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Abstract : In this paper, we first give a necessary and sufficient condition for
convergence of P-iteration to a fixed point of continuous functions on an arbitrary
interval and prove equivalence of P-iteration and S-iteration. We also compare the
rate of convergence between P-iteration and S-iteration. Some numerical examples
for comparing the rate of convergence of those two methods are also given.
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1 Introduction

Let E be a closed interval on the real line and f : E — E be a continuous
function. A point p € E is a fized point of f if f(p) = p. We denote by F(f) the
set of fixed points of f. It is known that if E also bounded, then F'(f) is nonempty.
The Mann iteration (see [1]) is defined by u; € E and

Unt1 = (1 — ap) tn + an f (un) (1.1)
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for all n > 1, where {a,} -, is a sequence in [0,1], and will be denoted by
M (u1, an, f). The Ishikawa iteration (see [2]) is defined by s; € E and

tn = (1= Bn) sn + Bnf (sn) (1.2)

Snt1 = (1 — ap) $n + anf (tn) '

for all n > 1, where {a, }o;, {Bn}oo, are sequences in [0, 1], and will be denoted
by I(s1,n, Bn, f).The S-iteration (see [3]) is defined by ¢; € E and

{ Tn = (1 - ﬂn) dn + ﬂnf (qn) (13)

Gnt+1 = (1 —ay) f(gn) + anf (rn)

for all n > 1, where {a, }o—,, {Bn}oo, are sequences in [0, 1], and will be denoted
by S(qlu Qp, ﬁnu f)

It was shown in [4] that the Mann and Ishikawa iterations are equivalent
for the class of Zamfirescu operators. In 2006, Babu and Prasad [5] showed that
the Mann iteration converges faster than the Ishikawa iteration for the class of
operators. Two years later, Qing and Rhoades [6] provided an example to show
that the claim of Babu and Prasad is false. In 2013, Kosol [3] showed that the
S-iteration converges faster than the Ishikawa iteration on an arbitrary interval. In
2011, Phuengrattana and Suantai [7] introduced a new three -step iteration, called
SP-iteration, and showed that it converges faster than Mann, Ishikawa, Noor -
iterations.

Motivated by the above results, we modify S and SP- iterations for con-
struction a new iteration as follows: The P-iteration is defined by z; € FE and

2n = (1= Yn) Tn +nf (xn)
Yn = (1 - ﬂn) Zn + Bnf (Zn) (1'4)
Tnt1 = (1= ay) f(zn) + anf (Yn)

for all n > 1, where {a,},—,, {Bn},—; and {v,},—, are sequences in [0,1], and
will be denoted by P(x1, an, Bnsn, f)-

In this paper, we give a necessary and sufficient condition for the conver-
gence of the P-iteration of continuous non-decreasing functions on an arbitrary
interval. We also prove that if the S-iteration converges, then the P-iteration con-
verges and converges faster than the S-iteration for the class of continuous and
non-decreasing functions. Moreover, we present the numerical examples for the
P-iteration to compare with the Ishikawa and the S-iterations.

2 Preliminaries

In this section we recall some lemmas , definition , theorems and known results
in the existing literature on this concept.
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Lemma 2.1 ([3],Lemma 2.1). Let E be a closed interval on the real line and
[ E = E be a continuous function. Let {ay} —, and {B,},—, be sequences in
[0,1]. Forq1 € E, let {qn},.; be the sequence defined by (1.3). Then the following
hold:

(i) If [ (¢1) < q1, then f(qn) < qn for allmn > 1 and {qn},— is non-increasing.
(i) If f (q1) > q1, then f(qn) > gn for alln > 1 and {gn},-, is non-decreasing.

Proposition 2.2 ([3],Proposition2.5). Let E be a closed interval on the real line
and f : E — E be a continuous and non-decreasing function such that F(f) is
nonempty and bounded with g1 > sup{p € E : p = f(p)}. Let {an} and {B,} be
sequences in [0,1]. If f(q1) > q, then the sequence {q,} defined by S-iteration
does not converge to a fixed point of f.

Proposition 2.3 ([3],Proposition 2.6). Let E be a closed interval on the real line
and f : E — E be a continuous and non-decreasing function such that F(f) is
nonempty and bounded with ¢ < inf{p € E : p = f(p)}. Let {a,} and {B,} be
sequences in [0,1]. If f(q1) < q1, then the sequence {q,} defined by S-iteration
does not converge to a fized point of f.

Definition 2.4 ([7],Definition 3.1). Let E be a closed interval on the real line
and f : E — E be a continuous function. Suppose that {z,},> | and {yn} -, are
two iterations which converge to the fized point p of f. Then {x,},—, is said to
converge faster than {yn}o—, if |xn — p| < |yn — p| for alln > 1.

Theorem 2.5 ([3],Theorem 2.7). Let E be a closed interval on the real line and f :
E — E be a continuous and non-decreasing function such that F(f) is nonempty
and bounded. For s1 = q1 € E, let {s,} and {q,} be the sequences defined by (1.2)
and (1.3), respectively. If the Ishikawa iteration {S,} converges top € F(f), then
the S-iteration {q,} converges to p. Moreover, the S-iteration converges faster
than the Ishikawa iteration.

3 Main Results

We first give some useful facts for our main results.

Lemma 3.1. Let E be a closed interval on the real line and f : E — FE be a
continuous and non-decreasing function. Let {on}oo |, {Bn}reiand {yn} -, be

sequences in [0,1]. For x1 € E, let {x,},._, be defined by P-iteration. Then the
following hold:

(i) If f(x1) < x1, then f(zn) < xn for all n > 1 and {x,},—, is non-
INCreasing.

(i) If f(x1) > x1, then f(xn) > xn for all n > 1 and {xz,},., is non-
decreasing.
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Proof. (1) Let f(z1) < x1. Assume that f(zg) < xp for k > 1. Then f(zy) <
2 < . Since f is non-decreasing, we have f(zx) < f(a) < zr < 2. By (1.4), we
get f(zr) < yr < zk. Since f is non-decreasing, we have f(yr) < f(zx) < yr < 2.
It follows from (1.4), that f(yx) < xgp+1 < f(2k). This implies xp+1 < f(zk) < yk.
Since f is non-decreasing, we have f(zr+1) < f(yx). Thus f(axg+1) < xgy1. By
induction, we can conclude that f(x,) < x, for all n > 1. This together with
(1.4), we have y,, < z, < x, for all n > 1. Since f is non-decreasing, we have
flyn) < f(zn) < flay) for all n < 1. Tt follows that, 2p+1 = (1 — an)f(zn) +
anflyn) < f(zn) < f(zn) <z, for all n > 1. Thus {x,} is non-increasing.

(74) By using the same argument as in (i), We obtain the desired result. O

Theorem 3.2. Let E be a closed interval on the real line and f : E — FE
be a continuous and non-decreasing function. For x1 € E, let {x,} —, be de-
fined by (1.4), where {an},~ 1, {Bu}trriand {y},—, are sequences in [0,1] and
limy, 00 B = limy, 00 v = 0. Then {:En}zozl is bounded if and only if {xn}zozl
converges to a fized point of f.

Proof. 1f {x,} is convergent, then it is bounded. Now, assume that {z,} is
bounded. we will show that {x,} is convergent. If f(x1) = z1, by (1.4) we
have

z2i=1—-m)x1+7f(z1) =21

yi=0=01)z1+51f(z1) =21

r2 = (1—a1) f(z1) + a1 f (y1) = 21.

We can show by induction that z,, = x1 for all n > 1. Thus {z,} is convergent.
Suppose that f(x1) # x1,f(z1) < z1 or f(x1) > z1. By Lemma 3.1, we obtain
that {x,} is non-increasing or non-decreasing. Since {z,} is bounded, it implies
that {x,} is convergent. Next, we prove that {z,} converges to a fixed point of
f. Let limy, o0 2, = p for some p € E. By continuity of f and {z,} is bounded,
we have {f(z,)} is bounded. By (1.4), we obtain z, = (1 — vn)zn + Vnf(zn) =
T+ Y0 (f(2n) — ). Since limy, o0 v = 0, we have limy, 00 25, = limy, 00 pn = .
By continuity of f and {z,} is bounded, we have {z,} and f(z,) are bounded.

By (14) , we get Y, = (1 - Bn)zn + an(zn) =zn + ﬁn(f(zn) - Zn)

Since lim,_+ 8, = 0, we have lim,,—, o0 ¥y, = limy, o0 2, = D.
By continuity of f , we have lim,, o (f(yn) — f(2n)) = f(p) — f(p) = 0.
From z,4+1 = f(zn) + an(f(yn) — f(2n)) and continuity of f , we have

p= h_{n Tn41
= lim f(zn) + lim an(f(yn) — f(2n))

n—roo

n—oo

= f(p).

Hence p is a fixed point of f and {x,} converge to p. O
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Lemma 3.3. Let E be a closed interval on the real line and f : E — E be
a continuous and non-decreasing function. For x1 € E, let {x,},_, be the P-
iteration defined by (1.4), where {an} 1, {Bn}reqand {y},o, are sequences in
[0,1]. Then we have the following :

(i) If p € F(f) with x1 > p, then x,, > p for alln > 1.
(i) If p € F(f) with x1 < p, then x, <p for alln > 1.
Proof. (i) Suppose that p € F(f) and x; > p. Since f is non-decreasing, we have
f(z1) = f(p) = p. By (1.4), we get
z1=1-y)zr+7nf(z) =21 —n)p+(n)p=p

Thus f(z1) > f(p) = p. From (1.4), we have

y1=(1—=p1)z1 + Bif(z1) > (1= B)p+ (Br)p = p-

Thus f(y1) > f(p) = p. Again (1.4), implies that

r2 = (1—a1)f(z1) +aif(y1) > (1 —a1)p+ (eu)p = p.

Assume that z > p for k > 2. Thus f(z) > f(p) = p.
By (1.4) , we have 2 = (1 — y)zk + v f(z) = (1 — )P + (9)p = p.
Thus f(zx) > f(p) = p. This implies yr = (1—LB%)zk+ B f(zk) > (1—Br)p+Bxp =
p.

Hence f(yx) > f(p) = p. It follows that

Tpp1 = (1 —ap) f(zr) + arflyr) > (1 = ar)p + cawp = p.

By induction, we can conclude that x,, > p for all n > 1.
(i4) By using the same argument as in (i), we can show that z, < p for all
n > 1. O

Lemma 3.4. Let E be a closed interval on the real line and f : E — FE be a
continuous and non-decreasing function. For z1 € E, let {an},o |, {Bn},—qand
{m}2, be sequences in [0,1]. For 1 = q1 € E, let {qn},—, and {z,} —, be
sequences defined by (1.8) and (1.4) respectively. Then we have the following :

(i) If f(qn) < q1 , then x, < gy, for allm > 1.
(ii) If f(q1) > q1 , then x, > g, for alln > 1.

Proof. (i) Let f(q1) < q1. Since 1 = q1, we get f(z1) < x1. First, we show that
Ty < qpn for alln > 1.
From (1.4), we get f(x1) < z1 < 1. Since f is non-decreasing, we have
f(z) < flo) <z < my
By (1.4), we have f(z1) < y1 < z1. Since f is non-decreasing, we obtain
fly) < flz) Sy <z <
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From (1.3) and (1.4), we get z1—q1 = (1—y1)z1+n f(z1)—q1 = n(f(x1)—z1) < 0.
Thus z; < ¢;. Since f is non-decreasing, we have f(z1) < f(q1)-
By (1.3) and (1.4), we get y1 —r1 = (1= B1)(21 — @) + S (f(21) — ( 1)) <0
Thus y1 < r;. Since f is non-decreasing, we have f(y1) < f(r1). By (1.3) and
(1.4), it follows that

z2 — g2 = (1 —an)[f(z1) = fl@)] + aa[f(y1) — f(r1)] < 0.
Thus 22 < ¢a. Assume that xp < g. Thus f(zx) < f(gr). By Lemma 2.1 f(qx) <
gr and by (1.4), Lemma 3.1 f(x)) < xj. This implies f(zy) < 2z < 2 < gj. Since
f is non-decreasing, we have f(zr) < f(qr). By (1.3) and (1.4), it follows that

Ye — 1 = (1= Br)(zk — ar) + Br(f (2k) — flar)) < 0.
Thus yi < 7. Since f is non-decreasing, we have f(yr) < f(rg) it follows that
Trr1 — Qer1 = (1 — aw)[f(2) = f(aw)] + ar[f(yr) — f(ri)] < 0. By Mathematical
induction, we obtain x, < ¢, for all n > 1.
(74) By using the same argument as in (), we obtain the desired result. O

The next two propositions show that convergence of P-iteration depends on
how far the initial point from the fixed point set.

Proposition 3.5. Let E be a closed interval on the real line and f : E — E be a
continuous and non-decreasing function such that F(f) is nonempty and bounded
with x1 < inf{p € E:p= f(p)}. Let {an} , {Bn} and {yn} be sequences in [0,1].
If f(x1) < 21, then the sequence {x,} defined by P-iteration does not converge to
a fized point of f.

Proof. By Lemma 3.1(i), we have that {z,} is non-increasing. Since the initial
point z; < inf{p € E: p= f(p)}, it follows that {z,,} does not converge to a fixed
point of f. O

Proposition 3.6. Let E be a closed interval on the real line and f : E — E be a
continuous and non-decreasing function such that F(f) is nonempty and bounded
with x1 > sup{p € E:p= f(p)}. Let {a,} , {Bn} and {yn} be sequences in [0,1].
If f(x1) > x1, then the sequence {x,} defined by P-iteration does not converge to
a fized point of f.

Proof. By Lemma 3.1(ii), we have that {z,} is non-decreasing. Since the initial
point z; > sup{p € E : p = f(p)}, it follows that {z,} does not converge to a
fixed point of f. O

Theorem 3.7. Let E be a closed interval on the real line and f : E — E be a
continuous and non-decreasing function such that F(f) is nonempty and bounded.
Forqu =x1 € E, let {qn} and {x,} be the sequences defined by (1.3) and (1.4), re-
spectively. If the S-iteration {q,} converges to p € F(f), then the P-iteration {x,}
converges to p. Moreover, the P-iteration converges faster than the S- iteration.

Proof. Suppose the S-iteration {g,} converges to p € F(f). Put | = inf{zx € E :
x = f(z)} and u = sup{z € E: z = f(z)}. We devide our proof into the following
three cases:
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Case 1: ¢1 = 1 > wu. By Proposition 2.2 and Proposition 3.6, we get
f(@1) < ¢1 and f(z1) < x1. By Lemma 3.4 (i), we have z,, < g, for all n > 1.
By continuity of f, we have f(u) = u, so u = f(u) < f(x1) < 1. This implies
by (1.4) that f(x1) < 21 < 1, so u < 23 < x7. Since f is non-decreasing,
we have u = f(u) < f(z1) < f(z1) < 21 < 1. It follows by (1.4), that y; =
(1—=01)z1+P1f(21) < z1. Since f is non-decreasing, we have u < f(y1) < f(z1) <
f(x1) <z <z and u < f(y1) < 22 < f(z1). By mathematical induction, we
can show that u < x, for all n > 1. Hence , we have p < z, < g, for allmn > 1,
which implies |z, — p| < |gn — p| for all n > 1. Thus z,, — p and the P-iteration
converges to p faster than the S- iteration.

Case 2: ¢1 = x1 < l. By Proposition 2.3 and Proposition 3.5 , we get f(¢q1) > q1
and f(z1) > 1. By Lemma 3.4 (ii), we have z,, > ¢, for all n > 1. We note that
x1 < !, by (1.4) and mathematical induction, we can show that z, < I for all
n>1. So g, < x, < p for all n > 1. Hence |z, — p| < |g, — p|. It follows that
z, — p and the P-iteration converges to p faster than the S-iteration.

Case 3: | < ¢1 = x1 < u. Suppose that f(z1) # x1. If f(z1) < x1, by Lemma
2.1 (i) , we have that {g,} is non-increasing. It follows that p < g, for all n > 1.
By Lemma 3.3 (i) and Lemma 3.4 (i) , we get p < x, < ¢, for all n > 1, This
implies |z, — p| < |gn — p|. It follows that z, — p and the P-iteration converges
to p faster than the S-iteration.

If f(x1) > 21, by Lemma 2.1 (ii), we have that {g,} is non-decreasing. This
implies g, < p for all n > 1. By Lemma 3.3 (ii) and Lemma 3.4 (ii), we get
gn < 2, < pfor all n > 1. Tt follows that |z, — p| < |g, — p| for all n > 1. Hence
T, — p and the P-iteration converges to p faster than the S-iteration. [l

Example 3.8. Let f : [0,00) — [0,00) be defined by f(x) = #. Then f is
a continuous and non-decreasing function. The comparisons of the convergence
of the Ishikawa iteration, S-iteration and the P-iteration to the exact fized point
p =1 are giwven in Table 1, with the initial point x1 = ¢ = s1 = 2 and o, = %,

Ishikawa S-iteration P-iteration

n Sn dn LTn |f(xn) - xn|
3 1.540872070 | 1.228210401 1.150245305 0.129225591

26 | 1.364330695 | 1.000000032 1.000000002  2.56567E-09
27 | 1.361571178 | 1.000000016 1.000000001  1.23348E-09
28 | 1.358927101 | 1.000000008 1.000000001  5.93889E-09

Table 1

Comparison of rate of convergence of the Ishikawa iteration, S-iteration and
P-iteration for the given function in Example 3.8. From Table 1, we see that the
P-iteration converges to p = 1 faster than the Ishikawa and S-iterations.
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Example 3.9. Let f : [0,5] — [0,5] be defined by f(x) = Va2 +4. Then f is a
continuous and non-decreasing function. The comparisons of the convergence of
the Ishikawa iteration, S-iteration and the P-iteration to the exact fixed point p = 2

are given in Table 2, with the initial point x1 = q1 = s1 =3 and ay = By, = Y = %

Ishikawa S-iteration P-iteration

n Sn dn Tn |f(xn) - In|
3 | 2.055372105 | 2.010415225 2.001802129 0.005000393

12 | 2.021489268 | 2.000000462 2.000000033 6.9311E-08

13 | 2.020359903 | 2.000000153 2.000000010 2.17191E-09
14 | 2.019368059 | 2.000000051 2.000000003  6.84134E-09
15 | 2.018488772 | 2.000000017 2.000000001  2.16447E-09

Table 2

Comparison of rate of convergence of the Ishikawa iteration, S-iteration and
P-iteration for the given function in Example 3.9. From Table 2, we see that the
P-iteration converges to p = 2 faster than the Ishikawa and S-iterations.
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