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Abstract : We give a new proof of the Brouwer fixed point theorem which is more
elementary than all known ones. The only tool we use is the Tietze (continuous)
extension theorem. The idea of the proof suggests some successful computation of
a fixed point.
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1 Introduction

Brouwer Fixed Point Theorem: For the unit cube [0, 1]d of the Euclidean
space R

d, let T : [0, 1]d → [0, 1]d be a continuous function. Then T has a fixed
point, i.e., a point x ∈ [0, 1]d with T (x) = x.

The proof is by induction on the dimension d and its idea of the proof can be
extended from the one of d = 2.

For a complete survey on the development of the Brouwer fixed point theorem,
we refer the reader to Sehie Park [1].
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2 Preliminaries

The only tool we use in the proof in section 3 is the following theorem:

Tietze Extension Theorem: For a closed subset K of the Euclidean space R
d,

let T : K → R be a continuous function. Then T has a continuous extension over
R

d, i.e., a continuous function T̄ : Rd → R such that the restriction of T̄ over K
is T .

3 Proof of Main Result

Let K be a nonempty compact convex subset of the Euclidean space Rd. Any
continuous function T : K → K has a fixed point. We prove the Theorem for K
of the form K = [0, 1]d. Let us recall some familiar notations. For j = 1, . . . , d,
write ej = (δji)

d
i=1 where the Kronecker delta δji is defined to be 1 or 0 according

to j = i or j 6= i. Thus {e1, . . . , ed} is the standard basis for Rd. For j = 1, . . . , d,

let j =
{

∑d

i=1.i6=j xiei : 0 ≤ xi ≤ 1, i = 1, . . . , d, i 6= j
}

and
+
j = j + ej . Set

Ō = (0, . . . , 0), 1̄ = (1, . . . , 1) ∈ R
d, and for 0 ≤ u ≤

√
d, let Hu be the hyperplane

passing through (u, . . . , u) and having 1̄ as its normal vector and put ∆u = K∩Hu.

Note that ∆u, for u ≤ 1/
√
d, is a simplex co(aei : i = 1, . . . , d) for some

a ∈ [0, 1]. Every point in [0, 1]d lies in a simplex co(aei : i = 1, . . . , d) for some
a ∈ [0, d].

We will consider the projection along ej defined by

πj : (x1, . . . , xd) 7→
d

∑

i=1,i6=j

xiei , for (x1, . . . , xd) in K.

Set uj = πj(∆u), uj = j\ uj , and uj =
+
uj = uj + ej . Above the face j ,

let Suj be the continuous surface consisting of ∆u together with uj or uj . For
example, Figure 1 shows Su1 and Sv1 in R

2.

0 1

Sv1 = ∆v ∪ v1

1

Su1 = ∆u ∪ u1

u1

v1

∆u

u

∆v

v

Figure 1:

Note that πj : Suj → uj is a bijection.

Write T = (f1, . . . , fd) where fj : K → [0, 1] is continuous for each j. For each
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u, draw the graph of fj restricted to Suj via the formula

guj : (x1, . . . ,xj−1, 0, xj+1, . . . , xd)

7→ (x1, . . . , xj−1, fj(x1, . . . , xj−1, xj , xj+1, . . . , xd), xj+1, . . . , xd)

for each (x1, . . . , xj−1, xj , xj+1, . . . , xd) in Suj .
Observe that (x1, . . . , xj−1, 0, xj+1, . . . , xd) = πj(x1, . . . , xj−1, xj , xj+1, . . . , xd).

Thus the graph of fj at u means the set of points

(x1, . . . , xj−1, fj(x1, . . . , xj−1, xj , xj+1, . . . , xd), xj+1, . . . , xd)

for (x1, . . . , xj−1, xj , xj+1, . . . , xd) in Suj . Figure 2 demonstrates the graphs of f1
and f2 for a given u.

0 1

Su1 = ∆u ∪ u1

1 u2

Su2 = ∆u ∪ u2

u1

∆u

u

f1

f2

Figure 2:

The first result is fundamental whose proof based on the Brouwer fixed point
theorem for [0, 1]d−1.

Lemma 3.1. For each u, the graphs of f1, . . . , fd intersect at a point.

Proof. Consider the function

S := π1gudπd · · · gu3π3gu2π2gu1 : 1 → 1.

By the Brouwer fixed point theorem, there is a point v ∈ 1 such that v = S(v).
Clearly, the point g1(v) is a desired point of intersection.

A point of intersection in the proof can be found by successive projections on
the graph of f1, . . . , fd. It is the limit of each convergent subsequence.

In the sequence, we will refer to “a point of intersection of the graphs of”
f1, . . . , fd shortly as “a point of intersection of” f1, . . . , fd.

Remark 3.2. Note from Lemma 3.1 that

(1) a point w = (w1, . . . , wd) is a point of intersection if and only if there are
points w(j) = (wj

1, . . . , w
j
d) in Suj for j = 1, . . . , d such that wj

i = wi for i 6= j
and fj(w

(j)) = wj . Thus,

(2) if w lies on ∆u , then T (w) = w, i.e., w is a fixed point of T .
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(3) Suppose for each un ∈ (0, 1), wn = (wn1, . . . , wnd) is a point of intersec-
tion and points wn(j) = (wj

n1, . . . , w
j
nd) are being in Sunj such that, for each

n,w
n(j)
i = wni for i 6= j and fj(w

n(j)) = wnj for each j = 1, . . . , d. Also sup-

pose that un → u,wn → w = (w1, . . . , wd), w
n(j) → w(j) = (wj

1, . . . , w
j
d)

for each j = 1, . . . , d. Thus, Sunj → Suj under the Hausdorff distance,

w(j) ∈ Suj , w
j
i = wi for i 6= j and fj(w

(j)) = wj. That is, w is a point
of intersection of f1, f2, . . . , fd corresponding to u.

(4) In the proof of the main result to follow, we will consider a negative part
and a positive part of the function f1 over Su1, for each u. They are defined
respectively as

N0(f1, u) = {(x1, . . . , xd) ∈ Su1 : f1((x1, . . . , xd)) < x1},
P 0(f1, u) = {(x1, . . . , xd) ∈ Su1 : f1((x1, . . . , xd)) > x1}.

As subsets of the d−1 dimensional Euclidean space Rd−1, let partition N0(f1, u)
and P 0(f1, u) into (open) components, say,

N0(f1, u) =
⋃

α

N0
α(f1, u) , P 0(f1, u) =

⋃

β

P 0
β (f1, u).

Let N(f1, u) and P (f1, u) be the closure of N0(f1, u) and P 0(f1, u) respec-
tively. Analogously, let Nα(f1, u) and Pβ(f1, u) be the closure of N0

α(f1, u)
and P 0

β (f1, u) respectively. Put Zu = Su1\(N(f1, u) ∪ P (f1, u)). Thus, Zu ⊂
{(x1, . . . , xd) ∈ Su1 : f1((x1, . . . , xd)) = x1}. For 0 ≤ u ≤

√
d and λ ∈ R, let

fλ1(w0) = fλu1(w0) = λgu1(w0)+(1−λ)w for w = (x1, . . . , xj−1, xj , xj+1, . . . , xd) ∈
Su1 where w0 = (x1, . . . , xj−1, 0, xj+1, . . . ,
xd). One may need to truncate the function fλ1 to lie within K. For each α

and β, put Nα
λu = fλu1·χNα(f1,u) and P β

λu = fλu1·χPβ(f1,u), and Ou = fu1.χZu
.

By Lemma 3.1, for a given closed interval [a, b] in R, the functions

Nα
λu, f2, . . . , fd, for some α,

or P β
λu, f2, . . . , fd, for some β, (3.1)

or Ou, f2, . . . , fd,

intersect at a point, for all λ in [a, b].
To see why (3.1) holds, we argue on the contrary that the functions Ou, f2, . . . ,

fd, do not intersect and for each α and β, there exists respectively λα and λβ

such that neither Nα
λαu, f2, . . . , fd, nor P β

λβu
, f2, . . . , fd, intersect. We claim that

the union, called h, of the functions Ou, N
α
λαu, P

β
λβu

, for all α and β is continu-
ous, and clearly it does not have a common point with the functions f2, . . . , fd
which contradicts Lemma 3.1. To verify the claim, let {wn} be a sequence in
Su1 converging to w. Suppose that w belongs to Pβ(f1, u) for some β (the proof
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for the case w belongs to Nα(f1, u) for some α follows the same lines). Write
w = (x1, . . . , xd) and wn = (xn1, . . . , xnd). If f1(w) > x1, then f1(wn) > xn1 for
all large n, i.e. wn ∈ P 0

β (f1, u) for those n. Now for such n, h(wn) = fλβ1(wn) =

λβgu1((wn)0) + (1− λβ)wn → λβP
β
λβu

(w) + (1− λβ)w = h(w) as desired. On the

other hand, if f1(w) = x1, then f1(wn) → x1. From the estimate

‖h(wn)− wn‖ ≤ M‖f1(wn)− wn‖ → ‖x1 − x1‖ = 0,

and the fact that wn1 → x1, we get h(wn) → x1 = h(w) as desired. Here M is a
bound for λ’s. For the remaining case when w ∈ Z,wn belongs to a (d − 1)-ball
B(w, n) for all large n which in turn h(wn) = wn1 → x1 = h(w).

We are now ready to prove the Brouwer Fixed Point Theorem:

Proof. If there is a sequence {wn} of points of intersection lying strictly below Su1,
i.e. in the direction of the first component, for all u, a convergent subsequence of
{wn}, by Remark 3.2 (3), must converge to a point of intersection which must lie
in S01 = {Ō} and thus Ō is a fixed point of T .

So we suppose that for some u there holds for each given bounded interval
[a, b] (which we will assume in the sequent that it properly contains [0, 1]), there

exists a β such that (3.1) holds for P β
λu, f2, . . . , fd for all λ ∈ [a, b]. Now let

u0 = sup
{

u ∈ [0,
√
d] : for each bounded interval [a, b], there exists β

such that (3.1) holds for P β
λu, f2, . . . , fd for all λ ∈ [a, b]

}

:= supA

We show that a point of intersection of f1, f2, . . . , fd lies in ∆u0
and we are

done. We suppose that

all points of intersection of functionsf1, f2, . . . , fd do not lie in ∆u0
. (3.2)

First, we claim that u0 ∈ A. To achieve this, we are given any bounded interval
[a, b] in R and any λ in [a, b], and choose a sequence {un} in A converging increas-
ingly to u0. Take a sequence {βn} described in A corresponding to {un}. Thus

there exists, for each n, a point of intersection wn of functions P βn

λun
, f2, . . . , fd.

Assume without loss of generality that wn → cλ.
By Remark 3.2 (3), cλ is a point of intersection of fλ1, f2, . . . , fd. In particular,

when λ = 1, there exists a point c1 of intersection of f1, f2, . . . , fd. We note from
the uniform continuity of T that Pβn

(f1, u) converges to Pβ0
(f1, u), for some β0,

under the Hausdorf distance. Moreover, under our assumption (3.2), cλ is a point

of intersection of P β0

λu0
, f2, . . . , fd. This proof holds for all λ in [a, b], and it ends

the proof of the claim that u0 ∈ A.
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If u0 =
√
d, then 1̄ is a fixed point of T as we reasoned for Ō. So we consider

the case u0 <
√
d.

Case I [All c1 ∈ u01]: The proof in this case is simpler than the following
case, so we omit the proof.

Case II [Some c1 /∈ u01]. Choose ε0 > 0 such that, under the subspace topol-

ogy, B(w, ε0)∩∆u0
⊂ Pβ0

(f1, u0) for all points of intersection w of P β0

0u0
, f2, . . . , fd.

Otherwise, a sequence of such points w would converge to a point of intersection
of f1, f2, . . . , fd which lies in ∆u0

contradicting to our assumption. Thus the fol-
lowing sets are nonempty for all small δ > 0. For δ > 0 to be chosen appropriately
later, let u1 ∈ (u0, u0 + δ).

Put

Pδ = {(0, x2, . . . , xd) : (x1, . . . , xd) ∈ Su1, P
β1

1u1
(x1, . . . , xd) > x1 + δ},

for δ > 0, and let cl(Pδ) be its closure in [0, 1]d−1. Note that Pδ is open in [0, 1]d−1.
For each j = 2, . . . , d, let

Qj
δ = (πjfj)

−1(cl(P2δ)) and Rj
δ = [0, 1]d−1\(πjfj)

−1(Pδ).

Thus both Qj
δ and Rj

δ are nonempty for small δ and they are disjoint compact
sets in [0, 1]d−1. Hence the minimum distance between elements of the two sets is
positive. Thus the union of two continuous real valued functions on Qj

δ and Rj
δ is

always continuous, and in turn it is extendable continuously on [0, 1]d−1. We use
this fact to redefine f1, . . . , fd. First put

hj = fj .χQ
j

δ
.

If Ō /∈ Q1
δ, we then redefine only h2 as

h2 = f2.χQ̄2

δ
+ a1.χ{Ō}

where Q̄2
δ = Q2

δ

⋂

([0, 1] × [η, 1] × [0, 1]d−2) for some small η and a1 is any fixed
element chosen from Q1

δ. Extend each hj over [0, 1]d−1 continuously by Tietze ex-
tension theorem to obtain new set of f1, . . . , fn. Note that new functions f1, . . . , fn
remain unchanged on Q1

δ, . . . , Q
d
δ and they do not intersect on R1

δ , . . . , R
d
δ .

Consequently, by Lemma 3.1, they intersect only on Pβ1
(f1, u1). Now if there

are sequences {vn}, {δn}, and {λn} with {vn} is strictly decreasing to u0, {δn} is
strictly decreasing to 0 and {λn} ⊂ [a, b] such that fλn1, f2, . . . , fd do not intersect
when f1 is restricted to Q1

δn
. This means that intersection occurs for f1 restricted

to R1
δn
\Q1

δn
. But then under (3.2) and by uniform continuity of T , we obtain a

contradiction. At this point we can find small δ > 0 and u1 ∈ (u0, u0 + δ) as

planned so that (3.1) holds for P β1

λu1
, f2, . . . , fd for all λ ∈ [a, b].

The above argument shows that there is a number u1 in A which is bigger
than u0 and this is not possible. Hence our claim that some point of intersection
of f1, f2, . . . , fd lies in ∆u0

is justified, and therefore the proof is complete.
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Remark 3.3. It is clear from the proof that, in practice, we only need to consider
the graphs of functions f1, . . . , fd restricted to each ∆u. To find a fixed point, we
move the vector ū = (u, . . . , u) ∈ R

d along the vector 1̄ until ∆u meets a point of
intersection. That point is a fixed point of T . This method of finding a fixed point
can be described as “catching a fish by a fishing net”.

Acknowledgements : The first author would like to thank the Excellent Center
in Economics, Chiang Mai University for the support. The result in this paper is
inspired by the work of Jonathan Borwein and Mau-Hsiang Shih.

References

[1] S. Park, Ninety years of the Brouwer fixed point theorem, Vietnam J. Math.
27 (3) (1999) 187-222.

(Received 12 March 2015)
(Accepted 1 June 2015)

Thai J. Math. Online @ http://thaijmath.in.cmu.ac.th

http://thaijmath.in.cmu.ac.th

	Introduction
	Preliminaries
	Proof of Main Result

