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Abstract : The generalized quasilinearization method for a non-linear second-
order ordinary differential equation with mixed boundary conditions has been
studied when the forcing function is the sum of two functions without require that
any of the two functions involved to be 2-hyperconvex or 2-hyperconcave. Two
sequences are developed under suitable conditions which converge to the unique
solution of the boundary value problem. Furthermore, the convergence obtain here
is of order 3.

Keywords : Generalized quasilinearization; Mixed BVP; Cubical convergence.
2000 Mathematics Subject Classification : 34A45, 34B15.

1 Introduction

The method of quasilinearization [1] combined with the technique of lower and
upper solutions is an excellent tool for solving a large class of nonlinear problems.
This technique works fruitfully only for the problems involving convex/concave
functions. Later after that the convexity assumption was relaxed and the method
was generalized and extended in various directions to make it applicable to a large
class of problems. It has referred to as a generalized quasilinearization method, see
[8]. The method is extremely useful in scientific computations due to its accelerated
rate of convergence as in [9, 10].

In [3, 13], the authors have obtained a higher order of convergence for initial
value problems. They considered situations when the forcing function is either
hyperconvex or hyperconcave. In [11], the authors have obtained the results of
higher order of convergence for second-oredr boundary value problems when the
forcing function is the sum of 2-hyperconvex and 2-hyperconcave functions with
natural and coupled lower and upper solutions. The aim of this paper is to cosider
and study the existence and approximation of solutions for second-order ordinary
differential equation with Dirichlet boundary conditions, by taking the forcing
function to be the sum of two functions without require any of the two functions
involved to be 2-hyperconvex or 2-hyperconcave. We have proved the existence of
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the unique solution of the nonlinear problem with Dirichlet boundary conditions
using natural lower and upper solutions. We demonstrate the iterates converge
cubically to the unique solution of the nonlinear problem.

2 Preliminaries

It is well known that the following mixed BVP

−ψ′′(t) = λψ(t), t ∈ J = [0, π],

ψ(0) = ψ′(π) = 0, (2.1)

has a nontrivial solution if and only if λ = [(2m − 1)/2]2 (m = 1, 2, 3, . . .). In
consequence, if λ 6= [(2m− 1)/2]2 (m = 1, 2, 3, . . .), and σ(t) ∈ C[0, π], the unique
solution of the mixed boundry value problem

−ψ′′(t)− λψ = σ(t), t ∈ J = [0, π],

ψ(0) = ψ′(π) = 0, (2.2)

is given by

ψ(t) =
∫ π

0

Kλ(t, s)σ(s)ds.

Here, Kλ(t, s) is the Green’s function, where Kλ(t, s) for λ > 0, is given by

[
√

λ cos(
√

λπ)]−1[cos(
√

λ(π − t)) sin(
√

λs)],
0 ≤ s ≤ t ≤ π,

[
√

λ cos(
√

λπ)]−1[sin(
√

λt) cos(
√

λ(π − s))],
0 ≤ t ≤ s ≤ π.

And Kλ(t, s) for λ < 0, is given by

[
√
−λ cosh(

√
−λπ)]−1[(cosh

√
−λ(π − t)) sinh(

√
−λs)],

0 ≤ s ≤ t ≤ π,

[
√
−λ cosh(

√
−λπ)]−1[sinh(

√
−λt) cosh(

√
−λ(π − s))],

0 ≤ t ≤ s ≤ π.

Finally, when λ = 0, then

K0(t, s) =
{

s, 0 ≤ s ≤ t ≤ π;
t, 0 ≤ t ≤ s ≤ π.

Thus, we have the following comparison result.
Here some definitions and notations will be given to facilitate later explana-

tions.
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Definition 2.1 The functions α0, β0 ∈ C2[J,R] are said to be natural lower and
upper solutions of (2.1) if

−α′′0 ≤ f(t, α0) + g(t, α0), α0(0) ≤ 0, α′0(π) ≤ 0 on J,

−β′′0 ≥ f(t, β0) + g(t, β0), β0(0) ≥ 0, β′0(π) ≥ 0 on J. (2.3)

One can define coupled lower and upper solutions of the other types in the same
manner. See [13, 14] for details.

Definition 2.2 A function h : A → B, A,B ⊂ R is called m-hyperconvex, m ≥ 0,
if h ∈ Cm+1[A, B] and dm+1h/dum+1 ≥ 0 for u ∈ A; h is called m-hyperconcave if
the inequality is reversed.

In this paper, we use the maximum norm of u over J, that is,

‖ u ‖= max
{
| u(t) |: t ∈ J

}
.

Also throughout this paper the following notation

∂kf(t, u)
∂uk

= f (k)(t, u)

has been used for any function f(t, u) and for k = 0, 1, 2, . . . .

The next corollary is a special case of [8, Theorem 3.1.3].

Corollary 2.3 Assume that α0, β0 ∈ C2[J,R] are lower and upper solutions of
(2.1) respectively such that α0(t) ≤ β0(t) on J. Then there exists a solution u for
the BVP (2.1) such that α0 ≤ u ≤ β0 on J.

Corollary 2.4 (Comparison Result) Let λ < 0 on J and p ∈ C2[J,R]. If

−p′′ ≥ λp, p(0) ≥ 0, p′(π) ≥ 0.

Then p(t) ≥ 0 on J. If the inequalities are reversed, then p(t) ≤ 0 on J.

3 Main Results

Consider the following BVP

−u′′ = f(t, u) + g(t, u), ψ(0) = ψ′(π) = 0, t ∈ J = [0, π], (3.1)

where f, g ∈ C[Ω, R] and Ω = [(t, u) ∈ J × R : α0(t) ≤ u(t) ≤ β0(t)], and
α0, β0 ∈ C2[J,R] with α0(t) ≤ β0(t) on J.
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Theorem 3.1 Assume that

(A1) α0, β0 ∈ C2[J,R] are lower and upper solutions of (3.1), respectively, such
that α0(t) ≤ β0(t) on J,

(A2) f, g ∈ C3[Ω, R] such that f(t, u) is nondecreasing, g(t, u) is nonincreasing
and fu(t, u) + gu(t, u) < 0 for every (t, u) ∈ Ω.

Then there exists monotone sequences {αn} and {βn}, n ≥ 0 which converges
uniformly and monotonically to the unique solution of (3.1) and the convergence
is of order 3.

Proof. Take

φ(t, u) = F (t, u)− f(t, u) ; ψ(t, u) = G(t, u)− g(t, u) on Ω, (3.2)

where F,G ∈ C3[Ω, R] such that F is a 2-hyperconvex function in u and G is a
2-hyperconcave function in u on J [i.e., F (3)(t, u) ≥ 0, G(3)(t, u) ≤ 0 for (t, u) ∈ Ω].

In view of F (3)(t, u) ≥ 0, for (t, u) ∈ Ω, we see that

F (t, x) ≥
2∑

i=0

F (i)(t, y)(x− y)i

i!
, x ≥ y, (3.3)

F (t, x) ≤
2∑

i=0

F (i)(t, y)(x− y)i

i!
, x ≤ y. (3.4)

Similarly, in view of G(3)(t, u) ≤ 0 for (t, u) ∈ Ω, we have

G(t, x) ≥
1∑

i=0

G(i)(t, y)(x− y)i

i!
+

G(2)(t, x)(x− y)2

2!
, x ≥ y, (3.5)

G(t, x) ≤
1∑

i=0

G(i)(t, y)(x− y)i

i!
+

G(2)(t, x)(x− y)2

2!
, x ≤ y. (3.6)

Therefore, (3.3), (3.4), (3.5) and (3.6) can be written in following form

f(t, x) ≥ f(t, y) +
2∑

i=1

F (i)(t, y)(x− y)i

i!
− [φ(t, x)− φ(t, y)], x ≥ y, (3.7)

f(t, x) ≤ f(t, y) +
2∑

i=1

F (i)(t, y)(x− y)i

i!
− [φ(t, x)− φ(t, y)], x ≤ y, (3.8)

g(t, x) ≥ g(t, y) + G(1)(t, y)(x− y) +
G(2)(t, x)(x− y)2

2!
− [ψ(t, x)− ψ(t, y)], x ≥ y, (3.9)
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g(t, x) ≤ g(t, y) + G(1)(t, y)(x− y) +
G(2)(t, x)(x− y)2

2!
− [ψ(t, x)− ψ(t, y)], x ≤ y, (3.10)

respectively. Let first consider the following BVPs :

−w′′ = χ(t, α, β; w)

= f(t, α) +
2∑

i=1

F (i)(t, α)(w − α)i

i!
− l[w3 − α3]

+g(t, α) + G(1)(t, α)(w − α) +
G(2)(t, β)(w − α)2

2!
−[ψ(t, w)− ψ(t, α)],

w(0) = w′(π) = 0; (3.11)

−v′′ = ω(t, α, β; v)

= f(t, β) +
2∑

i=1

F (i)(t, β)(v − β)i

i!
− [φ(t, v)− φ(t, β)]

+g(t, β) + G(1)(t, β)(v − β) +
G(2)(t, α)(v − β)2

2!
−[ψ(t, v)− ψ(t, β)],

v(0) = v′(π) = 0. (3.12)

Now by using the above BVPs (3.11) and (3.12) to develop the sequences{αn} and
{βn} respectively. Initially, to prove (αn, β0) are the lower and upper solutions of
(3.11) and (3.12) respectively, let us consider natural lower and upper solutions of
the equation (3.1) :

−α′′0 ≤ f(t, α0) + g(t, α0), α0(0) ≤ 0, α′0(π) ≤ 0 on J,

−β′′0 ≥ f(t, β0) + g(t, β0), β0(0) ≥ 0, β′0(π) ≥ 0 on J. (3.13)

where α0(t) ≤ β0(t). The inequalities (3.7), (3.9) and (3.13) imply

−α′′0 ≤ f(t, α0) + g(t, α0)
= χ(t, α0, β0;α0), α0(0) ≤ 0, α′0(π) ≤ 0;
− β′′0 ≥ f(t, β0) + g(t, β0)

≥ f(t, α0) +
2∑

i=1

F (i)(t, α0)(β0 − α0)i

i!
− [φ(t, β0)− φ(t, α0)]

+ g(t, α0) + G(1)(t, α0)(β0 − α0) +
G(2)(t, β0)(β0 − α0)2

2!
− [ψ(t, β0)− ψ(t, α0)]

= χ(t, α0, β0;β0), β0(0) ≥ 0, β′0(π) ≥ 0. (3.14)
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By apply Corollary 2.3 together (3.14) conclude that there exists a solution α1(t)
of (3.11) with α = α0 and β = β0 such that α0(t) ≤ α1(t) ≤ β0(t) on J .

Using the inequalities (3.8), (3.10) and (3.13), we can get

−β′′0 ≥ f(t, β0) + g(t, β0)
= ω(t, α0, β0;β0), β0(0) ≥ 0, β′0(π) ≥ 0;

−α′′0 ≤ f(t, α0) + g(t, α0)

≤ f(t, β0) +
2∑

i=1

F (i)(t, β0)(α0 − β0)i

i!
− [φ(t, α0)− φ(t, β0)]

+ g(t, β0) + G(1)(t, β0)(α0 − β0) +
G(2)(t, α0)(α0 − β0)2

2!
− [ψ(t, α0)− ψ(t, β0)]

= ω(t, α0, β0;α0), α0(0) ≤ 0, α′0(π) ≤ 0. (3.15)

Hence α0, β0 are lower and upper solutions of (3.12) with α0(t) ≤ β0(t). Apply
Corollary 2.3 together (3.15) conclude that there exists a solution β1(t) of (3.12)
with α = α0 and β = β0 such that α0(t) ≤ β1(t) ≤ β0(t) on J .

Now to prove that α1(t) is the unique solution of (3.11), we need to prove
that ∂χ(t, α0, β0; α1)/∂α1 < 0. Since F (t, u) is a 2-hyperconvex function in u and
G(t, u) is a 2-hyperconcave function in u on J with fu(t, u) + gu(t, u) < 0 on Ω,
we have

∂χ(t, α0, β0;α1)
∂α1

= f (1)(t, α1)− F (3)(t, ξ1)(α1 − α0)2

2
+ g(1)(t, α1) + G(3)(t, η1)(α1 − α0)(β0 − ξ2)

≤ f (1)(t, α1) + g(1)(t, α1) < 0, (3.16)

where α0 ≤ ξ1, ξ2 ≤ α1 and ξ2 ≤ η1 ≤ β0. Hence by Corollary 2.4, we can conclude
that α1 is the unique solution of (3.11). Similarly, one can prove that β1 is the
unique solution of (3.12).

Using the nonincreasing property of G(2)(t, u), (3.7), (3.8), (3.9) and (3.10)
with α0(t) ≤ α1(t) ≤ β0(t), α0(t) ≤ β1(t) ≤ β0(t) we have

−α′′1 = χ(t, α0, β0;α1)

= f(t, α0) +
2∑

i=1

F (i)(t, α0)(α1 − α0)i

i!
− [φ(t, α1)− φ(t, α0)]

+ g(t, α0) + G(1)(t, α0)(α1 − α0) +
G(2)(t, β0)(α1 − α0)2

2!
− [ψ(t, α1)− ψ(t, α0)]

≤ f(t, α1) + g(t, α1), α1(0) ≤ 0, α′1(π) ≤ 0; (3.17)
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−β′′1 = ω(t, α0, β0; β1)

= f(t, β0) +
2∑

i=1

F (i)(t, β0)(β1 − β0)i

i!
− [φ(t, β1)− φ(t, β0)]

+ g(t, β0) + G(1)(t, β0)(β1 − β0) +
G(2)(t, α0)(β1 − β0)2

2!
− [ψ(t, β1)− ψ(t, β0)]

≥ f(t, β1) + g(t, β1), β1(0) ≥ 0, β′1(π) ≥ 0. (3.18)

Since α1, β1 are lower and upper solutions of (3.1), we can apply Corollary 2.3 to
obtain α1 ≤ β1 on J. Thus we have α0 ≤ α1 ≤ β1 ≤ β0 on J.

Assume now that αn and βn are solutions of BVPs (3.11) and (3.12), re-
specively, with α = αn−1 and β = βn−1 such that αn−1 ≤ αn ≤ βn ≤ βn−1 on J
and

−α′′n ≤ f(t, αn) + g(t, αn), αn(0) ≤ 0, α′n(π) ≤ 0 on J,

−β′′n ≥ f(t, βn) + g(t, βn), βn(0) ≥ 0, β′n(π) ≥ 0 on J. (3.19)

We need to show that αn ≤ αn+1 ≤ βn+1 ≤ βn on J, where αn+1 and βn+1 are
solutions of BVPs (3.11) and (3.12), respecively, with α = αn and β = βn.

The inequalities (3.7), (3.9) and (3.19) imply

−α′′n ≤ f(t, αn) + g(t, αn)
= χ(t, αn, βn;αn), αn(0) ≤ 0, α′n(π) ≤ 0;

−β′′n ≥ f(t, βn) + g(t, βn)

≥ f(t, αn) +
2∑

i=1

F (i)(t, αn)(βn − αn)(i)

i!
− [φ(t, βn)− φ(t, αn)]

+ g(t, αn) + G(1)(t, αn)(βn − αn) +
G(2)(t, βn)(βn − αn)(2)

2!
− [ψ(t, βn)− ψ(t, αn)]

= χ(t, αn, βn;βn), βn(0) ≥ 0, β′n(π) ≥ 0. (3.20)

This prove that αn, βn are lower and upper solutions of (3.11) with α = αn and
β = βn. Hence using (3.20) and Corollary 2.3, we can conclude that there exists a
solution αn+1 of (3.11) with α = αn and β = βn such that αn ≤ αn+1 ≤ βn on J .

The inequalities (3.8), (3.10) and (3.19) imply

−β′′n ≥ f(t, βn) + g(t, βn)
= ω(t, αn, βn; βn), βn(0) ≥ 0, β′n(π) ≥ 0;
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−α′′n ≤ f(t, αn) + g(t, αn)

≤ f(t, βn) +
2∑

i=1

F (i)(t, βn)(αn − βn)(i)

i!
− [φ(t, αn)− φ(t, βn)]

+ g(t, βn) + G(1)(t, βn)(αn − βn) +
G(2)(t, αn)(αn − βn)(2)

2!
− [ψ(t, αn)− ψ(t, βn)]

= ω(t, αn, βn; αn), αn(0) ≤ 0, α′n(π) ≤ 0. (3.21)

Hence αn, βn are lower and upper solutions of (3.12) with α = αn and β = βn.
Applying Corollary 2.3 we can conclude that there exists a solution βn+1 of (3.12)
with α = αn and β = βn such that αn ≤ βn+1 ≤ βn on J . In view of assumptions
on f and g, αn, βn are unique by Corollary 2.4.

Furthermore, by (3.7), (3.8), (3.9) and (3.10) with αn ≤ αn+1 ≤ βn, αn ≤
βn+1 ≤ βn, and G(2)(t, u) nonincreasing in u, we have

−α′′n+1 = χ(t, αn, βn;αn+1)

= f(t, αn) +
2∑

i=1

F (i)(t, αn)(αn+1 − αn)(i)

i!
− [φ(t, αn+1)− φ(t, αn)]

+ g(t, αn) + G(1)(t, αn)(αn+1 − αn) +
G(2)(t, βn)(αn+1 − αn)(2)

2!
− [ψ(t, αn+1)− ψ(t, αn)]

≤ f(t, αn+1) + g(t, αn+1), αn+1(0) ≤ 0, α′n+1(π) ≤ 0; (3.22)

−β′′n+1 = ω(t, αn, βn;βn+1)

= f(t, βn) +
2∑

i=1

F (i)(t, βn)(βn+1 − βn)(i)

i!
− [φ(t, βn+1)− φ(t, βn)]

+ g(t, βn) + G(1)(t, βn)(βn+1 − βn) +
G(2)(t, αn)(βn+1 − βn)(2)

2!
− [ψ(t, βn+1)− ψ(t, βn)]

≥ f(t, βn+1) + g(t, βn+1), βn+1(0) ≥ 0, β′n+1(π) ≥ 0. (3.23)

Since αn+1, βn+1 are lower and upper solutions of (3.1), we can apply Corollary
2.4 to obtain αn+1 ≤ βn+1 on J. This proves αn ≤ αn+1 ≤ βn+1 ≤ βn on J. Thus
by induction, we have

α0 ≤ α1 ≤ · · · ≤ αn ≤ βn ≤ · · · ≤ β1 ≤ β0 on J.

By the fact that αn, βn are lower and upper solutions of (3.1) with αn ≤ βn and
Corollary 2.3 we can conclude that there exists a solution u(t) of (3.1) such that
αn ≤ u ≤ βn on J . So we have

α0 ≤ α1 ≤ · · · ≤ αn ≤ u ≤ βn ≤ · · · ≤ β1 ≤ β0 on J. (3.24)
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Using Green’s function, we can write αn(t) and βn(t) as follows:

αn(t) =
∫ 1

0

K0(t, s)χ(s, αn−1(s), βn−1(s); αn(s))ds,

βn (t) =
∫ 1

0

K0(t, s)ω(s, αn−1(s), βn−1(s); βn(s))ds. (3.25)

We can prove that the sequences {αn(t)} and {βn(t)} are equicontnuous and
uniformly bounded. Now applying Ascoli-Arzela’s theorem, we can show that
there exist subsequences {αn,j(t)} and {βn,j(t)}, such that αn,j(t) → ρ(t) and
βn,j(t) → r(t) with ρ(t) ≤ u(t) ≤ r(t) on J . Since the sequences {αn(t)} and
{βn(t)} are monotone, we have αn(t) → ρ(t) and βn(t) → r(t). Taking the limit
as n →∞, we get

lim
n→∞

αn(t) = ρ(t) ≤ u(t) ≤ r(t) = lim
n→∞

βn(t).

Next we show that r(t) ≤ ρ(t). From BVPs (3.11) and (3.12) we get

−ρ(t)′′ = f(t, ρ(t)) + g(t, ρ(t)), ρ(0) = ρ′(π) = 0,

−r(t)′′ = f(t, r(t)) + g(t, r(t)), r(0) = r′(π) = 0. (3.26)

Set p(t) = r(t)− ρ(t) and note that p(0) = p′(π) = 0, we have

−p′′(t) = −r′′(t)− (−ρ′′(t))
= f(t, r(t)) + g(t, r(t))− f(t, ρ(t))− g(t, ρ(t))
= fu(t, ξ)(r(t)− ρ(t)) + gu(t, η)(r(t)− ρ(t))
= (fu(t, ξ) + gu(t, η))p (3.27)

where ξ, η are between r and ρ. This implies that −p′′ ≤ λp, where fu+gu ≤ λ < 0.
Now applying Corollary 2.4, we get r(t) ≤ ρ(t) on J. This proves r(t) = ρ(t) = u(t).
Hence {αn(t)} and {βn(t)} converge uniformly and monotonically to the unique
solution of (3.1).

Let us consider the order of convergence of {αn(t)} and {βn(t)} to the unique
solution u(t) of (3.1). To obtain this, set

pn(t) = u(t)− αn(t) ≥ 0,

qn(t) = βn(t)− u(t) ≥ 0, (3.28)

for t ∈ J with pn(0) = p′n(π) = 0, qn(0) = q′n(π) = 0. therefore, we can write

pn+1(t) =
∫ 1

0

K0(t, s)[f(s, u) + g(s, u)− χ(s, αn(s), βn(s); αn+1(s))]ds,

qn+1(t) =
∫ 1

0

K0(t, s)[ω(s, αn(s), βn(s); βn+1(s))− f(s, u)− g(s, u)]ds.
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Now using the Taylor series expansion with Lagrange remainder, the mean value
theorem together with (A2) of the hypothesis and the properties on F and G, we
obtain

0 ≤ pn+1(t)

=
∫ 1

0

K0(t, s)
{

f(s, u) + g(s, u)− [f(t, αn) + g(t, αn)

+
2∑

i=1

F (i)(t, αn)(αn+1 − αn)(i)

i!
− [φ(t, αn+1)− φ(t, αn)]

+ G(1)(t, αn)(αn+1 − αn) +
G(2)(t, βn)(αn+1 − αn)(2)

2!

− [ψ(t, αn+1)− ψ(t, αn)]]
}

ds

=
∫ 1

0

K0(t, s)
{

f(s, u) + g(s, u)− [f(t, αn+1) + g(t, αn+1)

− F (3)(t, ξ1)(αn+1 − αn)(3)

3!
− G(2)(t, ξ2)(αn+1 − αn)(2)

2!

+
G(2)(t, βn)(αn+1 − αn)(2)

2!
]
}

ds

≤
∫ 1

0

K0(t, s)
{

fu(s, η1)(u− αn+1) + gu(s, η2)(u− αn+1)

+
F (3)(t, ξ1)(u− αn)(3)

3!
− G(3)(t, η3)(βn − ξ2)(u− αn)(2)

2!

}
ds

=
∫ 1

0

K0(t, s)
{

[fu(s, η1) + gu(s, η2)]pn+1 +
F (3)(t, ξ1)pn

(3)

3!

− G(3)(t, η3)(qn + pn)pn
(2)

2!

}
ds,

where αn ≤ ξ1, ξ2 ≤ αn+1 ≤ η1, η2 ≤ u and ξ2 ≤ η3 ≤ βn. It fallows by (A2) that
there exists λ < 0 and an integer N such that fu(s, η1) + gu(s, η2) < λ, t ∈ [0, π]
for n ≥ N. Therefore, the error pn+1 satisfies the BVP

−p′′n+1(t)− λpn+1(t) = f(t, u) + g(t, u)− χ(t, αn(t), βn(t); αn+1(t))− λpn+1(t),
pn+1(0) = p′n+1(π) = 0.

This means that

pn+1(t) ≤
1∫

0

Kλ(t, s)
{

[fu(s, η1) + gu(s, η2)− λ]pn+1 +
F (3)(t, ξ1)pn

(3)

3!

− G(3)(t, η3)(qn + pn)pn
(2)

2!

}
ds.



Generalized Quasilinearization Method and Cubical Convergence for Mixed . . . 339

Let | Kλ(t, s) |≤ A1, | fu(s, u) + gu(s, ν) − λ |≤ A2, | F (3)(t, u)/3! |≤ A3 and
| G(3)(t, u)/2! |≤ A4. Then we have

‖ pn+1 ‖≤ k1 ‖ pn ‖3 +k2 ‖ pn ‖2 (‖ qn ‖ + ‖ pn ‖), (3.29)

where k1 = A1A3/(1−A1A2) and k2 = A1A4/(1−A1A2).
Similarly, we can show

‖ qn+1 ‖≤ k1 ‖ qn ‖3 +k2 ‖ qn ‖2 (‖ qn ‖ + ‖ pn ‖), (3.30)

where k1 = A1A3/(1−A1A2) and k2 = A1A4/(1−A1A2).
Hence combining (3.29) and (3.30) we obtain

‖ pn+1 ‖ + ‖ qn+1 ‖≤ C [‖ pn ‖ + ‖ qn ‖]3

where C is an appropriate positive constant. This completes the proof. ¤
We note that the unique solution we have obtained is the unique solution of

(3.1) in the sector determined by the lower and upper solutions.
Similar results can be obtained for the other coupled upper and lower solutions

of (3.1) which are given by

−α′′0 ≤ f(t, β0) + g(t, α0), α0(0) ≤ 0, α0(π) ≤ 0,

−β′′0 ≥ f(t, α0) + g(t, β0), β0(0) ≥ 0, β0(π) ≥ 0,

−α′′0 ≤ f(t, α0) + g(t, β0), α0(0) ≤ 0, α0(π) ≤ 0,

−β′′0 ≥ f(t, β0) + g(t, α0), β0(0) ≥ 0, β0(π) ≥ 0,

and

−α′′0 ≤ f(t, β0) + g(t, β0), α0(0) ≤ 0, α0(π) ≤ 0,

−β′′0 ≥ f(t, α0) + g(t, α0), β0(0) ≥ 0, β0(π) ≥ 0.
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