Thai Journal of Mathematics Volume 13 (2015) Number 2 : 449–457

http://thaijmath.in.cmu.ac.th

Rate of Convergence of P-Iteration and S-Iteration for Continuous Functions on Closed Intervals¹

Prayong Sainuan

Department of Mathematics, Faculty of Sciences and Agricultural Technology Rajamangala University of Technology Lanna, Chiang Mai 50300, Thailand e-mail: psainuan@hotmail.com

Abstract : In this paper, we first give a necessary and sufficient condition for convergence of P-iteration to a fixed point of continuous functions on an arbitrary interval and prove equivalence of P-iteration and S-iteration. We also compare the rate of convergence between P-iteration and S-iteration. Some numerical examples for comparing the rate of convergence of those two methods are also given.

Keywords: rate of convergence; P-iteration; S-iteration; continuous function; closed interval.

2010 Mathematics Subject Classification: 47H09; 47H10.

1 Introduction

Let E be a closed interval on the real line and $f: E \to E$ be a continuous function. A point $p \in E$ is a fixed point of f if f(p) = p. We denote by F(f) the set of fixed points of f. It is known that if E also bounded, then F(f) is nonempty. The Mann iteration (see [1]) is defined by $u_1 \in E$ and

$$u_{n+1} = (1 - \alpha_n) u_n + \alpha_n f(u_n)$$
(1.1)

Copyright \odot 2015 by the Mathematical Association of Thailand. All rights reserved.

 $^{^1{\}rm This}$ research was supported by Rajamangala University of Technology Lanna, Chiang Mai, Thailand.

for all $n \geq 1$, where $\{\alpha_n\}_{n=1}^{\infty}$ is a sequence in [0,1], and will be denoted by $M(u_1, \alpha_n, f)$. The *Ishikawa iteration* (see [2]) is defined by $s_1 \in E$ and

$$\begin{cases} t_n = (1 - \beta_n) \, s_n + \beta_n f(s_n) \\ s_{n+1} = (1 - \alpha_n) \, s_n + \alpha_n f(t_n) \end{cases}$$
 (1.2)

for all $n \ge 1$, where $\{\alpha_n\}_{n=1}^{\infty}$, $\{\beta_n\}_{n=1}^{\infty}$ are sequences in [0,1], and will be denoted by $I(s_1, \alpha_n, \beta_n, f)$. The *S-iteration* (see [3]) is defined by $q_1 \in E$ and

$$\begin{cases} r_n = (1 - \beta_n) \, q_n + \beta_n f(q_n) \\ q_{n+1} = (1 - \alpha_n) \, f(q_n) + \alpha_n f(r_n) \end{cases}$$
 (1.3)

for all $n \ge 1$, where $\{\alpha_n\}_{n=1}^{\infty}$, $\{\beta_n\}_{n=1}^{\infty}$ are sequences in [0,1], and will be denoted by $S(q_1, \alpha_n, \beta_n, f)$.

It was shown in [4] that the Mann and Ishikawa iterations are equivalent for the class of Zamfirescu operators. In 2006, Babu and Prasad [5] showed that the Mann iteration converges faster than the Ishikawa iteration for the class of operators. Two years later, Qing and Rhoades [6] provided an example to show that the claim of Babu and Prasad is false. In 2013, Kosol [3] showed that the S-iteration converges faster than the Ishikawa iteration on an arbitrary interval. In 2011, Phuengrattana and Suantai [7] introduced a new three -step iteration, called SP-iteration, and showed that it converges faster than Mann, Ishikawa, Noor -iterations.

Motivated by the above results, we modify S and SP- iterations for construction a new iteration as follows: The *P-iteration* is defined by $x_1 \in E$ and

$$\begin{cases}
z_n = (1 - \gamma_n) x_n + \gamma_n f(x_n) \\
y_n = (1 - \beta_n) z_n + \beta_n f(z_n) \\
x_{n+1} = (1 - \alpha_n) f(z_n) + \alpha_n f(y_n)
\end{cases}$$
(1.4)

for all $n \geq 1$, where $\{\alpha_n\}_{n=1}^{\infty}$, $\{\beta_n\}_{n=1}^{\infty}$ and $\{\gamma_n\}_{n=1}^{\infty}$ are sequences in [0,1], and will be denoted by $P(x_1, \alpha_n, \beta_n, \gamma_n, f)$.

In this paper, we give a necessary and sufficient condition for the convergence of the P-iteration of continuous non-decreasing functions on an arbitrary interval. We also prove that if the S-iteration converges, then the P-iteration converges and converges faster than the S-iteration for the class of continuous and non-decreasing functions. Moreover, we present the numerical examples for the P-iteration to compare with the Ishikawa and the S-iterations.

2 Preliminaries

In this section we recall some lemmas , definition , theorems and known results in the existing literature on this concept.

Lemma 2.1 ([3],Lemma 2.1). Let E be a closed interval on the real line and $f: E \to E$ be a continuous function. Let $\{\alpha_n\}_{n=1}^{\infty}$ and $\{\beta_n\}_{n=1}^{\infty}$ be sequences in [0,1]. For $q_1 \in E$, let $\{q_n\}_{n=1}^{\infty}$ be the sequence defined by (1.3). Then the following hold:

- (i) If $f(q_1) < q_1$, then $f(q_n) \le q_n$ for all $n \ge 1$ and $\{q_n\}_{n=1}^{\infty}$ is non-increasing.
- (ii) If $f(q_1) > q_1$, then $f(q_n) \ge q_n$ for all $n \ge 1$ and $\{q_n\}_{n=1}^{\infty}$ is non-decreasing.

Proposition 2.2 ([3],Proposition2.5). Let E be a closed interval on the real line and $f: E \to E$ be a continuous and non-decreasing function such that F(f) is nonempty and bounded with $q_1 > \sup\{p \in E: p = f(p)\}$. Let $\{\alpha_n\}$ and $\{\beta_n\}$ be sequences in [0,1]. If $f(q_1) > q_1$, then the sequence $\{q_n\}$ defined by S-iteration does not converge to a fixed point of f.

Proposition 2.3 ([3],Proposition 2.6). Let E be a closed interval on the real line and $f: E \to E$ be a continuous and non-decreasing function such that F(f) is nonempty and bounded with $q_1 < \inf\{p \in E: p = f(p)\}$. Let $\{\alpha_n\}$ and $\{\beta_n\}$ be sequences in [0,1]. If $f(q_1) < q_1$, then the sequence $\{q_n\}$ defined by S-iteration does not converge to a fixed point of f.

Definition 2.4 ([7],Definition 3.1). Let E be a closed interval on the real line and $f: E \to E$ be a continuous function. Suppose that $\{x_n\}_{n=1}^{\infty}$ and $\{y_n\}_{n=1}^{\infty}$ are two iterations which converge to the fixed point p of f. Then $\{x_n\}_{n=1}^{\infty}$ is said to converge faster than $\{y_n\}_{n=1}^{\infty}$ if $|x_n - p| \le |y_n - p|$ for all $n \ge 1$.

Theorem 2.5 ([3],Theorem 2.7). Let E be a closed interval on the real line and f: $E \to E$ be a continuous and non-decreasing function such that F(f) is nonempty and bounded. For $s_1 = q_1 \in E$, let $\{s_n\}$ and $\{q_n\}$ be the sequences defined by (1.2) and (1.3), respectively. If the Ishikawa iteration $\{S_n\}$ converges to $p \in F(f)$, then the S-iteration $\{q_n\}$ converges to p. Moreover, the S-iteration converges faster than the Ishikawa iteration.

3 Main Results

We first give some useful facts for our main results.

Lemma 3.1. Let E be a closed interval on the real line and $f: E \to E$ be a continuous and non-decreasing function. Let $\{\alpha_n\}_{n=1}^{\infty}$, $\{\beta_n\}_{n=1}^{\infty}$ and $\{\gamma_n\}_{n=1}^{\infty}$ be sequences in [0,1]. For $x_1 \in E$, let $\{x_n\}_{n=1}^{\infty}$ be defined by P-iteration. Then the following hold:

- (i) If $f(x_1) < x_1$, then $f(x_n) \le x_n$ for all $n \ge 1$ and $\{x_n\}_{n=1}^{\infty}$ is non-increasing.
- (ii) If $f(x_1) > x_1$, then $f(x_n) \ge x_n$ for all $n \ge 1$ and $\{x_n\}_{n=1}^{\infty}$ is non-decreasing.

Proof. (1) Let $f(x_1) < x_1$. Assume that $f(x_k) \le x_k$ for k > 1. Then $f(x_k) \le z_k \le x_k$. Since f is non-decreasing, we have $f(z_k) \le f(x_k) \le z_k \le x_k$. By (1.4), we get $f(z_k) \le y_k \le z_k$. Since f is non-decreasing, we have $f(y_k) \le f(z_k) \le y_k \le z_k$. It follows from (1.4), that $f(y_k) \le x_{k+1} \le f(z_k)$. This implies $x_{k+1} \le f(z_k) \le y_k$. Since f is non-decreasing, we have $f(x_{k+1}) \le f(y_k)$. Thus $f(x_{k+1}) \le x_{k+1}$. By induction, we can conclude that $f(x_n) \le x_n$ for all $n \ge 1$. This together with (1.4), we have $y_n \le z_n \le x_n$ for all $n \ge 1$. Since f is non-decreasing, we have $f(y_n) \le f(z_n) \le f(x_n)$ for all $n \le 1$. It follows that, $x_{n+1} = (1 - \alpha_n)f(z_n) + \alpha_n f(y_n) \le f(z_n) \le f(x_n) \le x_n$ for all $n \ge 1$. Thus $\{x_n\}$ is non-increasing. (ii) By using the same argument as in (i), We obtain the desired result.

Theorem 3.2. Let E be a closed interval on the real line and $f: E \to E$ be a continuous and non-decreasing function. For $x_1 \in E$, let $\{x_n\}_{n=1}^{\infty}$ be defined by (1.4), where $\{\alpha_n\}_{n=1}^{\infty}$, $\{\beta_n\}_{n=1}^{\infty}$ and $\{\gamma_n\}_{n=1}^{\infty}$ are sequences in [0,1] and $\lim_{n\to\infty} \beta_n = \lim_{n\to\infty} \gamma_n = 0$. Then $\{x_n\}_{n=1}^{\infty}$ is bounded if and only if $\{x_n\}_{n=1}^{\infty}$ converges to a fixed point of f.

Proof. If $\{x_n\}$ is convergent, then it is bounded. Now, assume that $\{x_n\}$ is bounded. we will show that $\{x_n\}$ is convergent. If $f(x_1) = x_1$, by (1.4) we have

$$z_{1} = (1 - \gamma_{1}) x_{1} + \gamma_{1} f(x_{1}) = x_{1}$$

$$y_{1} = (1 - \beta_{1}) z_{1} + \beta_{1} f(z_{1}) = x_{1}$$

$$x_{2} = (1 - \alpha_{1}) f(z_{1}) + \alpha_{1} f(y_{1}) = x_{1}.$$

We can show by induction that $x_n = x_1$ for all $n \ge 1$. Thus $\{x_n\}$ is convergent. Suppose that $f(x_1) \ne x_1, f(x_1) < x_1$ or $f(x_1) > x_1$. By Lemma 3.1, we obtain that $\{x_n\}$ is non-increasing or non-decreasing. Since $\{x_n\}$ is bounded, it implies that $\{x_n\}$ is convergent. Next, we prove that $\{x_n\}$ converges to a fixed point of f. Let $\lim_{n\to\infty} x_n = p$ for some $p \in E$. By continuity of f and $\{x_n\}$ is bounded, we have $\{f(x_n)\}$ is bounded. By (1.4), we obtain $z_n = (1 - \gamma_n)x_n + \gamma_n f(x_n) = x_n + \gamma_n (f(x_n) - x_n)$. Since $\lim_{n\to\infty} \gamma_n = 0$, we have $\lim_{n\to\infty} z_n = \lim_{n\to\infty} x_n = p$. By continuity of f and $\{x_n\}$ is bounded, we have $\{z_n\}$ and $\{z_n\}$ are bounded.

By (1.4), we get $y_n = (1 - \beta_n)z_n + \beta_n f(z_n) = z_n + \beta_n (f(z_n) - z_n)$. Since $\lim_{n \to \infty} \beta_n = 0$, we have $\lim_{n \to \infty} y_n = \lim_{n \to \infty} z_n = p$. By continuity of f, we have $\lim_{n \to \infty} (f(y_n) - f(z_n)) = f(p) - f(p) = 0$. From $x_{n+1} = f(z_n) + \alpha_n (f(y_n) - f(z_n))$ and continuity of f, we have

$$p = \lim_{n \to \infty} x_{n+1}$$

$$= \lim_{n \to \infty} f(z_n) + \lim_{n \to \infty} \alpha_n (f(y_n) - f(z_n))$$

$$= \lim_{n \to \infty} f(z_n)$$

$$= f(p).$$

Hence p is a fixed point of f and $\{x_n\}$ converge to p.

Lemma 3.3. Let E be a closed interval on the real line and $f: E \to E$ be a continuous and non-decreasing function. For $x_1 \in E$, let $\{x_n\}_{n=1}^{\infty}$ be the P-iteration defined by (1.4), where $\{\alpha_n\}_{n=1}^{\infty}$, $\{\beta_n\}_{n=1}^{\infty}$ and $\{\gamma_n\}_{n=1}^{\infty}$ are sequences in [0,1]. Then we have the following:

- (i) If $p \in F(f)$ with $x_1 > p$, then $x_n \ge p$ for all $n \ge 1$.
- (ii) If $p \in F(f)$ with $x_1 < p$, then $x_n < p$ for all n > 1.

Proof. (i) Suppose that $p \in F(f)$ and $x_1 > p$. Since f is non-decreasing, we have $f(x_1) \ge f(p) = p$. By (1.4), we get

$$z_1 = (1 - \gamma_1)x_1 + \gamma_1 f(x_1) \ge (1 - \gamma_1)p + (\gamma_1)p = p.$$

Thus $f(z_1) \ge f(p) = p$. From (1.4), we have

$$y_1 = (1 - \beta_1)z_1 + \beta_1 f(z_1) \ge (1 - \beta_1)p + (\beta_1)p = p.$$

Thus $f(y_1) \ge f(p) = p$. Again (1.4), implies that

$$x_2 = (1 - \alpha_1)f(z_1) + \alpha_1 f(y_1) \ge (1 - \alpha_1)p + (\alpha_1)p = p.$$

Assume that $x_k \ge p$ for k > 2. Thus $f(x_k) \ge f(p) = p$. By (1.4), we have $z_k = (1 - \gamma_k)x_k + \gamma_k f(x_k) \ge (1 - \gamma_k)p + (\gamma_k)p = p$. Thus $f(z_k) \ge f(p) = p$. This implies $y_k = (1 - \beta_k)z_k + \beta_k f(z_k) \ge (1 - \beta_k)p + \beta_k p = p$.

Hence $f(y_k) \ge f(p) = p$. It follows that

$$x_{k+1} = (1 - \alpha_k)f(z_k) + \alpha_k f(y_k) \ge (1 - \alpha_k)p + \alpha_k p = p.$$

By induction, we can conclude that $x_n \geq p$ for all $n \geq 1$.

- (ii) By using the same argument as in (i), we can show that $x_n \leq p$ for all $n \geq 1$.
- **Lemma 3.4.** Let E be a closed interval on the real line and $f: E \to E$ be a continuous and non-decreasing function. For $x_1 \in E$, let $\{\alpha_n\}_{n=1}^{\infty}$, $\{\beta_n\}_{n=1}^{\infty}$ and $\{\gamma_n\}_{n=1}^{\infty}$ be sequences in [0,1]. For $x_1 = q_1 \in E$, let $\{q_n\}_{n=1}^{\infty}$ and $\{x_n\}_{n=1}^{\infty}$ be sequences defined by (1.3) and (1.4) respectively. Then we have the following:
 - (i) If $f(q_1) < q_1$, then $x_n \leq q_n$ for all $n \geq 1$.
 - (ii) If $f(q_1) > q_1$, then $x_n \ge q_n$ for all $n \ge 1$.

Proof. (i) Let $f(q_1) < q_1$. Since $x_1 = q_1$, we get $f(x_1) < x_1$. First, we show that $x_n \le q_n$ for all $n \ge 1$.

From (1.4), we get $f(x_1) \leq z_1 \leq x_1$. Since f is non-decreasing, we have $f(z_1) \leq f(x_1) \leq z_1 \leq x_1$.

By (1.4), we have $f(z_1) \leq y_1 \leq z_1$. Since f is non-decreasing, we obtain $f(y_1) \leq f(z_1) \leq y_1 \leq z_1 \leq x_1$.

From (1.3) and (1.4), we get $z_1 - q_1 = (1 - \gamma_1)x_1 + \gamma_1 f(x_1) - q_1 = \gamma_1 (f(x_1) - x_1) \le 0$. Thus $z_1 \le q_1$. Since f is non-decreasing, we have $f(z_1) \le f(q_1)$. By (1.3) and (1.4), we get $y_1 - r_1 = (1 - \beta_1)(z_1 - q_1) + \beta_1 (f(z_1) - f(q_1)) \le 0$. Thus $y_1 \le r_1$. Since f is non-decreasing, we have $f(y_1) \le f(r_1)$. By (1.3) and (1.4), it follows that

 $x_2 - q_2 = (1 - \alpha_1)[f(z_1) - f(q_1)] + \alpha_1[f(y_1) - f(r_1)] \le 0.$

Thus $x_2 \leq q_2$. Assume that $x_k \leq q_k$. Thus $f(x_k) \leq f(q_k)$. By Lemma 2.1 $f(q_k) \leq q_k$ and by (1.4), Lemma 3.1 $f(x_k) \leq x_k$. This implies $f(x_k) \leq z_k \leq x_k \leq q_k$. Since f is non-decreasing, we have $f(z_k) \leq f(q_k)$. By (1.3) and (1.4), it follows that

 $y_k - r_k = (1 - \beta_k)(z_k - q_k) + \beta_k(f(z_k) - f(q_k)) \le 0.$

Thus $y_k \leq r_k$. Since f is non-decreasing, we have $f(y_k) \leq f(r_k)$ it follows that $x_{k+1} - q_{k+1} = (1 - \alpha_k)[f(z_k) - f(q_k)] + \alpha_k[f(y_k) - f(r_k)] \leq 0$. By Mathematical induction, we obtain $x_n \leq q_n$ for all $n \geq 1$.

(ii) By using the same argument as in (i), we obtain the desired result. \Box

The next two propositions show that convergence of P-iteration depends on how far the initial point from the fixed point set.

Proposition 3.5. Let E be a closed interval on the real line and $f: E \to E$ be a continuous and non-decreasing function such that F(f) is nonempty and bounded with $x_1 < \inf\{p \in E: p = f(p)\}$. Let $\{\alpha_n\}$, $\{\beta_n\}$ and $\{\gamma_n\}$ be sequences in [0,1]. If $f(x_1) < x_1$, then the sequence $\{x_n\}$ defined by P-iteration does not converge to a fixed point of f.

Proof. By Lemma 3.1(i), we have that $\{x_n\}$ is non-increasing. Since the initial point $x_1 < \inf\{p \in E : p = f(p)\}$, it follows that $\{x_n\}$ does not converge to a fixed point of f.

Proposition 3.6. Let E be a closed interval on the real line and $f: E \to E$ be a continuous and non-decreasing function such that F(f) is nonempty and bounded with $x_1 > \sup\{p \in E: p = f(p)\}$. Let $\{\alpha_n\}$, $\{\beta_n\}$ and $\{\gamma_n\}$ be sequences in [0,1]. If $f(x_1) > x_1$, then the sequence $\{x_n\}$ defined by P-iteration does not converge to a fixed point of f.

Proof. By Lemma 3.1(ii), we have that $\{x_n\}$ is non-decreasing. Since the initial point $x_1 > \sup\{p \in E : p = f(p)\}$, it follows that $\{x_n\}$ does not converge to a fixed point of f.

Theorem 3.7. Let E be a closed interval on the real line and $f: E \to E$ be a continuous and non-decreasing function such that F(f) is nonempty and bounded. For $q_1 = x_1 \in E$, let $\{q_n\}$ and $\{x_n\}$ be the sequences defined by (1.3) and (1.4), respectively. If the S-iteration $\{q_n\}$ converges to $p \in F(f)$, then the P-iteration $\{x_n\}$ converges to p. Moreover, the P-iteration converges faster than the S- iteration.

Proof. Suppose the S-iteration $\{q_n\}$ converges to $p \in F(f)$. Put $l = \inf\{x \in E : x = f(x)\}$ and $u = \sup\{x \in E : x = f(x)\}$. We devide our proof into the following three cases:

Case 1: $q_1=x_1>u$. By Proposition 2.2 and Proposition 3.6, we get $f(q_1)< q_1$ and $f(x_1)< x_1$. By Lemma 3.4 (i), we have $x_n\leq q_n$ for all $n\geq 1$. By continuity of f, we have f(u)=u, so $u=f(u)\leq f(x_1)< x_1$. This implies by (1.4) that $f(x_1)\leq z_1\leq x_1$, so $u\leq z_1\leq x_1$. Since f is non-decreasing, we have $u=f(u)\leq f(z_1)\leq f(x_1)\leq z_1\leq x_1$. It follows by (1.4), that $y_1=(1-\beta_1)z_1+\beta_1 f(z_1)\leq z_1$. Since f is non-decreasing, we have $u\leq f(y_1)\leq f(z_1)\leq f(x_1)\leq z_1\leq x_1$ and $u\leq f(y_1)\leq x_2\leq f(z_1)$. By mathematical induction, we can show that $u\leq x_n$ for all $n\geq 1$. Hence, we have $p\leq x_n\leq q_n$ for all $n\geq 1$, which implies $|x_n-p|\leq |q_n-p|$ for all $n\geq 1$. Thus $x_n\to p$ and the P-iteration converges to p faster than the S- iteration.

Case 2: $q_1 = x_1 < l$. By Proposition 2.3 and Proposition 3.5, we get $f(q_1) > q_1$ and $f(x_1) > x_1$. By Lemma 3.4 (ii), we have $x_n \ge q_n$ for all $n \ge 1$. We note that $x_1 < l$, by (1.4) and mathematical induction, we can show that $x_n < l$ for all $n \ge 1$. So $q_n \le x_n \le p$ for all $n \ge 1$. Hence $|x_n - p| \le |q_n - p|$. It follows that $x_n \to p$ and the P-iteration converges to p faster than the S-iteration.

Case 3: $l < q_1 = x_1 < u$. Suppose that $f(x_1) \neq x_1$. If $f(x_1) < x_1$, by Lemma 2.1 (i) , we have that $\{q_n\}$ is non-increasing. It follows that $p \leq q_n$ for all $n \geq 1$. By Lemma 3.3 (i) and Lemma 3.4 (i) , we get $p \leq x_n \leq q_n$ for all $n \geq 1$, This implies $|x_n - p| \leq |q_n - p|$. It follows that $x_n \to p$ and the P-iteration converges to p faster than the S-iteration.

If $f(x_1) > x_1$, by Lemma 2.1 (ii), we have that $\{q_n\}$ is non-decreasing. This implies $q_n \leq p$ for all $n \geq 1$. By Lemma 3.3 (ii) and Lemma 3.4 (ii), we get $q_n \leq x_n \leq p$ for all $n \geq 1$. It follows that $|x_n - p| \leq |q_n - p|$ for all $n \geq 1$. Hence $x_n \to p$ and the P-iteration converges to p faster than the S-iteration.

Example 3.8. Let $f:[0,\infty) \to [0,\infty)$ be defined by $f(x) = \frac{x^2+3}{4}$. Then f is a continuous and non-decreasing function. The comparisons of the convergence of the Ishikawa iteration, S-iteration and the P-iteration to the exact fixed point p=1 are given in Table 1, with the initial point $x_1=q_1=s_1=2$ and $\alpha_n=\frac{1}{n}$, $\beta_n=\gamma_n=\frac{1}{2n}$.

	Ishikawa	S-iteration	P-iteration	
\overline{n}	s_n	q_n	x_n	$ f(x_n)-x_n $
3	1.540872070	1.228210401	1.150245305	0.129225591
÷	i :	:	:	:
26	1.364330695	1.000000032	1.000000002	2.56567E-09
27	1.361571178	1.000000016	1.000000001	1.23348E-09
28	1.358927101	1.000000008	1.000000001	5.93889E-09

Table 1

Comparison of rate of convergence of the Ishikawa iteration, S-iteration and P-iteration for the given function in Example 3.8. From Table 1, we see that the P-iteration converges to p = 1 faster than the Ishikawa and S-iterations.

Example 3.9. Let $f:[0,5] \to [0,5]$ be defined by $f(x) = \sqrt[3]{x^2 + 4}$. Then f is a continuous and non-decreasing function. The comparisons of the convergence of the Ishikawa iteration, S-iteration and the P-iteration to the exact fixed point p=2 are given in Table 2, with the initial point $x_1 = q_1 = s_1 = 3$ and $\alpha_n = \beta_n = \gamma_n = \frac{1}{n}$

	Ishikawa	S-iteration	P-iteration	
n	s_n	q_n	x_n	$ f(x_n)-x_n $
3	2.055372105	2.010415225	2.001802129	0.005000393
:	÷	i:	:	:
12	2.021489268	2.000000462	2.000000033	6.9311E- 08
13	2.020359903	2.000000153	2.000000010	2.17191E-09
14	2.019368059	2.000000051	2.0000000003	6.84134E-09
15	2.018488772	2.000000017	2.000000001	2.16447E-09

Table 2

Comparison of rate of convergence of the Ishikawa iteration, S-iteration and P-iteration for the given function in Example 3.9. From Table 2, we see that the P-iteration converges to p=2 faster than the Ishikawa and S-iterations.

Acknowledgements: The author would like to thank Rajamangala University of Technology Lanna for the financial for this paper and the referees for comments and suggestions on the manuscript.

References

- [1] W.R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc. 4 (1953) 506-510.
- [2] S. Ishikawa, Fixed points by a new iteration method, Proc. Amer. Math. Soc. 44 (1974) 147-150.
- [3] S. Kosol, Rate of convergence of S-iteration and Ishikawa iteration for continuous functions on closed intervals, Thai J.Math. 11(2013) 703 709.
- [4] S.M. Soltuz, The equivalence of Picard, Mann and Ishikawa iterations dealing with quasi-contractive operators, Mathematical Communications, 10 (2005) 81-88.
- [5] G.V. Babu, K.N. Prasad, Mann iteration converges faster than Ishikawa iteration for the class of Zamfirescu operators, Fixed Point Theory and Applications, Article ID49615, (2006) 1-6.
- [6] Y. Qing, B.E. Rhoades, Comments on the Rate of Convergence between Mann and Ishikawa Iterations Applied to Zamfirescu Operators, Fixed Point Theory and Applications, Article ID 387504, (2008) 1-3.

[7] W.Phuengrattana, S. Suantai, On the rate of convergence of Mann, Ishikawa, Noor and SP-iterations continuous functions on an arbitrary interval, J.Comput. Appl.Math.235(2011) 3006-3014.

(Received 15 January 2015) (Accepted 16 May 2015)

 \mathbf{T} HAI $\mathbf{J.}$ \mathbf{M} ATH. Online @ http://thaijmath.in.cmu.ac.th