
Thai Journal of Mathematics
Volume 13 (2015) Number 3 : 539–544

http://thaijmath.in.cmu.ac.th
ISSN 1686-0209

Applications of Student Activity Problems

for Some Kirkman Type Problems1

Vites Longani†,♯, Decha Samana‡,♯,2, and Sasisophit Buada♭,♯

†Department of Mathematics, Faculty of Science,
Chiang Mai University, Chiang Mai, 50200, Thailand

e-mail : vites.l@cmu.ac.th
‡Department of Mathematics, Faculty of Science,

King Mongkut’s Institute of Technology Landkrabang,
Bangkok, 10520, Thailand

e-mail : dechasamana@hotmail.com
♭Department of Mathematics, Faculty of Science and Technology,

Nakhon Sawan Rajabhat University,
Nakhon Sawan, 60000, Thailand
e-mail : sasi bua@hotmail.com

♯Centre of Excellence in Mathematics,
CHE, Sri Ayutthaya Road, Bangkok 10400, Thailand

Abstract : In this paper we apply the ideas from recent works on Student
Activity Problems in proposing a theorem on some Kirkman type problems. That
is, we find that for any prime number p ≥ 3 it is possible for a school teacher to
take p2 school girls on a walk each day of the p+1 days, walking with p rows of p
girls each, in such a way that each pair of girls walk together in the same row on
exactly one day.
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1 Introduction to Student Activity Problems

Student Activity Problems (SAP) and School Activity Algorithm (SAA) are
discussed in details in [1]. The problems are about arranging joint activities for
students from n ≥ 2 schools. There are p > n different activity rooms r1, r2, ..., rp.
Each school provide p students to join the activities for p days. In each day, each
student has to join an activity in one of the p rooms with a condition that in
each room there are n students from n different schools. It is required that each
student participates all of the p activities in p days and each has to join exactly
once with every student from all other schools. Two main questions arise from
the problems. For given n ≥ 2 and p > n, is it always possible to have the
arrangements that satisfy the conditions of SAP? The other question is about how
to do such arrangements when it is possible. Theorem 1.1 which is adapted from
[1] can provide sufficient conditions for the arrangements.

Theorem 1.1. Let n ≥ 2 be number of schools each of which provide p > n
students to participate p joint activities. For any prime number p > n, the ar-
rangements that satisfy School Activity Problem (SAP) conditions are possible and
can be arranged by using the School Activity Algorithm (SAA) provided.

For better understanding about Theorem 1.1 we consider the case when n = 4
and p = 5. That is, we have 4 schools s1, s2, s3, and s4 each of which provide 5
students to join 5 activities in rooms r1, r2, r3, r4, and r5. Let S1, S2, S3, and S4

be sets of 5 students of schools s1, s2, s3, and s4 respectively.

S1 = {1, 2, 3, 4, 5}, S2 = {6, 7, 8, 9, 10}
S3 = {11, 12, 13, 14, 15}, S4 = {16, 17, 18, 19, 20}.

Let R1, R2, ..., R5 be sets of students doing activities in rooms r1, r2, ..., r5
respectively. For the first day, called Day 1, we can arrange students for each
room ri as follows:

R1 = {1, 6, 11, 16}, R2 = {2, 7, 12, 17}
R3 = {3, 8, 13, 18}, R4 = {4, 9, 14, 19}, R5 = {5, 10, 15, 20}.

Using the algorithm SAA, we can arrange students to join activites in table
form as follows:

Day 1 Day 2 Day 3 Day 4 Day 5

R1 1 6 11 16 5 9 13 17 4 7 15 18 3 10 12 19 2 8 14 20
R2 2 7 12 17 1 10 14 18 5 8 11 19 4 6 13 20 3 9 15 16
R3 3 8 13 18 2 6 15 19 1 9 12 20 5 7 14 16 4 10 11 17
R4 4 9 14 19 3 7 11 20 2 10 13 16 1 8 15 17 5 6 12 18
R5 5 10 15 20 4 8 12 16 3 6 14 17 2 9 11 18 1 7 13 19

Figure 1.1

We shall briefly explain how to obtain the arrangements in Figure 1.1, see [1]
for more details.
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Once we obtain the arrangements of Day 1, consider students 1,2,3,4,5 in the
first column of the arrangements of Day 1. We can obtain the arrangements of
1,2,3,4,5 for Day 2 by shifting, in circular manner each student of Day 1 to the
next room, i.e. from r1 to r2, r2 to r3, r3 to r4, r4 to r5, and r5 to r1. We can
obtain the arrangements of 1,2,3,4,5 for Day 3 by shifting, in circular manner,
each student of Day 2 to the next room, i.e. from r2 to r3, r3 to r4, r4 to r5, r5
to r1, and r1 to r2. We can obtain the arrangements of Day 4 from Day 3, and
the arrangements of Day 5 from Day 4, by similar ways of shifting. For students
6,7,8,9,10 in the second column in Day 1, we can obtain the arrangements of Day
2, Day 3, Day 4, and Day 5 by using similar ideas for the shifting of the students
in the first column but instead of shifting each student to the next room, we shift
each of them to the next second room. For students 11,12,13,14,15 in the third
column of Day 1, we can obtain the arrangements of Day 2, Day 3, Day 4, and
Day 5 by using similar ideas but here we shift each of them to the next third room.
For students 16,17,18,19,20 in Day 1, we can obtain the arrangements of Day 2,
Day 3, Day 4, and Day 5 by using similar ideas of shifting but now we shift each
of them to the next fourth room, etc.

In section 2, we discuss about Kirkman type problems, and how to solve some
of these problems by applying Theorem 1.1 and the algorithm SAA.

2 Kirkman Triple Systems and Kirkman Type Prob-
lems

There are some studies involving with arrangements or partitions of stu-
dents(or elements of sets) with some conditions. Studies on the well known Steiner
triple systems, see [2],[3] for examples, and on Kirkman school girl problems pro-
vide some questions and answers for some arrangements. There still are many
varieties of interesting arrangements that have not been investigated.

In 1850 Reverend Thomas Kirkman posted a problem; later called Kirkman
school girl problem, see [4],[5]. The problem say; is it possible for a school to take
15 school girls on a walk each day of the 7 days of a week, walking with 5 rows, of
3 girls each, in such a way that each pair of girls walk in the same row on exactly
one day. Let the 15 school girls be denoted by 1,2,3,...,15 respectively. Kirkman
showed one possible arrangement which is similar to the arrangement in Figure
2.1.

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

7 8 9 1 8 10 2 8 11 4 6 9 5 7 10 2 3 9 1 5 9
2 6 10 3 7 11 1 4 12 3 8 12 4 8 13 1 6 11 3 4 10
4 5 11 5 6 12 6 7 13 2 5 13 3 6 14 5 8 14 2 7 12
1 3 13 3 4 14 3 5 15 1 7 14 1 2 15 4 7 15 6 8 15
12 14 15 9 13 15 9 10 14 10 11 15 9 11 2 10 12 13 11 13 14

Figure 2.1
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Later, number of works have been done in order to ask and answer for more
general forms of Kirkman school girl problem. For another simple example, when
there are 21 school girls it can be shown that it is possible to take the girls on
walk each of the 10 days, walking with 7 rows of 3 girls each in such a way that
each pair of girls walk in the same row on exactly one day. With similar condition
for the arrangement of the walks as in the above two examples, necessary and
sufficient conditions about the problems were later studied, see [2],[3] for examples.
Most studies of these types of arrangements were involved with three girls(or three
elements of sets) in a row. These happen to be particular cases of studies in Steiner
triple systems, see [2],[3] for examples. Some studies have been done on quadruple
systems which are equivalent to the problem of Kirkman school girl problem but
with 4 school girls in a row instead of 3 girls. We shall refer to these kind of
arrangements of school girls for walks as Kirkman type problems of which little
have been investigated for the cases when the number of school girls in each row
are greater than three.

In this section, we propose a question, on Kirkman type problem, whether it
is possible to take p2(p ≥ 3) school girls on a walk each day of the p + 1 days,
walking with p rows of p girls each, in such a way that each pair of girls walk in
the same row on exactly one day. We find that for some values of p, it is possible
to arrange such walks. In fact, with the application of Theorem 1.1 in section 1,
we can have Theorem 2.1 which provide sufficient conditions for the arrangements
of p2 school girls for the required arrangements.

Theorem 2.1. For any prime number p ≥ 3, it is possible to arrange p2 school
girls for a walk for p+1 days such that each day of the walks arranged, there are p
rows with p girls in each row with the condition that any pair of girls has a chance
to walk in the same row on exactly one day.

Proof. Let the p2 school girls be denoted by 1, 2, 3, ..., p2. We can arrange a walk
for the starting day as follows:

(1, 2, 3, ..., p)

(p+ 1, p+ 2, p+ 3, ..., 2p)

(2p+ 1, 2p+ 2, 2p+ 3, ..., 3p)

...
... (2.1)

((p− 2)p+ 1, (p− 2)p+ 2, (p− 2)p+ 3, ..., (p− 1)p)

((p− 1)p+ 1, (p− 1)p+ 2, (p− 1)p+ 3, ..., (p)p)

There are p rows with p school girls in each row. Consider the first p− 1 rows
of (2.1). In order to use Theorem 1.1, we treat the first p− 1 rows as p− 1 schools
each of which has p students. Using Theorem 1.1 and the algorithm SAA, we can
have the arrangements, similar to Figure 1.1, for Day 1, Day 2,..., Day p. In each
day there are activities described by sets R1, R2, R3, ..., Rp of which we can regard
as a walk for the day that have p rows of p − 1 girls from p − 1 different schools.
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So, we have arranged such walks for p days such that no pair of girls has a chance
to walk together twice.

Next, consider the last row of (2.1). Now, we insert the student (p − 1)p + 1
in each row of Day 1, insert the student (p− 1)p+ 2 in each row of Day 2, insert
the student (p − 1)p + 3 in each row of Day 3,..., insert the student (p)p = p2 in
each row of Day p.

Now we obtain a new table. The activity in each Rk of Day 1, Day 2,..., Day p
can provide a walk for a day such that there are p rows each of which has p girls.
Now we have arranged walks for p days. Together with the walk on the starting
day, see(2.1), we have arranged walks for p + 1 days that satisfy the condition of
SAP

To verify Theorem 2.1, we consider the case when p = 5, i.e. we have p2 = 25
students. Suppose the students are 1,2,3,...,25. We can arrange a walk for the
starting day as follows:

(1, 2, 3, 4, 5)

(6, 7, 8, 9, 10)

(11, 12, 13, 14, 15) (2.2)

(16, 17, 18, 19, 20)

(21, 22, 23, 24, 25)

Consider the students in the first 4 row of (2.2). Using Theorem 1.1 and SAA
with the first 4 rows, treating them as 4 different schools each of which has 5
students. We can then obtain the arrangement as in Figure 1.1. Consider the last
row of (2.2). We insert 21 in each row of Day 1 of Figure 1.1, insert 22 in each
row of Day 2, insert 23 in each row of Day 3, insert 24 in each row of Day 4, and
insert 25 in each row of Day 5. Now, we have obtain a new table as in Figure 2.2

Day 1 Day 2 Day 3 Day 4 Day 5

R1 1 6 11 16 21 5 9 13 17 22 4 7 15 18 23 3 10 12 14 24 2 8 14 20 25
R2 2 7 12 17 21 1 10 14 18 22 5 8 11 19 23 4 6 13 20 24 3 9 15 16 25
R3 3 8 13 18 21 2 6 15 19 22 1 9 12 20 23 5 7 14 16 24 4 10 11 17 25
R4 4 9 14 19 21 3 7 11 20 22 2 10 13 16 23 1 8 15 17 24 5 6 12 18 25
R5 5 10 15 20 21 4 8 12 16 22 3 6 14 17 23 2 9 11 18 24 1 7 13 19 25

Figure 2.2
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The activities in R1 of all Day 1, Day 2,...,Day 5 can represent a walk, called
Walk 1, of 5 rows each of which has 5 girls. The activities in R2, R3, R4, R5 can
similarly represent walks, called Walk 2, Walk 3, Walk 4, Walk 5 respectively. See
Figure 2.3 for the five walks.

Walk 1 (R1) Walk 2 (R2) Walk 3 (R3) Walk 4 (R4) Walk 5 (R5)

1 6 11 16 21 2 7 12 17 21 3 8 13 18 21 4 9 14 19 21 5 10 15 20 21
5 9 13 17 22 1 10 14 18 22 2 6 15 19 22 3 7 11 20 22 4 8 12 16 22
4 7 15 18 23 5 8 11 19 23 1 9 12 20 23 2 10 13 16 23 3 6 14 17 23
3 10 12 19 24 4 6 13 20 24 5 7 14 16 24 1 8 15 17 24 2 9 11 18 24
2 8 14 20 25 3 9 15 16 25 4 10 11 17 25 5 6 12 18 25 1 7 13 19 25

Figure 2.3

Five walks in Figure 2.3, and another walk from (2.2) provide (5+1)=6 walks
as predicted by Theorem 2.1.

In Theorem 2.1, it is required that p ≥ 3 is any prime number. However,
Theorem 2.1 may be held for some other values of p. These are open for further
studies.
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