Thai Journal of Mathematics Volume 13 (2015) Number 3 : 519–525

http://thaijmath.in.cmu.ac.th ISSN 1686-0209

A Simple Proof of the Brouwer Fixed Point Theorem

S. Dhompongsa †,1 and J. Nantadilok ‡

[†]Department of Mathematics, Faculty of Science Chiang Mai University, Chiang Mai 50200, Thailand e-mail : sompong.d@cmu.ac.th [‡]Department of Mathematics, Faculty of Science Lampang Rajabhat University, Lampang, Thailand e-mail : jamnian52@lpru.ac.th

Abstract : We give a new proof of the Brouwer fixed point theorem which is more elementary than all known ones. The only tool we use is the Tietze (continuous) extension theorem. The idea of the proof suggests some successful computation of a fixed point.

Keywords : Brouwer fixed point theorem.2010 Mathematics Subject Classification : 47H09; 47H10.

1 Introduction

Brouwer Fixed Point Theorem: For the unit cube $[0,1]^d$ of the Euclidean space \mathbb{R}^d , let $T : [0,1]^d \to [0,1]^d$ be a continuous function. Then T has a fixed point, i.e., a point $x \in [0,1]^d$ with T(x) = x.

The proof is by induction on the dimension d and its idea of the proof can be extended from the one of d = 2.

For a complete survey on the development of the Brouwer fixed point theorem, we refer the reader to Schie Park [1].

Copyright \bigodot 2015 by the Mathematical Association of Thailand. All rights reserved.

¹Corresponding author.

2 Preliminaries

The only tool we use in the proof in section 3 is the following theorem:

Tietze Extension Theorem: For a closed subset K of the Euclidean space \mathbb{R}^d , let $T: K \to \mathbb{R}$ be a continuous function. Then T has a continuous extension over \mathbb{R}^d , i.e., a continuous function $\overline{T}: \mathbb{R}^d \to \mathbb{R}$ such that the restriction of \overline{T} over K is T.

3 Proof of Main Result

Let K be a nonempty compact convex subset of the Euclidean space \mathbb{R}^d . Any continuous function $T: K \to K$ has a fixed point. We prove the Theorem for K of the form $K = [0,1]^d$. Let us recall some familiar notations. For $j = 1, \ldots, d$, write $e_j = (\delta_{ji})_{i=1}^d$ where the Kronecker delta δ_{ji} is defined to be 1 or 0 according to j = i or $j \neq i$. Thus $\{e_1, \ldots, e_d\}$ is the standard basis for \mathbb{R}^d . For $j = 1, \ldots, d$, let $\Box_j = \left\{ \sum_{i=1, i\neq j}^d x_i e_i : 0 \le x_i \le 1, i = 1, \ldots, d, i \ne j \right\}$ and $\Box_j^+ = \Box_j + e_j$. Set $\overline{O} = (0, \ldots, 0), \overline{1} = (1, \ldots, 1) \in \mathbb{R}^d$, and for $0 \le u \le \sqrt{d}$, let H_u be the hyperplane passing through (u, \ldots, u) and having $\overline{1}$ as its normal vector and put $\Delta u = K \cap H_u$.

Note that Δu , for $u \leq 1/\sqrt{d}$, is a simplex $co(ae_i : i = 1, ..., d)$ for some $a \in [0, 1]$. Every point in $[0, 1]^d$ lies in a simplex $co(ae_i : i = 1, ..., d)$ for some $a \in [0, d]$.

We will consider the projection along e_j defined by

$$\pi_j: (x_1, \ldots, x_d) \mapsto \sum_{i=1, i \neq j}^d x_i e_i , \text{ for } (x_1, \ldots, x_d) \text{ in } K.$$

Set $\Box_{uj} = \pi_j(\Delta_u)$, $\mathbf{N}_{uj} = \Box_j \backslash \Box_{uj}$, and $\mathbf{N}_{uj} = \mathbf{N}_{uj}^+ = \mathbf{N}_{uj} + e_j$. Above the face \Box_j , let S_{uj} be the continuous surface consisting of Δu together with \mathbf{N}_{uj} or \mathbf{N}_{uj} . For example, Figure 1 shows S_{u1} and S_{v1} in \mathbb{R}^2 .

Figure 1:

Note that $\pi_j: S_{uj} \to \Box_{uj}$ is a bijection.

Write $T = (f_1, \ldots, f_d)$ where $f_j : K \to [0, 1]$ is continuous for each j. For each

A Simple Proof of the Brouwer Fixed Point Theorem

u, draw the graph of f_j restricted to S_{uj} via the formula

$$g_{uj}: (x_1, \dots, x_{j-1}, 0, x_{j+1}, \dots, x_d) \\ \mapsto (x_1, \dots, x_{j-1}, f_j(x_1, \dots, x_{j-1}, x_j, x_{j+1}, \dots, x_d), x_{j+1}, \dots, x_d)$$

for each $(x_1, ..., x_{j-1}, x_j, x_{j+1}, ..., x_d)$ in S_{uj} .

Observe that $(x_1, \ldots, x_{j-1}, 0, x_{j+1}, \ldots, x_d) = \pi_j(x_1, \ldots, x_{j-1}, x_j, x_{j+1}, \ldots, x_d)$. Thus the graph of f_j at u means the set of points

$$(x_1, \ldots, x_{j-1}, f_j(x_1, \ldots, x_{j-1}, x_j, x_{j+1}, \ldots, x_d), x_{j+1}, \ldots, x_d)$$

for $(x_1, \ldots, x_{j-1}, x_j, x_{j+1}, \ldots, x_d)$ in S_{uj} . Figure 2 demonstrates the graphs of f_1 and f_2 for a given u.

Figure 2:

The first result is fundamental whose proof based on the Brouwer fixed point theorem for $[0, 1]^{d-1}$.

Lemma 3.1. For each u, the graphs of f_1, \ldots, f_d intersect at a point.

Proof. Consider the function

$$S := \pi_1 g_{ud} \pi_d \cdots g_{u3} \pi_3 g_{u2} \pi_2 g_{u1} : \Box_1 \to \Box_1.$$

By the Brouwer fixed point theorem, there is a point $v \in \Box_1$ such that v = S(v). Clearly, the point $g_1(v)$ is a desired point of intersection.

A point of intersection in the proof can be found by successive projections on the graph of f_1, \ldots, f_d . It is the limit of each convergent subsequence.

In the sequence, we will refer to "a point of intersection of the graphs of" f_1, \ldots, f_d shortly as "a point of intersection of" f_1, \ldots, f_d .

Remark 3.2. Note from Lemma 3.1 that

- (1) a point $w = (w_1, \ldots, w_d)$ is a point of intersection if and only if there are points $w^{(j)} = (w_1^j, \ldots, w_d^j)$ in S_{uj} for $j = 1, \ldots, d$ such that $w_i^j = w_i$ for $i \neq j$ and $f_j(w^{(j)}) = w_j$. Thus,
- (2) if w lies on Δu , then T(w) = w, i.e., w is a fixed point of T.

- (3) Suppose for each $u_n \in (0,1), w^n = (w_{n1}, \ldots, w_{nd})$ is a point of intersection and points $w^{n(j)} = (w_{n1}^j, \ldots, w_{nd}^j)$ are being in S_{u_nj} such that, for each $n, w_i^{n(j)} = w_{ni}$ for $i \neq j$ and $f_j(w^{n(j)}) = w_{nj}$ for each $j = 1, \ldots, d$. Also suppose that $u_n \to u, w^n \to w = (w_1, \ldots, w_d), w^{n(j)} \to w^{(j)} = (w_1^j, \ldots, w_d^j)$ for each $j = 1, \ldots, d$. Thus, $S_{u_nj} \to S_{uj}$ under the Hausdorff distance, $w^{(j)} \in S_{uj}, w_i^j = w_i$ for $i \neq j$ and $f_j(w^{(j)}) = w_j$. That is, w is a point of intersection of f_1, f_2, \ldots, f_d corresponding to u.
- (4) In the proof of the main result to follow, we will consider a negative part and a positive part of the function f_1 over S_{u1} , for each u. They are defined respectively as

$$N^{0}(f_{1}, u) = \{(x_{1}, \dots, x_{d}) \in S_{u1} : f_{1}((x_{1}, \dots, x_{d})) < x_{1}\},\$$

$$P^{0}(f_{1}, u) = \{(x_{1}, \dots, x_{d}) \in S_{u1} : f_{1}((x_{1}, \dots, x_{d})) > x_{1}\}.$$

As subsets of the d-1 dimensional Euclidean space \mathbb{R}^{d-1} , let partition $N^0(f_1, u)$ and $P^0(f_1, u)$ into (open) components, say,

$$N^{0}(f_{1}, u) = \bigcup_{\alpha} N^{0}_{\alpha}(f_{1}, u) , \quad P^{0}(f_{1}, u) = \bigcup_{\beta} P^{0}_{\beta}(f_{1}, u).$$

Let $N(f_1, u)$ and $P(f_1, u)$ be the closure of $N^0(f_1, u)$ and $P^0(f_1, u)$ respectively. Analogously, let $N_{\alpha}(f_1, u)$ and $P_{\beta}(f_1, u)$ be the closure of $N^0_{\alpha}(f_1, u)$ and $P^0_{\beta}(f_1, u)$ respectively. Put $Z_u = S_{u1} \setminus (N(f_1, u) \cup P(f_1, u))$. Thus, $Z_u \subset$ $\{(x_1, \ldots, x_d) \in S_{u1} : f_1((x_1, \ldots, x_d)) = x_1\}$. For $0 \le u \le \sqrt{d}$ and $\lambda \in \mathbb{R}$, let $f_{\lambda 1}(w_0) = f_{\lambda u1}(w_0) = \lambda g_{u1}(w_0) + (1-\lambda)w$ for $w = (x_1, \ldots, x_{j-1}, x_j, x_{j+1}, \ldots, x_d) \in$ S_{u1} where $w_0 = (x_1, \ldots, x_{j-1}, 0, x_{j+1}, \ldots, x_d)$. One may need to truncate the function $f_{\lambda 1}$ to lie within K. For each α

and β , put $N_{\lambda u}^{\alpha} = f_{\lambda u 1} \cdot \chi_{N_{\alpha}(f_{1},u)}$ and $P_{\lambda u}^{\beta} = f_{\lambda u 1} \cdot \chi_{P_{\beta}(f_{1},u)}$, and $O_{u} = f_{u 1} \cdot \chi_{Z_{u}}$.

By Lemma 3.1, for a given closed interval [a, b] in \mathbb{R} , the functions

$$N_{\lambda u}^{\alpha}, f_{2}, \dots, f_{d}, \text{ for some } \alpha,$$

or $P_{\lambda u}^{\beta}, f_{2}, \dots, f_{d}, \text{ for some } \beta,$
or $O_{u}, f_{2}, \dots, f_{d},$ (3.1)

intersect at a point, for all λ in [a, b].

To see why (3.1) holds, we argue on the contrary that the functions O_u, f_2, \ldots, f_d , do not intersect and for each α and β , there exists respectively λ_{α} and λ_{β} such that neither $N^{\alpha}_{\lambda_{\alpha} u}, f_2, \ldots, f_d$, nor $P^{\beta}_{\lambda_{\beta} u}, f_2, \ldots, f_d$, intersect. We claim that the union, called h, of the functions $O_u, N^{\alpha}_{\lambda_{\alpha} u}, P^{\beta}_{\lambda_{\beta} u}$, for all α and β is continuous, and clearly it does not have a common point with the functions f_2, \ldots, f_d which contradicts Lemma 3.1. To verify the claim, let $\{w_n\}$ be a sequence in S_{u1} converging to w. Suppose that w belongs to $P_{\beta}(f_1, u)$ for some β (the proof

for the case w belongs to $N_{\alpha}(f_1, u)$ for some α follows the same lines). Write $w = (x_1, \ldots, x_d)$ and $w_n = (x_{n1}, \ldots, x_{nd})$. If $f_1(w) > x_1$, then $f_1(w_n) > x_{n1}$ for all large n, i.e. $w_n \in P_{\beta}^0(f_1, u)$ for those n. Now for such $n, h(w_n) = f_{\lambda_{\beta}1}(w_n) = \lambda_{\beta}g_{u1}((w_n)_0) + (1 - \lambda_{\beta})w_n \rightarrow \lambda_{\beta}P_{\lambda_{\beta}u}^{\beta}(w) + (1 - \lambda_{\beta})w = h(w)$ as desired. On the other hand, if $f_1(w) = x_1$, then $f_1(w_n) \rightarrow x_1$. From the estimate

$$||h(w_n) - w_n|| \le M ||f_1(w_n) - w_n|| \to ||x_1 - x_1|| = 0,$$

and the fact that $w_{n1} \to x_1$, we get $h(w_n) \to x_1 = h(w)$ as desired. Here M is a bound for λ 's. For the remaining case when $w \in Z, w_n$ belongs to a (d-1)-ball B(w, n) for all large n which in turn $h(w_n) = w_{n1} \to x_1 = h(w)$.

We are now ready to prove the Brouwer Fixed Point Theorem:

Proof. If there is a sequence $\{w_n\}$ of points of intersection lying strictly below S_{u1} , i.e. in the direction of the first component, for all u, a convergent subsequence of $\{w_n\}$, by Remark 3.2 (3), must converge to a point of intersection which must lie in $S_{01} = \{\overline{O}\}$ and thus \overline{O} is a fixed point of T.

So we suppose that for some u there holds for each given bounded interval [a, b] (which we will assume in the sequent that it properly contains [0, 1]), there exists a β such that (3.1) holds for $P_{\lambda u}^{\beta}, f_2, \ldots, f_d$ for all $\lambda \in [a, b]$. Now let

 $u_0 = \sup \left\{ u \in [0, \sqrt{d}] : \text{for each bounded interval } [a, b], \text{ there exists } \beta \\ \text{such that (3.1) holds for } P_{\lambda u}^{\beta}, f_2, \dots, f_d \text{ for all } \lambda \in [a, b] \right\} \\ := \sup A$

We show that a point of intersection of f_1, f_2, \ldots, f_d lies in Δ_{u_0} and we are done. We suppose that

all points of intersection of functions f_1, f_2, \ldots, f_d do not lie in Δ_{u_0} . (3.2)

First, we claim that $u_0 \in A$. To achieve this, we are given any bounded interval [a, b] in \mathbb{R} and any λ in [a, b], and choose a sequence $\{u_n\}$ in A converging increasingly to u_0 . Take a sequence $\{\beta_n\}$ described in A corresponding to $\{u_n\}$. Thus there exists, for each n, a point of intersection w_n of functions $P_{\lambda u_n}^{\beta_n}, f_2, \ldots, f_d$. Assume without loss of generality that $w_n \to c_{\lambda}$.

By Remark 3.2 (3), c_{λ} is a point of intersection of $f_{\lambda 1}, f_2, \ldots, f_d$. In particular, when $\lambda = 1$, there exists a point c_1 of intersection of f_1, f_2, \ldots, f_d . We note from the uniform continuity of T that $P_{\beta_n}(f_1, u)$ converges to $P_{\beta_0}(f_1, u)$, for some β_0 , under the Hausdorf distance. Moreover, under our assumption (3.2), c_{λ} is a point of intersection of $P_{\lambda u_0}^{\beta_0}, f_2, \ldots, f_d$. This proof holds for all λ in [a, b], and it ends the proof of the claim that $u_0 \in A$. If $u_0 = \sqrt{d}$, then $\overline{1}$ is a fixed point of T as we reasoned for \overline{O} . So we consider the case $u_0 < \sqrt{d}$.

Case I [All $c_1 \in \mathbf{N}_{u_0 1}$]: The proof in this case is simpler than the following case, so we omit the proof.

Case II [Some $c_1 \notin \mathbf{N}_{u_0 1}$]. Choose $\varepsilon_0 > 0$ such that, under the subspace topology, $B(w, \varepsilon_0) \cap \Delta_{u_0} \subset P_{\beta_0}(f_1, u_0)$ for all points of intersection w of $P_{0u_0}^{\beta_0}, f_2, \ldots, f_d$. Otherwise, a sequence of such points w would converge to a point of intersection of f_1, f_2, \ldots, f_d which lies in Δ_{u_0} contradicting to our assumption. Thus the following sets are nonempty for all small $\delta > 0$. For $\delta > 0$ to be chosen appropriately later, let $u_1 \in (u_0, u_0 + \delta)$.

 Put

$$P_{\delta} = \{ (0, x_2, \dots, x_d) : (x_1, \dots, x_d) \in S_{u1}, P_{1u_1}^{\beta_1}(x_1, \dots, x_d) > x_1 + \delta \},\$$

for $\delta > 0$, and let $cl(P_{\delta})$ be its closure in $[0, 1]^{d-1}$. Note that P_{δ} is open in $[0, 1]^{d-1}$. For each $j = 2, \ldots, d$, let

$$Q_{\delta}^{j} = (\pi_{j}f_{j})^{-1}(cl(P_{2\delta}))$$
 and $R_{\delta}^{j} = [0,1]^{d-1} \setminus (\pi_{j}f_{j})^{-1}(P_{\delta}).$

Thus both Q_{δ}^{j} and R_{δ}^{j} are nonempty for small δ and they are disjoint compact sets in $[0,1]^{d-1}$. Hence the minimum distance between elements of the two sets is positive. Thus the union of two continuous real valued functions on Q_{δ}^{j} and R_{δ}^{j} is always continuous, and in turn it is extendable continuously on $[0,1]^{d-1}$. We use this fact to redefine f_1, \ldots, f_d . First put

$$h_j = f_j \cdot \chi_{Q_s^j}$$

If $\bar{O} \notin Q^1_{\delta}$, we then redefine only h_2 as

$$h_2 = f_2 \cdot \chi_{\bar{Q}^2_{\delta}} + a_1 \cdot \chi_{\{\bar{O}\}}$$

where $\bar{Q}_{\delta}^2 = Q_{\delta}^2 \bigcap ([0,1] \times [\eta,1] \times [0,1]^{d-2})$ for some small η and a_1 is any fixed element chosen from Q_{δ}^1 . Extend each h_j over $[0,1]^{d-1}$ continuously by Tietze extension theorem to obtain new set of f_1, \ldots, f_n . Note that new functions f_1, \ldots, f_n remain unchanged on $Q_{\delta}^1, \ldots, Q_{\delta}^d$ and they do not intersect on $R_{\delta}^1, \ldots, R_{\delta}^d$.

Consequently, by Lemma 3.1, they intersect only on $P_{\beta_1}(f_1, u_1)$. Now if there are sequences $\{v_n\}, \{\delta_n\}$, and $\{\lambda_n\}$ with $\{v_n\}$ is strictly decreasing to $u_0, \{\delta_n\}$ is strictly decreasing to 0 and $\{\lambda_n\} \subset [a, b]$ such that $f_{\lambda_n 1}, f_2, \ldots, f_d$ do not intersect when f_1 is restricted to $Q_{\delta_n}^1$. This means that intersection occurs for f_1 restricted to $R_{\delta_n}^1 \setminus Q_{\delta_n}^1$. But then under (3.2) and by uniform continuity of T, we obtain a contradiction. At this point we can find small $\delta > 0$ and $u_1 \in (u_0, u_0 + \delta)$ as planned so that (3.1) holds for $P_{\lambda u_1}^{\beta_1}, f_2, \ldots, f_d$ for all $\lambda \in [a, b]$.

The above argument shows that there is a number u_1 in A which is bigger than u_0 and this is not possible. Hence our claim that some point of intersection of f_1, f_2, \ldots, f_d lies in Δ_{u_0} is justified, and therefore the proof is complete.

524

A Simple Proof of the Brouwer Fixed Point Theorem

Remark 3.3. It is clear from the proof that, in practice, we only need to consider the graphs of functions f_1, \ldots, f_d restricted to each Δ_u . To find a fixed point, we move the vector $\bar{u} = (u, \ldots, u) \in \mathbb{R}^d$ along the vector $\bar{1}$ until Δ_u meets a point of intersection. That point is a fixed point of T. This method of finding a fixed point can be described as "catching a fish by a fishing net".

Acknowledgements : The first author would like to thank the Excellent Center in Economics, Chiang Mai University for the support. The result in this paper is inspired by the work of Jonathan Borwein and Mau-Hsiang Shih.

References

 S. Park, Ninety years of the Brouwer fixed point theorem, Vietnam J. Math. 27 (3) (1999) 187-222.

(Received 12 March 2015) (Accepted 1 June 2015)

THAI J. MATH. Online @ http://thaijmath.in.cmu.ac.th