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Location of the Zeros of Polynomials1

S. Gulzar
†,2

and N. A. Rather
‡

†Department of Computer Science and Engineering,
Islamic University of Science and Technology,

Awantipora, Kashmir 192122, India
e-mail : sgmattoo@gmail.com

‡Department of Mathematics, University of Kashmir,
Hazratbal Srinagar 190006, India
e-mail : dr.narather@gmail.com

Abstract : In this paper, we obtain an annulus that contains all the zeros of the
polynomial P (z) = a0+a1z+a2z

2+ · · ·+anz
n where aν ’s are complex coefficients

and z is a complex variable. Our result generalizes one of the recently obtained
result in this direction.
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1 Introduction and Statements

The study of the zeros of polynomials have a very rich history. In addition to
having numerous applications in many areas including, but not limited to, signal
processing, communication theory, Cryptography, Control Theory, Combinatorics,
and Bio-Mathematics. This study has been the inspiration for much theoretical
research (including being the initial motivation for modern algebra).

Gauss and Cauchy were the earliest contributors in the theory of the location
of zeros of a polynomial, since then this subject has been studied by many people
(for example, see [1, 2]).
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A classical result due to Cauchy (see [1, p. 122]) on the distribution of zeros
of a polynomial may be stated as follows:

Theorem A. If P (z) = zn+an−1z
n−1+an−2z

n−2+ · · ·+a0 is a polynomial with

complex coefficients of degree n, then all zeros of P (z) lie in the disk |z| ≤ r where

r is the unique positive root of the real-coefficient polynomial

Q(x) = xn − |an−1|x
n−1 − |an−2|x

n−2 − · · · − |a1|x− |a0|.

Recently Dı́az-Barrero [3] improved this estimate by identifying an annulus
containing all the zeros of a polynomial, where the inner and outer radii are ex-
pressed in terms of binomial coefficients and Fibonacci numbers. In fact he has
proved the following result.

Theorem B. Let P (z) =
∑n

j=0 ajz
j be a non-constant complex polynomial of

degree n. Then all its zeros lie in the annulus C = {z ∈ C : r1 ≤ |z| ≤ r2} where
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Here Fj are Fibonacci’s numbers, that is, F0 = 0, F1 = 1 and for j ≥ 2, Fj =
Fj−1 + Fj−2.

Seon-Hong Kim [4] obtained an annulus containing all the zeros of a polyno-
mial, where the inner and outer radii are expressed in terms of binomial coefficients
and proved the following result.

Theorem C. Let P (z) =
∑n

j=0 ajz
j be a non-constant complex polynomial of

degree n. Then all its zeros lie in the annulus C = {z ∈ C : r1 ≤ |z| ≤ r2} where

r1 = min
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where C(n, j) := n!
(n−j)!j! is a Binomial coefficient.

In litrature there exists several other extenstions of above results (see [5]).
The subject in this note is to study further the annular bound for the zeros of

complex-coefficient polynomials, and obtain a better annular bound which include
Theorem C as a special case. In addition, several numerical examples will be given
to demonstrate the improvement over above mentioned results. More precisely, we
prove:

Theorem 1.1. Let P (z) =
∑n

j=0 ajz
j be a non-constant complex polynomial of

degree n and α, β any non-negative real numbers such that (α, β) 6= (0, 0). Then
all its zeros lie in the annulus C = {z ∈ C : r1 ≤ |z| ≤ r2} where

r1 = min
1≤k≤n
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r2 = max
1≤k≤n
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Remark 1.2. For β = 0, Theorem 1.1 reduces to Theorem C.

If we take α = 0, we obtain the following result.

Corollary 1.3. Let P (z) =
∑n

j=0 ajz
j be a non-constant complex polynomial of

degree n. Then all its zeros lie in the annulus C = {z ∈ C : r1 ≤ |z| ≤ r2} where
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Here, we construct examples of polynomials for which the annuli containing
all the zeros of the polynomials obtained by Corollary 1.3 are considerably sharper
than the annuli obtainable from the above mentioned results (Theorems B, C.)

Example 1.4. Let P (z) = z5+2z2+4z+3i, for which, as we shall see, Corollary
1.3 gives the best bound.
By using Theorem B, we find that the annulus containing all the zeros of polyno-
mial P (z) comes out to be 0.026608 ≤ |z| ≤ 3.065262, while by Corollary 1.3 it
is 0.046875 ≤ |z| ≤ 1.74716. We also calculated the actual zeros and found that
they all lie in the annulus 0.69055058 ≤ |z| ≤ 1.73312317. Thus for this polyno-
mial, Corollary 1.3 gives the sharpest bound. We can improve the lower bound by
choosing α, β suitably in Theorem 1.1.

Example 1.5. Our next example is the polynomial P (z) = z3+0.1z2+0.2z+0.7,
by Theorem C, we obtain an annulus 0.4641 ≤ |z| ≤ 1.6984 which contains all the
zeros of P (z). While as by Corollary 1.3 it comes out to be 0.5593 ≤ |z| ≤ 1.409,
which clearly improves the bound obtained by Theorem C.

Example 1.6. Our last example is the polynomial P (z) = z5 + 3z4 + 2z + 2, by
Theorem B, we find that the annulus obtained by Theorem B is 0.326236 ≤ |z| ≤
84.562500, while as, if we use Corollary 1.3, it comes out to be 0.5 ≤ |z| ≤ 48,
which considerably improves Theorem B in this case.

Remark 1.7. We can similarly improve the bounds containing all the zeros of a
polynomial by choosing α and β suitably in Theorem 1.1 .

2 Lemma

To prove the above theorem, we need the following lemma.

Lemma 2.1. Let a, d ∈ R, then
∑n

k=1(a+ kd)C(n, k) = (2a+ nd)2n−1 − a.

Proof. Proof follows by using the well-known Identity
∑n

k=1 kC(n, k) = n2n−1.



462 Thai J. Math. 13 (2015)/ S. Gulzar and N. A. Rather

3 proof of Theorem

Proof of Theorem 1.1. We first show that all the zeros of P (z) lie in

|z| ≤ r2 = max
1≤j≤n
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where α, β are any non-negative real numbers such that (α, β) 6= (0, 0). From (3.1),
it follows that
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|P (z)| =|anz
n + an−1z

n−1 + · · ·+ a1z + a0|

≥|an||z|
n

{

1−

n
∑

k=1

∣

∣

∣

∣

an−k

an

∣

∣

∣

∣

1

|z|k

}

>|an||z|
n

{

1−

n
∑

k=1

∣

∣

∣

∣

an−k

an

∣

∣

∣

∣

1

rk2

}

using (3.2), we have for |z| > r2, |P (z)| > 0. Consequently all the zeros of P (z) lie
in |z| ≤ r2 and this proves the second part of theorem.
To prove the first part of the theorem, we use second part. If a0 = 0, then r1 = 0
and there is nothing to prove. Let a0 6= 0, consider the polynomial

Q(z) = znP (1/z) = a0z
n + a1z

n−1 + · · ·+ an−1z + an.

By second part of the theorem, for any non-negative real numbers α, β such that
(α, β) 6= (0, 0), all the zeros of the polynomial Q(z) lie in

|z| ≤ max
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Now replacing z by 1/z and observing that all the zeros of P (z) lie in

|z| ≥ r1 = min
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This completes the proof of theorem 1.1.
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