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Abstract : In this paper, we introduce an iterative scheme for finding a common
element of the set of solutions of the general equilibrium problem and the set of
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1 Introduction

Let E be a real Banach space and let E∗ be the dual of E. Let C be a closed
convex subset of E. We denote by J the normalized duality mapping from E to
2E

∗

. defined by

Jx = {x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖2 = ‖x∗‖2}, ∀x ∈ E,
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where 〈·, ·〉 denotes the generalized duality pairing. We denote the strong conver-
gence and the weak convergence of a sequence {xn} → x in E by xn → x and
xn ⇀ x, respectively. First, we recall that a mapping A : C → E∗ is said to be:

1. monotone if 〈Ax −Ay, x− y〉 ≥ 0, ∀x, y ∈ C.

2. α-inverse-strongly monotone if there exists a positive real number α such
that

〈Ax −Ay, x− y〉 ≥ α‖Ax−Ay‖2, ∀x, y ∈ C.

A mapping T : C → C is said to be nonexpansive if ‖Tx − Ty‖ ≤ ‖x −
y‖, ∀x, y ∈ C. A point x ∈ C is said to be a fixed point of T provided Tx = x.
Denote by Fix(T ) the set of fixed points of T ; that is, Fix(T ) = {x ∈ C : Tx = x}.

Let A : C → E∗ be a nonlinear mapping and f : C × C → R be a bifunction,
where R denotes the sets of real numbers. In this paper we consider the following
generalized equilibrium problem of finding u ∈ C such that

f(u, y) + 〈Au, y − u〉 ≥ 0, ∀y ∈ C. (1.1)

The set of solutions of (1.1) is denoted by EP , i.e.,

EP = {u ∈ C : f(u, y) + 〈Au, y − u〉 ≥ 0, ∀y ∈ C}.

When E = H is a Hilbert space, problem (1.1) was introduced and studied by
Takahashi and Takahashi [1]. We remark that problem (1.1) and related problems
were extensively studied recently. See, e.g., [2–31].

In the case of A ≡ 0, problem (1.1) is equivalent to finding u ∈ C such that
f(u, y) ≥ 0, ∀y ∈ C, which is called equilibrium problem. The set of its solutions
is denoted by EP (f). In the case of f ≡ 0, problem (1.1) is equivalent to finding
u ∈ C such that 〈Au, y−u〉 ≥ 0, ∀y ∈ C, which is called the variational inequality
of Browder type. The set of its solutions is denoted by V I(A,C).

If C is a nonempty closed convex subset of a Hilbert space H and PC : H → C

is the metric projection of H onto C, then PC is nonexpansive. This fact actually
characterizes Hilbert spaces and, consequently, it is not available in more general
Banach spaces. In this connection, Alber [32] recently introduced a generalized
projection operator C in a Banach space E which is an analogue of the metric
projection in Hilbert spaces.

Consider the functional φ : E × E → R defined by

φ(y, x) = ‖y‖2 − 2〈y, Jx〉+ ‖x‖2 (1.2)

for all x, y ∈ E, where J is the normalized duality mapping from E to E∗. Observe
that, in a Hilbert space H , (1.2) reduces to φ(y, x) = ‖x − y‖2 for all x, y ∈ H .
The generalized projection ΠC : E → C is a mapping that assigns to an arbitrary
point x ∈ E the minimum point of the functional φ(y, x), that is, ΠCx = x∗, where
x∗ is the solution to the minimization problem:

φ(x∗, x) = inf
y∈C

φ(y, x). (1.3)
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The existence and uniqueness of the operator ΠC follows from the properties of
the functional φ(y, x) and strict monotonicity of the mapping J . In Hilbert spaces,
ΠC = PC . It is obvious from the definition of the function φ that

(1) (‖y‖ − ‖x‖)2 6 φ(y, x) 6 (‖y‖+ ‖x‖)2 for all x, y ∈ E.

(2) φ(x, y) = φ(x, z) + φ(z, y) + 2〈x− z, Jz − Jy〉 for all x, y, z ∈ E.

(3) φ(x, y) = 〈x, Jx − Jy〉 + 〈y − x, Jy〉 6 ‖x‖‖Jx − Jy‖ + ‖y − x‖‖y‖ for all
x, y ∈ E.

(4) If E is a reflexive, strictly convex and smooth Banach space, then, for all
x, y ∈ E,

φ(x, y) = 0 if and only if x = y.

Recently, Yao, Liou and Shahzad [33] introduced the following iterative scheme.
For given x0 ∈ C, let the sequence {xn} be generated iterative by

xn+1 = αnxn + (1− αn)QC [(1 − βn)Txn], n ≥ 0.

Where QC : E → C is sunny nonexpansive retraction and T : C → C is nonexpan-
sive mapping. They proved strong convergence theorem for the iterative algorithm
under some mild conditions.

Very recently, Cai and Bu [34] introduced the new iterative algorithm (1.4) for
finding a common element of the set of solutions of the general equilibrium prob-
lem and the set of solutions of the variational inequality for an inverse-strongly
monotone operator and the set of common fixed points of two infinite families
of relatively nonexpansive mappings or the set of common fixed points of an in-
finite family of relatively quasi-nonexpansive mappings in Banach spaces. More
precisely, they proved that the sequence {xn} generated by u1 ∈ C,










xn ∈ C such that f(xn, y) + 〈Bxn, y − xn〉+
1

rn
〈y − xn, Jxn − Jun〉 ≥ 0, ∀y ∈ C,

zn = ΠCJ
−1(Jxn − λnAxn),

un+1 = J−1(αnJxn + βnJTnzn + γnJSnzn), ∀n ≥ 1,

(1.4)
where A : C → E∗ is α-inverse strongly monotone operator and B : C → E∗

is β-inverse strongly monotone operator. They proved some weak convergence
theorems for the iterative algorithm under some mild conditions.

In this paper, motivated and inspired by Yao, Liou and Shahzad [33], Cai and
Bu [34], we prove strong convergence theorem for finding a common element of
the set of solutions of the general equilibrium problem and the set of fixed point
of nonexpansive mappings in Banach space. Our results extend and improve the
corresponding results of Yao, Liou and Shahzad [33].

2 Preliminaries

A Banach spaceE is said to be strictly convex if ‖x+y
2

‖ < 1 for all x, y ∈ E with
‖x‖ = ‖y‖ = 1 and x 6= y. It is also said to be uniformly convex if limn→∞ ‖xn −
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yn‖ = 0 for any two sequences {xn}, {yn} in E such that ‖xn‖ = ‖yn‖ = 1 and
limn→∞ ‖xn+yn

2
‖ = 1. Let U = {x ∈ E : ‖x‖ = 1} be the unit sphere of E. Then

the Banach space E is said to be smooth provided

lim
t→0

‖x+ ty‖ − ‖x‖

t

exists for each x, y ∈ U . It is also said to be uniformly smooth if the limit is
attained uniformly for x, y ∈ U . It is well know that if E is smooth, then the
duality mapping J is single valued. It is also known that if E is uniformly smooth,
then J is uniformly norm-to-norm continuous on each bounded subset of E. Some
properties of the duality mapping have been given in [36–39].

Let D be a subset of C and Q be a mapping of C into D. Then Q is said to
be sunny if

Q(Qx+ t(x−Qx)) = Qx,

whenever Qx+ t(x−Qx) ∈ C for x ∈ C and t ≥ 0. A mapping Q of C into itself
is called a retraction if Q2 = Q. If a mapping Q of C into itself is a retraction,
then Qz = z for all z ∈ R(P ), where R(P ) is the range of Q. A subset D of C
is called a sunny nonexpansive retract of C if there exists a sunny nonexpansive
retraction from C onto D.

Lemma 2.1 ([39]). (Demiclosedness Principle) Let C be a nonempty closed convex
subset of a uniformly convex Banach E. Let T : C → C be a nonexpansive
mapping with Fix(T ) 6= ∅. Then T is demiclosed on C, i.e., if xn ⇀ x ∈ C and
xn − Txn → y strongly, then (I − T )x = y.

Lemma 2.2 ([40]). Let {xn} and {yn} be bounded sequences in a Banach space
X and {βn} be a sequence in [0, 1] with 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1.
Suppose that xn+1 = (1 − βn)yn + βnxn for all n ≥ 0 and lim supn→∞(‖yn+1 −
yn‖ − ‖xn+1 − xn‖) ≤ 0. Then limn→∞ ‖yn − xn‖ = 0.

Lemma 2.3. [41] Assume {an} is a sequence of nonnegative real numbers such
that

an+1 ≤ (1− γn)an + γnδn, n ≥ 0,

where {γn} is a sequence in (0, 1) and {δn} is a sequence in R such that

(i)
∑∞

n=0
γn = ∞;

(ii) lim supn→∞ δn ≤ 0 or
∑∞

n=0
|δnγn| < ∞.

Then limn→∞ an = 0.

For solving the equilibrium problem for a bifunction f : C × C → R, let us
assume that f satisfies the following conditions:

(A1) f(x, x) = 0 for all x ∈ C;

(A2) f is monotone, i.e., f(x, y) + f(y, x) ≤ 0 for any x, y ∈ C;
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(A3) for each x, y, z ∈ C, limt↓0 f(tz + (1− t)x, y) ≤ f(x, y);

(A4) for each x ∈ C, y 7→ f(x, y) is convex and lower semicontinuous.

Lemma 2.4 ([21]). Let E be a smooth, strictly convex and reflexive Banach space
and C be a nonempty closed convex subset of E. Let A : C → E∗ be an α-inverse-
strongly monotone mapping, let f be a bifunction from C × C → R satisfying
(A1)-(A4) and let r > 0. Then there hold the following

(1) For x ∈ E, there exists u ∈ C such that

f(u, y) + 〈Au, y − u〉+
1

r
〈y − u, Ju− Jx〉 ≥ 0, ∀y ∈ C.

(2) If E is additionally uniformly smooth and Kr : E → C is defined as

Kr(x) =

{

u ∈ C : f(u, y) + 〈Au, y − u〉+
1

r
〈y − u, Ju− Jx〉 ≥ 0, ∀y ∈ C

}

,

∀y ∈ E, (2.1)

then the mapping Kr has the following properties:

(i) Kr is single-valued;

(ii) Kr is a firmly nonexpansive-type mapping, i.e.,

〈Krx−Kry, JKrx− JKry〉 ≤ 〈Krx−Kry, Jx− Jy〉, ∀x, y ∈ E;

(iii) F (Kr) = EP ;

(iv) EP is closed convex subset of C;

(v) φ(p,Krx) + φ(Krx, x) ≤ φ(p, x), ∀p ∈ F (Kr).

Lemma 2.5 ([42]). Let E be a uniformly convex and smooth Banach space and
let {xn} and {yn} be two sequences of E. If φ(xn, yn) → 0 and either {xn} or
{yn} is bounded, then xn − yn → 0.

Lemma 2.6 ([42]). Let E be a smooth and uniformly convex Banach space and
let r > 0. Then there exists a strictly increasing, continuous and convex function
g : [0, 2r] → R such that g(0) = 0 and g(‖x − y‖) ≤ φ(x, y) for all x, y ∈ Br(0),
where Br(0) = {z ∈ E : ‖z‖ ≤ r}.

Lemma 2.7 ([43]). Let E be a uniformly convex Banach space and let r > 0.
Then there exists a strictly increasing, continuous and convex function g : [0,∞) →
[0,∞), g(0) = 0 such that

‖tx− (1− t)y‖2 ≤ t‖x‖2 + (1− t)‖y‖2 − t(1− t)g(‖x− y‖)

for all x, y ∈ Br(0) := {x ∈ E : ‖x‖ ≤ r} and for any t ∈ [0, 1].
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Let E be a real uniformly convex and uniformly smooth Banach. Let C be a
nonempty closed convex and sunny nonexpansive retract of E with QC : E → C

as the sunny nonexpansive retraction. Let T : C → C be a nonexpansive mapping.
Given a real number t ∈ (0, 1). Define a mapping Tt : C → C by

Ttx = QC [(1− t)Tx], x ∈ C.

It is easy to see that Tt is a contraction on C. Let x, y ∈ C, we have

‖Ttx− Tty‖ = ‖QC[(1 − t)Tx]−QC [(1− t)Ty]‖

≤ (1− t)‖Tx− Ty‖

≤ (1− t)‖x− y‖.

Let xt ∈ C be the unique fixed point of Tt, that is, xt satisfies the following fixed
point equation

xt = QC [(1 − t)Txt], t ∈ (0, 1). (2.2)

Lemma 2.8 ([33]). Suppose that Fix(T ) 6= ∅. For t ∈ (0, 1), let the net {xt} be
defined by (2.2). Then as t → 0+, the net {xt} converges strongly to x ∈ Fix(T ).

3 Main Results

In this section, we will introduce our methods and prove the strong convergence
theorem.

Theorem 3.1. Let E be a real uniformly convex and uniformly smooth Banach.
Let C be a nonempty closed convex subset and sunny nonexpansive retract of E
with QC : E → C as the sunny nonexpansive retraction. Let T : C → C be a
nonexpansive mapping. Let f be a bifunction from C × C → R satisfying (A1)-
(A4) with F := Fix(T ) ∩ EP 6= ∅. Let B : C → E∗ be a β-inverse strongly
monotone operator. Let {αn} and {βn} be two sequences in (0, 1). Let {xn} be a
sequence generated by x1 ∈ C,

{

un ∈ C such that f(un, y) + 〈Bun, y − un〉+
1

rn
〈y − un, Jun − Jxn〉 ≥ 0, ∀y ∈ C

xn+1 = αnxn + (1 − αn)QC [(1− βn)Tun], ∀n ≥ 0.

(3.1)
Assume that the following conditions are satisfied

1. limn→∞ βn = 0;

2.
∑∞

n=0
βn = ∞;

3. 0 < lim infn→∞ αn ≤ lim supn→∞ αn < 1,

where J is the normalized duality mapping on E. Then {xn} converges strongly
to a fixed point z ∈ F .
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Proof. First we show that {xn} is bounded. Take a point p ∈ Fix(T ) and notice
that un = Krnxn

‖un − p‖ = ‖Krnxn − p‖ ≤ ‖xn − p‖

and

‖xn+1 − p‖ = ‖αn(xn − p) + (1− αn)(QC [(1 − βn)Tun]− p)‖

≤ αn‖xn − p‖+ (1− αn)‖QC [(1− βn)Tun]− p‖

≤ αn‖xn − p‖+ (1− αn)‖(1− βn)Tun − p‖

≤ αn‖xn − p‖+ (1− αn)[(1 − βn)‖un − p‖+ βn‖p‖]

≤ αn‖xn − p‖+ (1− αn)[(1 − βn)‖xn − p‖+ βn‖p‖]

= [1− (1− αn)βn]‖xn − p‖+ (1− αn)βn‖p‖.

By induction,
‖xn − p‖ ≤ max{‖x0 − p‖, ‖p‖}, n ≥ 0,

and {xn} is bounded, so are {un} and {Txn}. Next, we show that

‖xn+1 − xn‖ → 0.

We can rewritten (3.1) as xn+1 = αnxn+(1−αn)yn where yn = QC [(1−βn)Tun]
for all n ≥ 0. It follows that

‖yn+1 − yn‖ = ‖QC [(1− βn+1)Tun+1]−QC [(1− βn)Tun]‖

≤ ‖(1− βn+1)Tun+1 − (1− βn)Tun‖

≤ (1− βn)‖Tun+1 − Tun‖+ |βn+1 − βn|‖Tun‖

≤ (1− βn)‖un+1 − un‖+ (βn − βn+1)‖Tun‖,

which implies that

lim sup
n→∞

(‖yn+1 − yn‖ − ‖un+1 − un‖) ≤ 0.

This together with Lemma 2.2 imply that

lim
n→∞

‖yn − un‖ = 0. (3.2)

By the convexity of ‖ · ‖2 and Lemma 2.4, we obtain

φ(p, xn+1) = φ(p, αnxn + (1 − αn)QC [(1− βn)Tun])

= ‖p‖2 − 2〈p, αnxn + (1− αn)QC [(1 − βn)Tun]〉

+ ‖αnxn + (1− αn)QC [(1− βn)Tun]‖
2

= ‖p‖2 − 2〈p, xn〉 − 2(1− αn)〈p,QC [(1− βn)Tun]〉

+ αn‖xn‖
2 + (1− αn)‖QC [(1− βn)Tun]‖

2
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= αnφ(p, xn) + (1− αn)φ(p,QC [(1 − βn)Tun])

= αnφ(p, xn) + (1− αn)φ(p, (1 − βn)Tun)

= αnφ(p, xn) + (1− αn)(1 − βn)φ(p, Tun)

≤ αnφ(p, xn) + (1− αn)φ(p, Tun)

≤ αnφ(p, xn) + (1− αn)φ(p, un)

≤ αnφ(p, xn) + (1− αn)φ(p,Krnxn)

≤ αnφ(p, xn) + (1− αn)φ(p, xn)

≤ φ(p, xn). (3.3)

This implies that limn→∞ φ(u, xn) exists. It follows that {φ(u, xn)} is bounded.
Let r1 = supn≥1{‖xn‖, ‖yn‖}. From Lemma 2.7, we have

φ(p, xn+1) = φ(p, αnxn + (1− αn)QC [(1 − βn)Tun])

= ‖p‖2 − 2〈p, αnxn + (1− αn)QC [(1− βn)Tun]〉

+ ‖αnxn + (1− αn)QC [(1 − βn)Tun]‖
2

= ‖p‖2 − 2〈p, xn〉 − 2(1− αn)〈p,QC [(1 − βn)Tun]〉

+ αn‖xn‖
2 + (1− αn)‖QC [(1− βn)Tun]‖

2 − αn(1− αn)g1(‖xn − yn‖)

= αnφ(p, xn) + (1 − αn)φ(p,QC [(1 − βn)Tun])− αn(1− αn)g1(‖xn − yn‖)

= αnφ(p, xn) + (1 − αn)φ(p, (1 − βn)Tun − αn(1− αn)g1(‖xn − yn‖))

= αnφ(p, xn) + (1 − αn)(1 − βn)φ(p, Tun)− αn(1 − αn)g1(‖xn − yn‖)

≤ αnφ(p, xn) + (1 − αn)φ(p, Tun)− αn(1− αn)g1(‖xn − yn‖)

≤ αnφ(p, xn) + (1 − αn)φ(p, un)− αn(1− αn)g1(‖xn − yn‖)

≤ αnφ(p, xn) + (1 − αn)φ(p,Krnxn)− αn(1− αn)g1(‖xn − yn‖)

≤ αnφ(p, xn) + (1 − αn)φ(p, xn)− αn(1 − αn)g1(‖xn − yn‖)

≤ φ(p, xn)− αn(1− αn)g1(‖xn − yn‖). (3.4)

Which implies that

αn(1− αn)g1(‖xn − yn‖) ≤ φ(p, xn)− φ(p, xn+1). (3.5)

Noticing condition (iii), by taking the limits in (3.4), we get

lim
n→∞

g1(‖xn − yn‖) = 0. (3.6)

From the property of g1, we have

lim
n→∞

‖xn − yn‖ = 0. (3.7)

Hence,
lim
n→∞

‖xn+1 − xn‖ = 0.
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Note that

‖xn − Tun‖ ≤ ‖xn+1 − xn‖+ ‖xn+1 − Tun‖

= ‖xn+1 − xn‖+ ‖αnxn +QC [(1− βn)Tun]−QC [Tun]‖

≤ ‖xn+1 − xn‖+ αn‖xn − Tun‖+ βn‖Tun‖, (3.8)

that is,

‖xn − Tun‖ ≤
1

1− αn

{‖xn+1 − xn‖+ βn‖Tun‖}.

Therefore,

lim
n→∞

‖xn − Tun‖ = 0. (3.9)

Combining (3.2),(3.7) and (3.9), we have

‖un − Tun‖ ≤ ‖un − yn‖+ ‖yn − xn‖+ ‖xn − Tun‖ → 0, as n → ∞. (3.10)

Since {un} is bounded, we obtain that there exists a subsequence {uni
} of {un}

such that uni
converges weakly to x∗ ∈ C. From (3.10) and Lemma 2.1, we have

x∗ ∈ Fix(T ).
Next we show that x∗ ∈ EP . Let r2 = supn≥1{‖xn‖, ‖un‖}. From Lemma 2.6,

there exists a continuous strictly increasing and convex function g2 with g2(0) = 0
such that g2(‖x − y‖) ≤ φ(x, y), ∀x, y ∈ Br2(0). Noticing xn = Krnun and from
Lemma 2.4 and (3.3), for p ∈ F we have

g2(‖xn − un‖) ≤ φ(xn, un)− φ(p, xn) ≤ φ(u, xn−1)− φ(u, xn).

Since limn→∞ φ(u, xn) exists, we obtain limn→∞ g2(‖xn − un‖) = 0. If follows
from the property of g2 that

lim
n→∞

‖xn − un‖ = 0. (3.11)

Since J is uniformly norm-to-norm continuous on bounded sets of E, we have

lim
n→∞

‖Jxn − Jun‖ = 0. (3.12)

From condition (iii), we have

lim
n→∞

‖Jxn − Jun‖

rn
= 0. (3.13)

By the definition of xn = Krnun, we have

F (xn, y) +
1

rn
〈y − xn, Jxn − Jun〉 ≥, ∀y ∈ C, (3.14)
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where F (xn, y) = f(xn, y) + 〈Bxn, y− xn〉. Replacing n by ni, we have from (A2)
that

1

rni

〈y − xni
, Jxni

− Juni
〉 ≥ −F (xni

, y) ≥ F (y, xni
), ∀y ∈ C. (3.15)

From (3.11) and uni
⇀ x∗, we have xni

⇀ x∗. Since y 7→ f(x, y) + 〈Bx, y − x〉 is
convex and lower semicontinuous, it is also weakly lower semicontinuous. Letting
i → ∞ in (3.15), from (3.13) and (A4) we have

F (y, x∗) ≤ 0, ∀y ∈ C.

For t, with 0 < t < 1, and y ∈ C, let yt = ty + (1− t)x∗. Since y ∈ C and x∗ ∈ C

then yt ∈ C and hence F (yt, x
∗) ≤ 0. So, from (A1) and (A4) we have

0 = F (yt, yt) ≤ tF (yt, y) + (1 − t)F (yt, x
∗) ≤ tF (yt, y).

Dividing by t, we have
F (yt, y) ≥ 0, ∀y ∈ C.

Letting t ↓ 0, from (A3) it follows that

F (x∗, y) ≥ 0, ∀y ∈ C.

And hence
f(x∗, y) + 〈Bx∗, y − x∗〉 ≥ 0, ∀y ∈ C.

So x∗ ∈ EP

We next show that

lim sup
n→∞

〈x∗, j(x∗ − Tun)〉 = lim sup
n→∞

〈x∗, j(x∗ − un)〉 = lim sup
n→∞

〈x∗, j(x∗ − xn)〉 ≤ 0,

where x∗ = limt→0+ xt and xt is the defined by (2.2). Nothing that xt = QC [(1−
t)Txt] and xn ∈ C, we have

〈xt − (1 − t)Txt, j(xt − xn)〉 ≤ 0.

Hence,

‖xt − xn‖
2 = 〈xt − xn, j(xt − xn)〉

= 〈xt − (1− t)Txt, j(xt − xn)〉+ 〈(1 − t)Txt − xn, j(xt − xn)〉

≤ 〈(1− t)Txt − xn, j(xt − xn)〉

= (1− t)〈Txt − Txn, j(xt − xn)〉+ (1− t)〈Txn − xn, j(xt − xn)〉

+ t〈xt − xn, j(xt − xn)〉 − t〈xt, j(xt − xn)〉

≤ ‖xt − xn‖
2 + (1− t)‖xn − Txn‖‖xt − xn‖ − t〈xt, j(xt − xn)〉.

It follows that

〈xt, j(xt − xn)〉 ≤
1− t

t
‖xn − Txn‖‖xt − xn‖.
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Therefore,
lim sup
n→∞

〈xt, j(xt − xn)〉 ≤ 0.

It follows from (3.11) that

lim sup
n→∞

〈x∗, j(x∗ − Tun)〉 = lim sup
n→∞

〈x∗, j(x∗ − un)〉

= lim sup
n→∞

〈x∗, j(x∗ − xn)〉

≤ 0. (3.16)

Finally, we show that xn → x∗. As a matter of fact, we have

‖xn+1 − x
∗‖2 = ‖αn(xn − x

∗) + (1− αn)(QC [(1− βn)Tun]− x
∗)‖2

≤ αn‖xn − x
∗‖2 + (1− αn)‖QC [(1− βn)Tun]− x

∗‖2

≤ αn‖xn − x
∗‖2 + (1− αn)‖(1− βn)(Tun − x

∗)− βnx
∗‖2

≤ αn‖xn − x
∗‖2 + (1− αn)[(1− βn)

2‖Tun − x
∗‖2 − βnx

∗‖2

+ 2βn(1− βn)〈−x
∗

, j(Tun − x
∗)〉+ β

2
n‖x

∗‖2]

≤ αn‖xn − x
∗‖2 + (1− αn)[(1− βn)

2‖un − x
∗‖2 − βnx

∗‖2

+ 2βn(1− βn)〈−x
∗

, j(Tun − x
∗)〉+ β

2
n‖x

∗‖2]

≤ αn‖xn − x
∗‖2 + (1− αn)[(1− βn)

2‖xn − x
∗‖2 − βnx

∗‖2

+ 2βn(1− βn)〈−x
∗

, j(Tun − x
∗)〉+ β

2
n‖x

∗‖2]

≤ [1− 2(1− αn)βn]‖xn − x
∗‖2 + 2(1− αn)(1− βn)βn〈−x

∗

, j(Tun − x
∗)〉

+ (1− αn)β
2
n(‖xn − x

∗‖2 + ‖x‖2)

= (1− γn)‖xn − x
∗‖2 + γnδn,

where γn = 2(1 − αn)βn and δn = {(1 − βn)〈〈−x∗, j(Tun − x∗)〉} + βn

2
(‖xn −

x∗‖2 + ‖x∗‖2). It is easily seen that
∑∞

n=0
γn = ∞ and lim supn→∞ δn ≤ 0. By

Lemma 2.3, we deduce that xn → x∗. This completes the proof.
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