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Abstract : In his celebrated article [1], V. Jones introduced Index theory of
subfactors , which is called Jones Index theory to his honor. In this article , he
showed that to any type Π1 subfactors, A ⊂ B corresponds a number [A : B],
which is independent from the Hilbert space on which the above subfactors act
upon. He proved that for values of [A : B] less than 4 the values of index are given
by the following set of numbers, ,4 cos2(π/n), n = 1, 2, . . .

For a given subfactors B1 ⊂ B2, Jones introduced a construction in term of
extending the above inclusion into the tower of subfactors , B1 ⊂ B2 ⊂ . . . ⊂ Bk ⊂
..B∞ , which is called Jones tower. One of the main tools to construct subfactors is
called commuting square. A commuting square consists of four finite dimensional
C∗ algebras that satisfy the following geometry,
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dimensional C∗ algebras that satisfy the following geometry,

B2,1 ⊂ B2,2⋃ ⋃

B1,1 ⊂ B1,2

If the commuting square is non-degenerate and equipped with Markov trace
then we can extend it vertically using Jones construction to get type Π1 limiting
algebras B1 ⊂ B2. Now using Jones construction on the subfactors B1 ⊂ B2,
we get the tower B1 ⊂ B2 ⊂ . . . ⊂ Bk ⊂ ..B∞. Next let us define the following
algebras , Di = (Bi)

′
⋂
B∞ = (x ∈ B∞ , x commute with Bi) , i=1,2. then we say

that the graph of the inclusion B1 ⊂ B2 is Ergodic if the algebras D1 and D2 are
factors , i.e, have trivial centers. We say that the inclusion B1 ⊂ B2 is strongly
amenable if the exist a von Neumann algebra isomorphism taking the subfactors
B1 ⊂ B2 onto the subfactors D2 ⊂ D1. Also usually we represent D1 by M st and
D2 by Nst. Note that in any case we always have, [D2 : D1]=[B1 : B2]. Now
keeping the same notations as in the above , given a non-degenerate commuting
square, we are going to show that the corresponding induced Π1 subfactors B2 ⊃
B1, have Ergodic principal and dual graphs. Furthermore, we will show that if
the induced subfactors index fall within certain interval then their inclusion is
either strongly amenable or the inclusion of corresponding derived subalgebras
D2 ⊂ D1 is isomorphic to Jones subfactors. In the later case we show that the
corresponding graphs to the higher relative commutants of the above inclusion,
ΓB1,B2

, have norms equal to 2. This extends the results of U.Haagerup in[2], Scott
Morrison and Noah Snyder in [3], stating that the only infinite depth principal
graphs corresponding to subfactors with their indices located in the interval (4, 5)
are A∞ graphs.

Keywords : Subfactors; Von Neumann algebras; Jones Index; Lattice; Relative
commutants.
2010 Mathematics Subject Classification : 46L37.

1 Introduction and Preleminaries

In [4] and [5], V.Jones used results from Index theory to find new polinomial
invariant for Link and knots. Later on Edward Witten in [6] applied Jones poli-
nomials to Quantum field theory and introduced polinomial invariant for three
manifold. Further applications to physics and other branches of mathematics has
been done . Since then the advances of Jones Index theory motivated the need
to answer unknown questions regarding irreducible subfactors of finite index. For
example finding the set IRRH of values of index for hyperfinite irreducible sub-
factors , with index larger than 4 is still and open problem. In Corollary 4.5 [7] ,
S.Popa showed that IRRH contains a gap between 4 to 4.026. In [8], the authors
prove that IRRH ⊃ [37.0037]. escope of this field of research is immense and at
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this article we try to answer few of the open problems.
One of the main tools to analyze and to construct a pair of irreducible type Π1

subfactors is called commuting square. They were first introduced by S.Popa in
[9]. In this article we are going to use commuting squares to show some important
properties of the corresponding induced subfactors.
Suppose we are Given a following non-degenerate commuting square

B2,1 ⊂ B2,2⋃ ⋃

B1,1 ⊂ B1,2

(1)

For a given inclusion of finite dimensional C∗ algebras A ⊂ B, let TB
A , be the

matrix representation of the above inclusion with ‖TB
A ‖, the norm of the linear

operator TB
A . Then the fact that (1) is non-degenerate implies that matrices

T = T
B2,1

B1,1
, S = T

B1,2

B1,1
, G = T

B2,2

B1,2
, L = T

B2,2

B2,1
, are indecomposable with, ,

‖T ‖ = ‖G‖ and ‖S‖ = ‖L‖ . Throughout this article the unique normal faithful
normalized trace on a type Π1 factorM is represented by trM . In particular ifM is
a limiting algebra corresponding to periodic tower of finite dimensional algebras,
(Bi ⊂ Bi+1)

∞

i=1 with TB2

B1
indecomposable , then trM is the The Markov trace

corresponding to the inclusion B1 ⊂ B2. For the definitions of commuting square
, Markov trace , Jones tower ,. and other preliminaries see for instance [10] , [11]
, [12],[13] and [14]. Now by the standard arguments in [11], we can extend (1),
upward using the basic construction on the pair B1,1 ⊂ B2,1, to get the following
tower of commuting squares

B1 ⊂ B2⋃ ⋃

...
...⋃ ⋃

Bk,1 ⊂ Bk,2⋃ ⋃

...
...⋃ ⋃

B3,1 ⊂ B3,2⋃ ⋃

B2,1 ⊂ B2,2⋃ ⋃

B1,1 ⊂ B1,2

(2)

with B3,2 = < B2,2 , eB2,2
> , B3,1 = < B2,1 , eB2,2

>. Proceeding inductively,
for any integer k larger that 3 , set, Bk,2 = < Bk−1,2 , eBk−2,2

>, Bk,1 = <
Bk−1,1 , eBk−2,2

>, where eBk−2,2
is the projection corresponding to the action of

Bk−2,2 on L2
(Bk−1,2,trB2

). Let us set new and more convenient names for the Jones

projections in the above ,f1 = eB1,2
, f2 = eB2,2

, . . . , fk = eBk,2
, then we have Bk,2

=< Bk−1,2, fk−2 > for each integer k that is equal or larger than 3. Also note that
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B1 and B2 are the limiting algebras of the towers {Bk,1} and {Bk,2} respectively.
Next we can extend the inclusion B1 ⊂ B2 right ward using the basic construction
to get the tower,

B1 ⊂ B2 ⊂ B3 =< B2, eB1
>⊂ . . . ⊂< Bk, eBk−1

>= Bk+1 ⊂ . . . ⊂ B∞

where B∞ is the limiting algebra of the above tower. Furthermore for each n ≥ 1,
we have the following tower of finite dimensional algebras.

Bn,1 ⊂ Bn,2 ⊂ Bn,3 =< Bn,2, eB1
>⊂ . . . ⊂ Bn,k =< Bn−1,k, eBk−2

>⊂ . . . ⊂ Bn

with Bn the limiting algebra of the above tower, which is isomorphic to the Jones
tower induced from the finite algebras inclusion Bn,1 ⊂ Bn,2 by standard ar-
guments. Now in order to facilitate our notations, we rename the above Jones
projections as in the following ,

e1 = eB1
, e2 = eB2

, . . . , ek = eBk
, . . .

The above construction will provide us with the following Jones system of
commuting squares, i.e, each of the horizontal and vertical towers are isomorphic
to Jones tower. Therefore we get the following tower of commuting squares

B1 ⊂ B2 ⊂ . . . ⊂ Bk ⊂ . . . B∞

⋃ ⋃ ⋃ ⋃

...
...

...
...⋃ ⋃ ⋃ ⋃

Bn,1 ⊂ Bn,2 ⊂ . . . ⊂ Bn,k ⊂ . . . Bn

⋃ ⋃ ⋃ ⋃

...
...

...
...⋃ ⋃ ⋃ ⋃

B2,1 ⊂ B2,2 ⊂ . . . ⊂ B2,k ⊂ . . . B2
⋃ ⋃ ⋃ ⋃

B1,1 ⊂ B1,2 ⊂ . . . ⊂ B1,k ⊂ . . . B1

(3)

In particular B1 is the limiting algebra of the tower, B1,1 ⊂ B1,2 ⊂ . . . B1,k ⊂
. . .⊂ B1. Finally, we have , Bk,2 =< Bk−1,2, fk−2 > and Bn,k =< Bn,k−1, ek−2 >
In the process of writing this article we use perturbation technics frequently.These
technics are mainly based on the results of E. Christensen [10] and A. Ocneanu
[15]. In the last section of this work some open problems have been addressed,
with partial solution provided. The techniques we use here are simple based on
S.Popa’s work.

2 On the Properties of Subfactors induced from

Commuting Squares

Considering the diagram (3), we need to bring some facts from S. Popa [16]
that we will need in this section. As we mentioned before let Bst

1 = B
′

1

⋂
B∞
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and (B1)st = (B1)
′ ⋂

B∞. S.Popa showed that Bst
1 is a factor if and only if

(B2)st = (B2)
′ ⋂

B∞is factor. In this case we say that the diagram(3) is Ergodic
or the inclusion B1 ⊂ B2 is Ergodic.

Let IR be the set of all irreducible type Π1 subfactors of finite index. Also
by the results of M.Pimsner and S.Popa in [16] for the couple M ⊃ N , in IR, we
have, H(M : N) = ln(λ−1(M,N)) = ln([M : N ]).In general subfactors inclusion
M ⊃ N , of finite index , is called extremal if H(M : N) = ln(λ−1(M,N)) =
ln([M : N ]).Let IRP ⊂ IR be subset of IR consisting of subfactors that are lim-
iting algebras of periodic tower of commuting squares. Then by Theorem.1[17],
any inclusion M ⊃ N that is in IRP is extremal. Suppose we are given a sub-
factors M ⊃ N of finite index. let us define M st ⊃ Nst, be the limiting alge-
bras corresponding to the tower of higher relative commutants of the inclusion
M ⊃ N . Then by Theorem.1[18] we have, λ−1(M st : Nst) = [M : N ]. Fur-
thermore, Lemma.1[18] implies that the tower of higher relative commutant cor-
responding to the inclusion M ⊃ N is a system of commuting square. Thus M st

(respectively Nst) is a factor or has an infinite dimensional center. But since
λ−1(M st : Nst) < ∞ this implies that M st is factor if and only if Nst is factor.
Keeping the same notations as in section-1, we proceed to state the main result
of this section in Theorem 2.2 ,proving that in general the inclusions B1 ⊂ B2

and B1 ⊂ B2 have Ergodic principal and dual graphs.At this point note that for
the extremal inclusion of subfactors the dual graph is Ergodic if and only if the
principal graph is Ergodic. This fact allow us to just state that the inclusion
graphs are Ergodic in the similar cases as in the above.This fact was first proved
by the first author at [18]. Unfortunately this fact is not yet a common knowledge
in the field. Suppose we are given an subfactor inclusion N0 = N ⊂ M .Then
it is well known (following result of S.Popa in [16]), there exist a projection a
projection e = e0 in N , such that N1 its relative commutant inside N is a
subfactor and e induces the expectation of N onto N1. Furthermore, we have
[M : N ] = [N : N1] = 1/trM (e). continuing this process inductively, we will get
an infinite sequence of projections (ek)

∞

k=1 and corresponding infinite sequence of
subfactors (Nk ⊂ Nk+1)

∞

k=1 , with ek a projection in Nk−1 that induces the ex-
pectation of Nk onto Nk+1. Furthermore Nk+1 is equal to the relative commutant
of ek in Nk. The above decreasing sequence of subfactors is called a choice of
tunnel. Let us define, Lk = N

′

k∩M,Pk = N
′

k∩N,L =
⋃

∞

k=1 Lk and P =
⋃

∞

k=1 Pk.
Following the notations in S.Popa’s article [19], we have that M st is equal to the
von Neumann algebra generated by L (respectively, Nst is equal to the Von Neu-
mann algebra generated by P ).The sequence of projections (ek)

∞

k=1 acts on the
inclusion Nst ⊂ M st in exactly the same way as it acted on the inclusion N ⊂ M

to produce the following tonnel M st
e0
⊃ Nst

e1
⊃ Nst

1

e2
⊃ Nst

2 ⊃ . . .⊃Nst
k ⊃ . . .. In

theorem 5.3.1[19], S.Popa showed that if the inclusions N ⊂ M and Nst ⊂ M st

, are extremal, then the inclusion N ⊂ M is strongly amenable. The following
lemma is one of the consequences of the remark in Section-1[19]. It will express
one of the important canonical properties of inclusions, M ⊃ N of type Π1 factors
with ergodic graph.
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Lemma 2.1. Suppose M ⊃ N is extremal inclusion of Π1, factors with [M:N]
< ∞ and ΓM

N ergodic. Then M st ⊃ Nst is strongly amenable.

Proof. Let M
e0
⊃ N

e1
⊃ N1

e2
⊃ N2 . . .

ek
⊃ Nk ⊃ . . . be a choice of a tunnel as in the

above. The following the definition,

M st =<

∞⋃

k=1

N ′

k ∩M >, Nst =<

∞⋃

k=1

N ′

k ∩N > .

Then we will be provided a choice of the tunnel M st
e0
⊃ Nst

e1
⊃ Nst

1

e2
⊃ Nst

2 ⊃
. . .. Now by Theorem (5.3.2)[15], it is enough to show that (M st)st = M st and
(Nst)st = Nst. But

(M st)st = <

∞⋃

k=1

M st ∩ (Nst
k )′ > ⊂ M st

On the other hand since Nst
k ⊂ Nk, we have ,

∞⋃

k=1

M st ∩ (Nst
k )′ =

∞⋃

k=1

(<

∞⋃

i=1

N ′

i ∩M > ∩(Nst
k )′) ⊃

∞⋃

k=1

(<

∞⋃

i=1

N ′

i ∩M > ∩N ′

k) =

<

∞⋃

i=1

N ′

i ∩M > ∩(

∞⋃

k=1

N ′

k).

Thus

<
∞⋃

k=1

M st ∩ (Nst
k )′ >⊃<<

∞⋃

i=1

N ′

i ∩M > ∩(
∞⋃

k=1

N ′

k) >⊃ M st

hence M st = (M st)st and similarly Nst = (Nst)st.

As we mentioned earlier or by Corollary 4.5[19] , if M st ⊃ Nst is extremal then
the inclusion N ⊂ M is strongly amenable . But if the inclusion is not extremal
then N ⊂ M might not be strongly amenable. In particular Suppose N ⊂ M is
strongly amenable. Next if the relative commutant of N inside M is not trivial ,
let us reduce the inclusion by minimal projections in order to get subfactors with
trivial relative commutant. Whether the inclusions of these induced subfactors
are strongly amenable is a question that has not been yet answered and we will
talk about it at the later sections. Set Q1 = Bst

1 and Q2 = Bst
2 respectively ( set

Q1 = (B1)st and Q2 = (B2)st) . Note , that by theorem 2.2, the inclusion B1 ⊂ B2

, respectively (B1 ⊂ B2 ) has Ergodic graph i.e, Q1 and Q2, respectively(Q
1 and

Q2) are factors. By Theorem 5.3.1[19] if inclusions of derived algebras are extremal
then the inclusions of the limiting algebras B1 ⊂ B2 and B1 ⊂ B2 are strongly
amenable. But generally this is not the case. We have proved that if M st, Nst

are factors then the inclusion M st ⊃ Nst is strongly amenable and we are done.
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Hence we only have to consider the cases , where the inclusion M st ⊃ Nst is not
extremal.
The following is well know example of the inclusion with ergodic graph and has
been mentioned in [16] and [19]. Consider an infinite sequence e1, e2, . . . , en, . . . of
Jones projections and set M =< e1, e2, . . . , en, . . . >, N =< e2, e3, . . . , en, . . . >
then we get the algebras,N1 =< e3, . . . , en, . . . >, N2 =< e4, . . . , en, . . . >,. . . ,Nk =<
ek+2, . . . >,. . .

That induce the choice of a tunnel M
e1
⊃ N

e2
⊃ N1

e3
⊃ N2 . . . ⊃ Nk

ek+2

⊃ Nk+1 ⊃ . . .
on the pair M ⊃ N and it is easy to see that in this case, M st = M and Nst = N ,
hence by Theorem(5.3.2)[19], the inclusion M ⊃ N is strongly amenable.

For a given the pair B1 ⊂ B2 of finite subfactors using standard basic con-
struction, we can construct increasing tower of finite subfactors B1 ⊂ B2 ⊂ . . . ⊂
Bk ⊂ . . . ⊂ B∞ of finite subfactors and corresponding infinite set of Jones pro-
jections, e1, e2, ..., ek.... Now using downward construction we get another infinite
set of Jones projections , e0, e−1, ..., e−k... Finally the union of the above two sets
of projections, i.e, the set (ei) , i running from −∞ to +∞ is a Jones sequence of
projections , hence every infinite tail of it will generates a type Π1 factor. These
facts are going to be used in proving Theorem 2.2. But before that we are going
to state two well known properties of subfactors. We say that the inclusion of
subfactors A ⊂ B is irreducible if (A)′

⋂
B is trivial. Note by [16] for a given

subfactors A ⊂ B of finite index the inclusion is extremal if and only if for any
projection p ∈ (A)′

⋂
B, the index of reduced subfactors is given by [Ap : Bp]=

(trA(p))
2[A : B]. In the process of proving the following theorem we will use our

results in [17], that for sufactors that are limiting algebras corresponding to a
non-degenerate commuting square, their inclusion is extremal. But to guarantee
the limiting algebras inclusion to be irreducible there are some conditions that are
expressed in [17] and [20].

Theorem 2.2. Considering the the tower of commuting squares in diagram (3) ,
and let the subfactors B1 ⊂ B2 be corresponding limiting algebras. Then (B1)

′ ⋂
B∞

and (B2)
′ ⋂

B∞ , are factors , hence the graph of the inclusion B1 ⊂ B2 is Ergodic.

Proof. Let the sequence of Jones projections (ek)
∞

k=1 be as in the arguments in
connection to diagram(3). Then using downward construction on the couple B1 ⊂
B2 we get the sequence of Jones projections (ek)

∞

−∞
as in the above. In according

to the results of S.Popa in [19], to complete the proof of theorem 2.2 , we only
have to prove that (B1)′

⋂
B∞ is a factor.Let Let p be a projection in the center

(B1)′
⋂
B∞ . for a given small ε > 0 , using the arguments in the Proposition

2.3[10] , we can choose , an integer n large enough depending on ε such that , pn =
EBn

(p) , the expectation of p ontoBn be a positive operator with , ‖EBn
(p)−p‖2 <

ε. Also note that pnǫ(B
1)′

⋂
Bn, hence using Ocneanu’s compactness Theorem in

[15], pnǫBn,1 .Furthermore by Lemma 2.1[10], pn is a positive operator, with ‖pn‖
close enough to identity. Now consider the projection

e= en.en−1 . . . e3 and a positive operator pn , Since p commutes with all the
projections (ei) for i larger or equal to 3 , we have , tr(p.e) = tr(p)tr(e) = tr(pn.e)
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By Proposition 3.1.5 [11] , there exists a positive central operator rn in B1,1

such that pn.e = rn.e. So tr(p.e) = tr(rn.e). Since rn commutes with all set
of projections (ei) , for i larger or equal to 3 , we have tr(rn.e) = tr(rn).tr(e).
This implies that tr(rn) = tr(p). Note that by the arguments in the proof of
Proposition 2.3[10] there exists a number β > 1, which is close enough to one
such that (β)pn is larger than an spectral projection corresponding to pn. This
implies that ‖pne‖ is close to identity. Hence ‖rn‖ is close to identity. Therefore
without loss of generality we can assume that rn dominate a central projection in
B1,1. This implies that the center of (B1)′

⋂
B∞ is finite dimensional. Thus by

the results of S.Popa in 1.4[19] ,(B1)′
⋂
B∞ is a factor.

At this point we finalize this section by discussing the nature of irreducible
subfactors B1 ⊂ B2 , that that are induced from a non-degenerate commuting
squares. To faciliate notations let us set Q1 = Bst

1 and Q2 = Bst
2

Corollary 2.3. Keeping the same notations as in the above ,suppose the system(3)
is such that the inclusion B1 ⊂ B2 is irreducible and the subfactor inclusion Q1 ⊂
Q2 is extremal. Then the subfactor inclusion B1 ⊂ B2 is strongly amenable and
hence the inclusion Q1 ⊂ Q2 is irreducible.

Proof. The proof is the direct application of Theorem 5.3.1 [19].

Theorem 2.4. Keeping the above notations , if [B1 : B2]< 5.8 , then the inclusion
of B1 ⊂ B2 is either strongly amenable or the inclusion Q1 ⊂ Q2 is locally trivial.
in later case case, Q1 ⊂ Q2 is isomorphic to the inclusion of Jones subfactors

Proof. if the inclusion Q1 ⊂ Q2 is extremal then by Lemma 2.3 , inclusion B1 ⊂
B2 is strongly amenable and the relative commutant of Q1 inside Q2 is trivial.
Otherwise the relative commutant C1 = (Q1)

′
⋂
Q2 is not trivial and we can use

lemma(2.2.2)[12], to find the relation between traces of projection belong to any
partition of unity in C1 and the index , of Q1 in Q2 which is equal to [B1 : B2].
Hence by the arguments at the end of Corollary 4.6[16] , for [B1 : B2]< 9 , C1 can
only have 2 orthogonal projection. But if C1 is isomorphic to M2(C) , then the
inclusion of Q1 in Q2 is extremal and hence by Theorem 5.3.1[19] , C1 is trivial
and this is contradiction. So we can assume that,C1 is isomorphic to sum of two
copies of identity . that means C1 is generated by two projections p and q = 1− p
. if [(Q1)p : (Q2)p] = [(Q1)q : (Q2)q] = 2 ,then in this case the minimum value of
[Q1 : Q2] can reach to 8. This implies that for [Q1 : Q2] smaller than 8 , either
the inclusion Q1 ⊂ Q2 is locally trivial , i.e, [(Q1)p : (Q2)p] = [(Q1)q : (Q2)q] = 1
or one of the indices is equal to 1 and the other must be equal to 2 , in the later
case the minimum value of index can reach to approximately 5.8. So for index less
than 5.8 , the inclusion of Q1 ⊂ Q2 is locally trivial. But by the results of S.Popa
in Secton-5[16] , these kind of inclusions are isomorphic to Jones subfactors. This
completes the proof.
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In some cases it is very hard to examine from the structure of commuting
square if the corresponding limiting algebras inclusion , B1 ⊂ B2 is irreducible.
Given certain conditions the following lemma can help. But first let us consider
the following set , E = (8, (1 + 2cos(π/(n+ 2))2, n ≥ 1).

Corollary 2.5. Keeping the same notations as in the above. Let Ind = [B2 :
B1] ≤ 9 , with Ind not a member of E. Then the inclusion B1 ⊂ B2 is irreducible.

Proof. By results of theorem 1.3.2[19], in diagram(1), if (‖T
B1,2

B1,1
‖)2 ≤ 9 and is not

equal to any elements in the set E = (8, (1 + 2cos(π/(n + 2))2, n ≥ 1), the fact
that the inclusion B1 ⊂ B2 is extremal, implies that the inclusion B1 ⊂ B2 is
irreducible. This completes the proof.

In order to prove Theorem 2.8 , which is the conclusive result of this section
we need to prove the following lemmas.

Lemma 2.6. Following the above notations for each integer k , (Nst
k )

′

∩M st ⊃

(Nk)
′

∩M .

Proof. As in Lemma 2.1, we have, M st =<
⋃

∞

k=1 N
′

k∩M > andNst
k =<

⋃
∞

l=1 N
′

l∩

Nk >.Note that (N
′

l ∩ Nk)
′

⊃ Nl ∪ N
′

k. This implies that , (N
′

l ∩ Nk)
′

∩M st ⊃

(Nl∪N
′

k)∩M
st. But (Nl∪N

′

k)∩M
st = (Nl∩M

st)∪(N
′

k∩M
st) and (Nk)

′

∩M st =

(Nk)
′

∩M . Since this is true for each integer l , we have (Nst
k )

′

∩M st ⊃ (Nk)
′

∩M .

Lemma 2.7. The sequence of inclusions (Nst
k )

′

∩M st ⊃ (Nk)
′

∩M,k = 1, 2, 3, .....,
is a tower of commuting squares.

Proof. By the definition for each integer k, ek is an element of ,Nst
k+1 and induces

the expectation of Nk onto Nk−1, ( respectively it induces the expectation of Nst
k

onto Nst
k−1). This means that for each element y in Nst

k , ekyek = ENk−1
(y)ek =

ENst
k−1

(y)ek. Hence we have, ENk−1
(y) = ENst

k−1
(y)

Let ΓB1,B2
be as defined in Section-5[19].

Theorem 2.8. (Classification) Keeping the same notations as earlier , suppose,4 ≤
Ind = [B1 : B2] ≤ 5.8 . Suppose the inclusion N = B1 ⊂ M = B2 is not strongly
amenable. Then ‖ΓN,M‖2 = 4.

Proof. By Lemma 2.7, the sequence (Nst
k )

′

∩M st ⊃ (Nk)
′

∩M,k = 1, 2, 3, ....., is
a tower of commuting squares..But by results in section-5[16] the inclusion Nst ⊂
M st is isomorphic to the Jones subfactors. This implies that ΓNst,Mst = A∞. Next
the properties of commuting squares resulted from the tower of higher relative
commutants implies that ‖ΓN,M‖2 = 4.
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Remark 2.9. Since there are only finite numbers of connected bipartite graphs of
norm equal two, namely A∞, An,∞, A∞,∞, D∞, Dn,∞, n = 1, 2, .... theorem(2.8)
classifies subfactors of index less than 5.8 in term of their principal and dual
graphs. This is also coherent with results of Scott Morrison and Noah Snyder
in[3]. Keeping the above notations, at this point it is crucial to see if being an
strongly amenable subfactor is a generic property. That means if the inclusion
B1 ⊂ B2 is strongly amenable then the inclusion B1 ⊂ B2 is strongly amenable
too. If the above statement is correct,then it generalizes the results of N.Sato in
[21] , proving that if one of the inclusions of induced subfactors, B1 ⊂ B2 , is of
finite depth , then the inclusion of other induced subfactors B1 ⊂ B2 ,is of finite
depth too. The other property to check is the following. Let B1 ⊂ B2 be strongly
amenable and C1 is a middle sunfactor the the inclusions C1 ⊂ B2 and B1 ⊂ B2

are strongly amenable too. We are going to show that the second property is in
fact true.

Theorem 2.10. Suppose we are given a subfactors inclusion B1 ⊂ B2 of finite
index , such that the inclusion is strongly amenable.Let C1 be a middle subfactor.
Then the inclusions C ⊂ B2 and B1 ⊂ C are strongly amenable too.

Proof. To prove the above theorem , we are going to use methods similar to the
methods employed by D.Bisch in [22]. Now we use Jones basic construction on
the couple B1 ⊂ B2 inductively to get the following tower.
B1 ⊂ C1 ⊂ B2 ⊂ C2 ⊂ B3 ⊂ C3 ⊂ . . . ⊂ Bk−1 ⊂ Ck−1 ⊂ Bk ⊂ Ck ⊂ Bk+1 ⊂
Ck+1 ⊂ . . .
Where the inductive process of construction can be formulated at the kth stage
where all the operators are acting on L2(Bk, trBk

) as in the following, Bk+1 =
JBk

B
′

k−1JBk
and Ck+1 = JBk

C
′

k−1JBk
.

This implies that for each integer k, there exists a projection fk in C
′

k ∩ Ck+1

such that (Ck+1)fk = (Ck)fk . Now consider the following projections. f∗

2k =
f2.f4 . . . f2k, f

+
2k = f4.f6 . . . f2k and the sequence B1 ⊂ B3 ⊂ B5 ⊂ . . . ⊂ B2k+1.

For any odd integer n which is less or equal than 2k + 1, set An = Bn.f
∗

2k,
Then it is easy to show that the sequence A1 ⊂ A3 ⊂ A5 ⊂ .... ⊂ A2k+1 is
isomorphic to the sequence B1 ⊂ C1 ⊂ C∗

2 ⊂ C∗

3 ⊂ ...C∗

k ⊂ ... which is the result
of iterating the basic construction on the couple B1 ⊂ C1.For an odd integer
n = 2k + 1, let us denote m = 2k , furthermore consider the inclusion B

′

1 ∩ C∗

n ⊂
(C∗

2 )
′

∩ C∗

n. By the above arguments this inclusion is isomorphic to the inclusion
(A1)

′

∩ An ⊂ (A3)
′

∩ An . By the definition we have f∗

m = f2f
+
m. This implies

the following equalities, (A1)
′

∩ An = (B
′

1 ∩ Bn)f2f+
m

= ((B
′

1 ∩ Bn)f2)f+
m

and

(A3)
′

∩ An = ((B
′

3 ∩ Bn)f2)f+
m

Hence the inclusion (A1)
′

∩ An ⊃ (A3)
′

∩ An is

isomorphic to the inclusion (B
′

1 ∩Bn)f2 ⊃ (B
′

3 ∩Bn)f2 Let us define D1 to be the

Von Neumann algebra generated by the algebras B
′

1 ∩ Bn, n = 1, 2, 3, ... and D3

be the Von Neumann algebra generated by the algebras B
′

3 ∩ Bn, n = 1, 2, 3, ...
By our assumption since the inclusion B1 ⊂ B2 is strongly amenable, for and
projection q in the relative commutant of D3 in D1 , the inclusion (D3)q ⊂ (D1)q
is extremal. This implies that if an odd integer n = 2k + 1 is large enough then
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the values , ln[λ−1((A1)
′

∩ An : (A3)
′

∩ An)] , H((A1)
′

∩ An : (A3)
′

∩ An) and
ln(λ−1((D3)f2 : (D1)f2)) are close enough to each other, Hence Theorem(5.3.1)[16]
implies That the inclusion B1 ⊂ C1 is strongly amenable. Similarly we can show
that the inclusion C1 ⊂ B2 is strongly amenable.
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