings and with mixed g-monotone property of F and obtained the
following theorem as a corollary (Corollary 2.1, [3]).

Theorem 1.3 ([3]). Let (X,�) be a partially ordered set and suppose that there
is a metric d on X such that (X, d) is a complete metric space. Suppose that
F : X ×X → X and g : X → X are such that F has mixed g−monotone property
and assume that there exists k ∈ [0, 1) with

d(F (x, y), F (u, v)) =
k

2
[d(gx, gu) + d(gy, gv)] (1.3)

for all x, y, u, v,∈ X with gx � gu and gy � gv. If there exists x0, y0 ∈ X such
that

gx0 � F (x0, y0) and gy0 � F (y0, x0).

Suppose F (X × X) ⊆ gX, g is continuous and commutes with F . Also, assume
that either

(i) F is continuous, or

(ii) X has the following property:
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(a) if {xn} is a nondecreasing sequence with xn → x then xn � x

for all n.

(b) if {yn} is a nonincreasing sequence with yn → y then

y � yn for all n.
Then gx = F (x, y) and gy = F (y, x). Then F and g have a coupled coincidence
point in X. Moreover, F and g have a unique coupled fixed point if (x, y) ∈ X×X

is comparable with (u, v) ∈ X ×X.

In 2012, Saud and Abdulla [21] extended Theorem 1.2 to two mappings in the
following way.

Theorem 1.4 ([21]). Let (X,�) be a partially ordered set and suppose that there
is a metric d on X such that (X, d) is a complete metric space. Suppose F :
X ×X → X and g : X → X are such that F has mixed g−monotone property on
X and assume that there exist α, β ∈ [0, 1) and L ≥ 0 with α+ β < 1 such that

d(F (x, y), F (u, v)) ≤ αd(gx, gu) + βd(gy, gv)

+Lmin{d(F (x, y), gu), d(F (u, v), gx), d(F (x, y), gx), d(F (u, v), gu)}(1.4)

for all x, y, u, v ∈ X with gx � gu and gy � gv. If there exists x0, y0 ∈ X such that
gx0 � F (x0, y0) and gy0 � F (y0, x0). Suppose F (X × X) ⊆ gX . Also suppose
that

(i) g is a continuous and monotonically increasing on X.

(ii) F and g are compatible.

Either

(iii) (a) F is continuous, or

(iii) (b) X has the following property:

(1) if {xn} is a nondecreasing sequence such that xn → x then

xn � x for all n.

(2) if {yn} is a nonincreasing sequence such that yn → y then

y � yn for all n.
Then gx = F (x, y) and gy = F (y, x) .i.e, F and g have a coupled
coincidence point in X.

Recently, Karapinar et al. [16] introduced a more general contraction condition
(1.5) than (1.4) and proved the existence of coupled coincidence points.

Theorem 1.5 (Theorem 2.1 and Theorem 2.2, [16]). Let (X,�) be a partially
ordered set and suppose that there is a metric d on X such that (X, d) is a complete
metric space. Suppose F : X ×X → X and g : X → X are such that F has mixed
g−monotone property and assume that there exists ϕ : [0,∞) → [0,∞) which is
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continuous, ϕ(t) < t, for all t > 0 and ϕ(t) = 0 if and only if t = 0 and L ≥ 0
such that

d(F (x, y), F (u, v))≤ ϕ(max{d(gx, gu), d(gy, gv)}

+Lmin{d(F (x, y), gu), d(F (u, v), gx), d(F (x, y), gx), d(F (u, v), gu)}(1.5)

for all x, y, u, v ∈ X with gx � gu and gy � gv. If there exists x0, y0 ∈ X such that
gx0 � F (x0, y0) and gy0 � F (y0, x0). Suppose F (X × X) ⊆ gX . Also suppose
that

(i) g is a continuous X.

(ii) F and g are compatible.

Either

(iii) (a) F is continuous, or

(iii)(b) X has the following property:

(1) if {xn} is a non-decreasing sequence such that xn → x then

gxn � gx for all n.

(2) if {yn} is a nonincreasing sequence such that yn → y then

gy � gyn for all n.
Then gx = F (x, y) and gy = F (y, x) i.e, F and g have a coupled coincidence point
in X.

Here we observe that condition (1.4) is a special case of (1.5) by choosing
ϕ(t) = (α+ β)t, where α+ β < 1.

Hence, under the hypotheses of Theorem 1.5, it is possible to apply
Theorem 1.4 upto the existence of coupled coincidence points. In fact, we can
conclude more with the hypotheses of Theorem 1.4, i.e., the existence of common
coupled fixed points too. We prove it by introducing the following contractive
condition with a rational expression which is more general than condition (1.4).

Definition 1.12. Let (X,�) be a partially ordered set and suppose that there is
a metric d on X such that (X, d) is a metric space. Suppose that F : X ×X → X

and g : X → X are mappings satisfying the following condition:

if there exist α, β, γ ∈ [0, 1) and L ≥ 0 with α+ β + γ < 1 such that

d(F (x, y), F (u, v)) ≤ αd(gx, gu) + βd(gy, gv)

+
γ

2

[d(gx, F (x, y)) + d(gy, F (y, x))][d(gu, F (u, v)) + d(gv, F (v, u)]

1 + d(gx, gu) + d(gy, gv)

+Lmin{d(F (x, y), gu), d(F (u, v), gx), d(F (x, y), gx), d(F (u, v), gu)} (1.6)

for all x, y, u, v ∈ X with gx � gu and gy � gv, then we say that F and g satisfy
‘condition (B) with a rational expression’.
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It is trivial to see that the condition (1.4) implies (1.6). But, the following
example shows that its converse need not be true so that condition (1.6) is more
general than (1.4).

Example 1.13. Let X = {0, 12 , 2} with the usual metric, and ≤:= {(0, 0), (0, 12 ),
(12 ,

1
2 ), (2, 2), (0, 2)}. We write A = {(0, 0), (0, 12 ), (

1
2 , 2), (2, 2), (2, 0), (0, 2)}, B =

{(12 , 0), (2,
1
2 )(

1
2 ,

1
2 )} We define F : X ×X → X and g : X → X by

F (x, y) =







0 if (x, y) ∈ A

1
2 if (x, y) ∈ B

and g0 = 0, g 1
2 = 2 and g2 = 1

2 .

We take x, y, u, v ∈ X, such that gx ≥ gu and gy ≤ gv, then inequality (1.6)
holds with α, β = 1

4 , γ = 3
8 and L = 1. But condition (1.4) fails to hold at

x = 2, y = 1
2 , u = 0 and v = 1

2 for any α ≥ 0, β ≥ 0, with α+β < 1. Indeed, since
we have

d(F (x, y), F (u, v)) = 1
2 � α

2 = αd(gx, gu) + β.0 + L.0

= αd(gx, gu) + βd(gy, gv)

+ Lmin{d(F (x, y), gu), d(F (u, v), gx),

d(F (x, y), gx), d(F (u, v), gu)}
for any α ≥ 0, β ≥ 0, with α+ β < 1 and L ≥ 0.

Also, for the above chosen values of x, y, u and v, the inequality (1.5) fails to
hold for any ϕ(t) < t, since
d(F (x, y), F (u, v)) = 1

2 � ϕ(max{d(gx, gu), 0}) + L.0

= ϕ(max{d(gx, gu), d(gy, gv)})

+ Lmin{d(F (x, y), gu), d(F (u, v), gx),

d(F (x, y), gx), d(F (u, v), gu)}
for any ϕ which is continuous , and ϕ(0) = 0 and ϕ(t) < t for all t > 0.

Hence it is our interest to find the existence of coupled coincidence points and
further existence of common coupled fixed points for the maps F and g satisfying
condition (1.6).

The aim of this paper is to prove the existence of coupled coincidence points
and then the existence and uniqueness of common coupled fixed point for a pair of
maps F and g satisfying a more general condition ‘condition (B) with a rational
expression’. Further, we discuss the importance of rational expression in condition
(B). Our results generalize the results of Lakshmikantam and Ciric [3], Saud and
Abdullah [21] and extends the results of Luoung and Thuan [17].

2 Main Results

Theorem 2.1. Let (X,�, d) be a partially ordered metric space. Suppose that
F : X×X → X and g : X → X are such that F has mixed g−monotone property.
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Assume that F and g satisfy condition (B) with a rational expression. If there
exists x0, y0 ∈ X such that gx0 � F (x0, y0) and gy0 � F (y0, x0). Further, suppose
that F (X × X) ⊆ gX . Let {xn} and {yn} defined by gxn+1 = F (xn, yn) and
gyn+1 = F (yn, xn) for all n ≥ 0. Then {xn} and {yn} are cauchy sequences in X.

Proof. Let x0, y0 ∈ X such that gx0 � F (x0, y0) and gy0 � F (y0, x0). Since
F (X ×X) ⊆ gX , we define {xn} and {yn} such that

gxn+1 = F (xn, yn) and gyn+1 = F (yn, xn) for all n ≥ 0. (2.1)

We first show that

gxn � gxn+1 and gyn � gyn+1 for all n ≥ 0, (2.2)

by mathematical induction. By our assumption we have gx0 � F (x0, y0) and
gy0 � F (y0, x0). Thus gx0 � gx1 and gy0 � gy1. Thus, (2.2) is true for n = 0.
Suppose (2.2) is true for some n = m i.e.

gxm � gxm+1 and gym � gym+1. (2.3)

We shall prove that (2.2) is true for some n = m + 1. By mixed g-monotone
property of F , using (2.3), we have

gxm+2 = F (xm+1, ym+1) � F (xm, ym+1) � F (xm, ym) = gxm+1 (2.4)

and

gym+2 = F (ym+1, xm+1) � F (ym+1, xm) � F (ym, xm) = gym+1, (2.5)

so that (2.2) is true for some n = m + 1. Thus from (2.3), (2.4) and (2.5) we
conclude that (2.2) is true for all n ≥ 0 by induction. Since gxn � gxn−1 and
gyn � gyn−1, using condition (1.6), we have

d(gxn+1, gxn)

= d(F (xn, yn), F (xn−1, yn−1))

≤ αd(gxn, gxn−1) + βd(gyn, gyn−1)

+
γ

2

[d(gxn, F (xn, yn)) + d(gyn, F (yn, xn))][d(gx
n−1, F (x

n−1, yn−1)) + d(gy
n−1, F (y

n−1, xn−1))]

1 + d(gxn, gx
n−1) + d(gyn, gy

n−1)

+ Lmin{d(F (xn, yn), gx
n−1), d(F (x

n−1, yn−1), gxn), d(F (xn, yn), gxn), d(F (x
n−1, yn−1), gxn−1)}

≤ αd(gxn, gxn−1) + βd(gyn, gyn−1) +
γ

2
[d(gxn, gxn+1) + d(gyn, gyn+1)].

(2.6)

Similarly since gyn−1 � gyn and gxn−1 � gxn, using condition (1.6), we have

d(gyn, gyn+1) ≤ αd(gyn, gyn−1) + βd(gxn, gxn−1)

+
γ

2
[d(gxn, gxn+1) + d(gyn, gyn+1)]. (2.7)
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Thus, form (2.6) and (2.7), we have

d(gxn+1, gxn) + d(gyn, gyn+1) ≤ (α+ β)[d(gxn, gxn−1) + d(gyn, gyn−1)]. (2.8)

Let dn = d(gxn+1, gxn) + d(gyn, gyn+1) and δ = (α+β)
1−γ

. Then from (2.8), we

have dn ≤ δdn−1. Hence it follows that dn ≤ δdn−1 ≤ δ2dn−2 ≤ · · · ≤ δnd0.
Taking limits n → ∞, we have limn→∞ dn = 0, which implies implies that

lim
n→∞

d(gxn, gxn−1) = 0 and lim
n→∞

d(gyn, gyn−1) = 0. (2.9)

Now for m ≥ n, we have

d(gxm, gxn) ≤ d(gxm, gxm−1) + d(gxm−1, gxm−2) + · · ·+ d(gxn+1, gxn)

and

d(gym, gyn) ≤ d(gym, gym−1) + d(gym−1, gym−2) + · · ·+ d(gyn+1, gyn).

Therefore,

d(gxm, gxn) + d(gym, gyn) ≤ dm−1 + dm−2 + · · ·+ dn

≤ δm−1d0 + δm−2d0 + δm−3d0 + · · ·+ δnd0

≤
δn

1− δ
d0,

which tends to 0 as n → ∞. Hence limn→∞ d(gxm, gxn) = 0 and
limn→∞ d(gym, gyn) = 0. Hence {gxn} and {gyn} are Cauchy sequences in X .

Theorem 2.2. In addition to the hypotheses of Theorem 2.1, suppose that:

(i) (X, d) is complete.

(ii) g is a continuous and monotonically increasing on X.

(iii) F and g are compatible.

Either

(iv) (a) F is continuous, or

(b) X has the following property:

(1) if {xn} is a non-decreasing sequence such that xn → x then

xn � x for all n.

(2) if {yn} is a nonincreasing sequence such that yn → y then

y � yn for all n.
Then gx = F (x, y) and gy = F (y, x). i.e, F and g have a coupled coincidence
point in X.
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Proof. By the proof of Theorem 2.1, we have {gxn} and {gyn} are Cauchy se-
quences in X . Since X is complete there exist x and y ∈ X such that

lim
n→∞

gxn = lim
n→∞

F (xn, yn) = x and lim
n→∞

gyn = lim
n→∞

F (yn, xn) = y. (2.10)

We now prove that (x, y) is a coupled coincidence point of F and g. Since F and
g are compatible, from (2.10), we have

lim
n→∞

d(g(F (xn, yn)), F (gxn, gyn)) = 0 (2.11)

and

lim
n→∞

d(g(F (yn, xn)), F (gyn, gxn)) = 0. (2.12)

Suppose (iv)(a) holds. Now for all n ≥ 0, we have

d(gx, F (gxn, gyn)) ≤ d(gx, g(F (xn, yn))) + d(g(F (xn, yn)), F (gxn, gyn)).

On taking limits as n → ∞, using continuity of g and (2.11), we get d(gx, F (x, y)) =
0. Similarly, using continuity of F , g and (2.12), we get d(gy, F (y, x)) = 0. Thus
F and g have a coupled coincidence point.

Next suppose (iv)(b) holds. By Theorem 2.1, we have {gxn} and {gyn} are
increasing and decreasing sequences respectively in X and limn→∞ gxn = x and
limn→∞ gyn = y. Then, by condition (iii), we have

gxn � x and gyn � y. (2.13)

Since F and g are compatible and g is continuous, by (2.11) and (2.12), we have

lim
n→∞

g(gxn) = gx = lim
n→∞

g(F (xn, yn)) = lim
n→∞

F (gxn, gyn) (2.14)

and

lim
n→∞

g(gyn) = gy = lim
n→∞

g(F (yn, xn)) = lim
n→∞

F (gyn, gxn). (2.15)

Now we have

d(gx, F (x, y)) ≤ d(gx, g(gxn+1)) + d(g(gxn+1), F (x, y)).

On taking limits as n → ∞, using (2.14), we have

d(gx, F (x, y)) ≤ lim
n→∞

d(g(gxn+1), F (x, y)).

Since the mapping g is monotonically increasing, using (1.6) and (2.13), we have

d(gx, F (x, y)) ≤ lim
n→∞

[d(F (gxn, gyn), F (x, y))

≤ αd(ggxn, gx) + βd(ggyn, gy)
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+
γ

2

[d(ggxn, F (gxn, gyn)) + d(ggyn, F (gyn, gxn))][d(gx, F (x, y)) + d(gy, F (gy, gx)]

1 + d(gxn, gxn−1) + d(gyn, gyn−1)

+ Lmin{d(F (gxn, gyn), gx), d(F (x, y), ggxn), d(F (gxn, gyn), ggxn), d(F (x, y), gx)}],

using (2.14) and (2.15), we have d(gx, F (x, y) ≤ lim
n→∞

d(F (gxn, gyn), F (x, y)) ≤ 0.

Therefore gx = F (x, y). Similarly, we can obtain gy = F (y, x). Thus (x, y) is a
coupled coincidence point of F and g.

The following example shows that Theorem 2.2 is a generalization of
Theorem 1.4.

Example 2.3. Let X = {0, 12 , 2} with the usual metric, and ≤:= {(0, 0), (0, 12 ),
(12 ,

1
2 ), (2, 2), (0, 2)}. We write A = {(0, 0), (0, 12 ), (

1
2 , 2), (2, 2), (2, 0), (0, 2)}, B =

{(12 , 0), (2,
1
2 )} and C = {(12 ,

1
2 )}. We define F : X ×X → X and g : X → X by

F (x, y) =























0 if (x, y) ∈ A

1
2 if (x, y) ∈ B

2 if (x, y) ∈ C

and g0 = 0, g 1
2 = 2 and g2 = 1

2 . Now, it is easy to see that F has a mixed g-
monotone property, F (X ×X) ⊆ gX and F and g are continuous functions. By
choosing x0 = 1

2 and y0 = 1
2 , we have gx0 � F (12 ,

1
2 ) and gy0 � F (12 ,

1
2 ). Also F

and g are compatible on X.
We take x, y, u, v ∈ X, such that gx ≥ gu and gy ≤ gv. Now we show that the

inequality (1.6) holds with α, β = 1
4 , γ = 3

8 and L = 1.

Case(a) : If (x, y) = (u, v), then we have d(F (x, y), F (u, v)) = 0 and hence the
condition (1.6) holds.
Case(b) : If (x, y), (u, v) ∈ A or B or C then we have
d(F (x, y), F (u, v)) = 0 and hence the condition (1.6) holds.

Case(c) : If (x, y) = (0, 0) then (u, v) ∈ {(0, 0), (0, 2)}, so that the condition (1.6)
holds.

Case(d) : If (x, y) = (0, 12 ) then (u, v) ∈ {(0, 1
2 )}, so that the condition (1.6) holds.

Case(e) : If (x, y) = (0, 2) then (u, v) ∈ {(0, 2)}, so that the condition (1.6)
holds.

Case(f) : If (x, y) = (12 ,
1
2 ) then (u, v) ∈ {(12 ,

1
2 )}, so that the condition (1.6) holds.

Case(g) : If (x, y) = (12 , 0) then (u, v) ∈ {(12 , 0), (
1
2 , 2)}.

If (u, v) = (12 , 2) then

d(F (x, y), F (u, v)) = 1
2 ≤ β

2 + γ + L(32 ) = 2, so that the condition (1.6) holds.

Case(h) : If (x, y) = (12 , 2) then (u, v) ∈ {(12 , 2)},so that the condition (1.6) holds.
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Case(i) : If (x, y) = (2, 1
2 ) then (u, v) ∈ {(0, 12 ), (2,

1
2 )}.

If (u, v) = (0, 12 ) then
d(F (x, y), F (u, v)) = 1

2 ≤ α
2 + γ = 1

2 , so that the condition (1.6) holds.

Case(j) : If (x, y) = (2, 2) then (u, v) ∈ {(2, 2)}, so that the condition (1.6) holds.

Case(k) : If (x, y) = (2, 0) then (u, v) ∈ {(0, 2), (2, 2), (0, 0), (2, 0)}, so that the
condition (1.6) holds.

Here, the importance of the rational expression in the inequality (1.6) is shown
in Case (i) with γ = 3

8 .

But, the inequality (1.6) fails to hold if we remove the rational term in (1.6).
Consequently condition (1.4) fails to hold; for, by choosing x = 2, y = 1

2 , u = 0
and v = 1

2 , we have

d(F (x, y), F (u, v)) = 1
2 � α

2 = αd(gx, gu) + β.0 + L.0

= αd(gx, gu) + βd(gy, gv)

+ Lmin{d(F (x, y), gu), d(F (u, v), gx),

d(F (x, y), gx), d(F (u, v), gu)}
for any α ≥ 0, β ≥ 0, with α+ β < 1 and L ≥ 0.
Thus, Theorem 2.2 is a generalization of Theorem 1.4.

Here we note that (0, 0), (12 ,
1
2 ) are two coincidence points of F and g. Hence,

we observe that if any two elements of the set of all coupled coincidence points of
F and g are not comparable with any element of X × X then the uniqueness of
the coupled fixed point fails.

To prove the uniqueness we define the following order relation.

We define relation � on X × X by (x, y) � (u, v) ⇔ x � u, y � v, for
x, y, u, v ∈ X . Then (X × X,�) is a poset, using this notation we prove the
following theorem.

Theorem 2.4. In addition to the hypotheses of Theorem 2.2, suppose that

(i) g is one-one,

(ii) for every (x, y), (z, t) ∈ X ×X, there is a (u, v) ∈ X ×X which is

comparable with (x, y) and (z, t).
Then F and g have a unique common coupled fixed point in X.

Proof. From Theorem 2.2, the set of coupled coincidence points of F and g is
non-empty. Suppose (x, y) and (z, t) be coupled coincidence points of F and g,
i.e.,

gx = F (x, y) and gy = F (y, x) (2.16)
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and

gz = F (z, t) and gt = F (t, z). (2.17)

We now show that gx = gz and gy = gt. By assumption there exists (u, v) ∈
X × X which is comparable with (x, y) and (z, t). With out loss of general-
ity we assume that (F (x, y), F (y, x)) � (F (u, v), F (v, u)) and (F (z, t), F (t, z)) �
(F (u, v), F (v, u)). Let u0 = u, v0 = v. Since F (X × X) ⊆ gX , there exists
u1, v1 ∈ X such that F (u0, v0) = gu and F (v0, u0) = gv, continuing this pro-
cess we obtain sequences {gun} and {gvn} such that F (un, vn) = gun+1 and
F (vn, un) = gvn+1 for all n. We now show that

gx � gun and gy � gvn for all n, (2.18)

by using mathematical induction, we have

gx = F (x, y) � F (u, v) = (u0, v0) = gu1 (2.19)

and gy = F (y, x) � F (v, u) = (v0, u0) = gv1. Therefore (2.18) is true for n = 1.
Assume that (2.18) is true for some m ∈ N , i.e.,

gx � gum and gy � gvm. (2.20)

By using the mixed g-monotone property of F and using (2.20), we have gum+1 =
F (um, vm) � F (x, vm) � F (x, y) = gx and gvm+1 = F (vm, um) � F (y, vm) �
F (y, x) = gy. Thus by induction (2.18) is true for all n. Since from (2.18), we have
gx � gum and gy � gvm, using inequality (1.6), we have

d(gun+1, gx) = d(F (x, y), F (un, vn))

≤ αd(gx, gun) + βd(gy, gvn)

+
γ

2

[d(gx, F (x, y)) + d(gy, F (y, x))][d(gun, F (un, vn)) + d(gvn, F (gvn, gun)]

1 + d(gx, gun) + d(gy, gvn)

+ Lmin{d(F (x, y), gun), d(F (un, vn), gx), d(F (x, y), gx), d(F (un, vn), gun)}

≤ αd(gx, gun) + βd(gy, gvn). (2.21)

Similarly,

d(gvn+1, gy) ≤ αd(gx, gun) + βd(gy, gvn). (2.22)

From (2.21) and (2.22), we have

d(gx, gun+1) + d(gvn+1, gy) ≤ (α+ β)[d(gx, gun) + d(gy, gvn)]

≤ (α+ β)2[d(gx, gun−1) + d(gy, gvn−1)]

≤ · · · ≤ (α+ β)n+1[d(gx, gu0) + d(gy, gv0)].
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On taking limits as n → ∞, we have

lim
n→∞

d(gx, gun+1) = 0 and lim
n→∞

d(gy, gvn+1) = 0. (2.23)

Similarly,

lim
n→∞

d(gz, gun+1) = 0 and lim
n→∞

d(gt, gvn+1) = 0. (2.24)

Thus, from (2.23) and (2.24), it follows that

gx = gz and gy = gt. (2.25)

Thus, F and g have a unique coupled coincidence point. Since F and g are
compatible on X , they are w-compatible and since g is one-one, by using (2.16)
and (2.17), we have

g(gx) = g(F (x, y)) = F (gx, gy) and g(gy) = g(F (y, x)) = F (gy, gx). (2.26)

Let gx = z, and gy = w, from (2.26), we have gz = F (z, w) and gw = F (w, z).
Therefore (z, w) is a coupled coincidence point of F and g. From (2.25), we have
gz = gx and gy = gw, this implies gz = z and gw = w. Therefore (z, w) is a
common coupled fixed point of F and g. Now we show that (z, w) is a unique
coupled fixed point of F and g. Let (p, q) be another coupled fixed point of F
and g. Hence p = gp and q = gq. By (2.25), we have p = gp = gx = z and
q = gq = gy = w. Therefore (z, w) is a unique common coupled fixed point of F
and g.

Remark 2.5.

(i) By choosing γ = 0 in Theorem 2.2, we get Theorem 1.4 as a corollary to
Theorem 2.2.

(ii) By choosing g = IX , the identity map on X and γ = 0 in Theorem 2.4, we
get Theorem 1.2 as a corollary to Theorem 2.4..

(iii) By choosing α = β = α
2 , L = γ = 0 in Theorem 2.4, we get Theorem 1.3.

Example 2.6. Let X = [0, 1] with the usual metric. Then (X,≤) is a partially
ordered set. We define F : X ×X → X and g : X → X by

F (x, y) =







x2
−y2

6 if x ≥ y

0 if x < y

and gx = x2

2 .

Clearly, F and g are continuous functions on X, F has mixed g-monotone prop-
erty, g is monotonically increasing and one-one. We choose x0 = 0 and y0 = c

where c ∈ (0, 1] then gx0 = 0 and F (0, c) = 0 = F (x0, y0) and gy0 = gc = c2

2 �

F (c, 0) = c2

6 = F (y0, x0). Also, F (X × X) = [0, 1) ⊆ gX. Let {xn} and {yn}
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are sequences in X such that limn→∞ gxn = F (xn, yn) = a and limn→∞ gyn =
F (yn, xn) = b.

Case(i): Suppose xn ≥ yn.

Now for all n ≥ 0, we have limn→∞ gxn =
x2

n

2 = F (xn, yn) =
x2

n
−y2

n

6 = a and

limn→∞ gyn =
y2

n

2 = F (yn, xn) =
y2

n
−x2

n

6 = b. Obviously, a = 0 and b = 0. Then
limn→∞ d(g(F (xn, yn)), F (gxn, gyn)) = 0 and limn→∞ d(g(F (yn, xn)), F (gyn, gxn))
= 0. Thus F and g are compatible.

Case(ii): Suppose xn < yn then limn→∞ gxn =
x2

n

2 = F (xn, yn) =
x2

n
−y2

n

6 = a

and limn→∞ gyn =
y2

n

2 = F (yn, xn) =
y2

n
−x2

n

6 = b implies a = 0 and b = 0. Hence F
and g are compatible. Now we verify the inequality (1.6) with α = 1

3 , β = 1
3 , γ = 1

2
and L = 0. Let x, y, u, v ∈ X, such that gx ≥ gu and gy ≤ gv that is x2 ≥ u2 and
y2 ≤ v2.

Case− 1 : x ≥ y and u ≥ v. Then

d(F (x, y), F (u, v)) = d(
x2 − y2

6
,
u2 − v2

6
)

= |
(x2 − y2)− (u2 − v2)

6
|

= |
(x2 − u2)− (y2 − v2)

6
|

≤
(x2 − u2) + (y2 − v2)

6

≤
1

3

(x2 − u2)

2
+

1

3

(y2 − v2)

2
=

1

3
d(gx, gu) +

1

3
d(gy, gv).

Case− 2: x ≥ y and u < v. Then

d(F (x, y), F (u, v)) = d(
x2 − y2

6
, 0) =

x2 − y2

6

=
u2 + x2 − y2 − u2

6

=
(u2 − y2)− (u2 − y2)

6

≤
(v2 − y2) + (u2 − x2)

6

=
(u2 − x2)− (y2 − v2)

6

=
1

3

(x2 − u2)

2
+

1

3

(y2 − v2)

2

=
1

3
d(gx, gu) +

1

3
d(gy, gv).
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Case − 3: x < y and u ≥ v. This implies gx ≥ gu and gy ≥ gv. This case
does not arise.

Case− 4: x < y and u < v.

Then F (x, y) = 0 and F (u, v) = 0 and d(F (x, y), F (u, v)) = 0 so that in-
equality (1.6) holds. From the above four cases, it follows that F and g satisfy
inequality (1.6) with α = 1

3 , β = 1
3 , γ = 1

6 and L = 0.
Thus it is verified that F and g satisfy all the conditions of Theorem 2.4, (0, 0)

is a coupled fixed point of F and g.
Also, we note that F and g are not commuting. Thus Theorem 1.3 is not

applicable. This example suggests that Theorem 2.4 generalizes Theorem 1.3.

One more example in this direction is the following.

Example 2.7. Let X = {0, 12 , 5} with the usual metric, and ≤:= {(0, 0), (0, 12 ),
(12 ,

1
2 ), (5, 5)}. Clearly, ≤ is a poset on X. We define F : X × X → X and

g : X → X by

F (x, y) =







0 if (x, y) ∈ A

1
2 if (x, y) ∈ B

where A = {(0, 0), (0, 12 ), (5,
1
2 ), (5, 5), (

1
2 , 0), (

1
2 ,

1
2 )}, B = {(5, 0), (0, 5), (12 , 5)} and

g0 = 0, g 1
2 = 1

2 and g5 = 5.

Clearly, F and g are continuous on X, g is one-one, F has mixed g-monotone
property and F (X×X) = {0, 12} ⊆ gX = {0, 12 , 5}. Clearly, gx0 = 0 � F (x0, y0) =
(0, 0) and gy0 = 0 � F (y0, x0) = (0, 0). We consider x, y, u, v ∈ X, such that
gx � gu and gy � gv. Thus, the inequality (1.6) holds with α = 1

3 , β = 1
2 , γ = 1

4
and L = 1.

Hence, all the conditions of Theorem 2.4 holds and (0, 0) is a unique common
fixed point of F and g.

But the condition (1.3.1) of Theorem 1.3 fails to hold for any k ∈ [0, 1). Indeed,
since for x = 5, y = 0, u = 5, y = 1

2 , we have d(gy, gv) = 0 and

d(F (x, y), F (u, v)) =
1

2
�

k

2

1

2
=

k

2
[d(gx, gu) + d(gy, gv)]

for any k ∈ [0, 1). Thus, Theorem 1.3 is not applicable.
Hence, Theorem 2.4 is a generalization of Theorem 1.3.
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