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1 Introduction

1.1 Equivalence transformations

The equivalence problem of a linear second-order parabolic partial differential
equations in two independent variables

a1 (t, 2)us + az(t, x)uz + as(t, 2)u + tze =0 (1.1)

is considered in the paper. Recall that the well-known group of equivalence trans-
formations for Eq. (L)) (given in [1]), i.e. the changes of the independent variables
t,z and the dependent variable u that do not change the form of Eq. (), is com-
posed of the linear transformation of the dependent variable

v=u/V(tx) (1.2)
and the following change of the independent variables:
T=H(), y=Y(tx), (1.3)

where V(t,z), H(t) and Y (¢,z) are arbitrary functions obeying the invertibility
conditions, V(t,x) # 0, H'(t) # 0 and Y, (¢t,2) # 0. The form invariance of
Equation (II) means that the transformations (L2)—(L3) map Eq. (1)) into an
equation of the same form:

bl (7—7 y)’U-,— + b2(7—7 y)vy + b3(T7 y)’U - Uyy =0 (14)

Equations (1) and (T4, related by an equivalence transformation, are called
equivalent equations. Lie [I] also obtained the classification of a linear second-
order partial differential equations (ILT)). Ovsiannikov [2] studied the group classi-
fication of a nonlinear parabolic equation. It was shown that Ibragimov [3] found
first and second order semi-invariants of a parabolic partial differential equation
(@TI). In [4] Johnpillai and Mahomed showed that there are no first, second, third
and fourth order invariants other than constant and they obtained one relative
invariant. Sixth and seventh-order differential invariants of linear second-order
parabolic partial differential equation (LI under an action of the equivalence
group of point transformations (L2)—(L3]) were found in [5]. The paper [6] gives
an extension of Euler’s method to linear parabolic equations with two independent
variables. The new method allowed deriving an explicit formula for the general
solution of a wide class of parabolic equations. Morozov [7] studied invariants of
contact transformations for linear parabolic equations.

1.2 Canonical parabolic equations

According to Lie’s classification [I], the canonical forms of linear second-order
parabolic partial differential equations (4] are the heat equation

Ut = Ugy, (1.5)
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the equation

Ut = Ugy + alx)u, (1.6)
with arbitrary function a(xz) # % and the equation
k
Up = Ugy + Fu, (1.7)

where k£ a nonzero constant. Conditions which the parabolic equation
b1 (7, y)vr + ba(7, y)vy + bs(T, y)v — vy =0 (1.8)

to be equivalent to (LA)-(T1) are obtained.

Equivalence problem for the heat equation was studied by Johnpillai and Ma-
homed [4]. Criterion for an equation (II]) to be equivalent to the heat equation
(LX) was obtained by Johnpillai and Mahomed

A=0.
The quantity A is defined by

A= (=8D1ryyyb? + 36b1ryybiybt — 4byrybisb7 + 28b1rybiyybt
—80b17yb%yb? + 4[)1-,—-,—yb(1S — 4517—7—blyb§) + 4b%7.blub£11 + 81)1-,—[)1yyybéll
—64b17b1yyb1yb§ + 80b17b?yb% + 4()11””””/19411 — 4‘0b11ﬂﬂﬂ/b1yb? (19)

_64b1uyub1yub? =+ 220b1yyyb%ub% =+ 288b%yyblub% — 81Ob1yyb§ub1
1261y, b7k + 40503, + 2061, K b7 + 8K b3 /b1,

where
K = (2b1,bay — b1yb3 — 4b1, b3 + 2b2,b7 — 2bay, by + 2baybiba + 4bs,by)/(2b7).

The present paper is devoted to obtain conditions for equation ([II)) to be equiv-

alent to (L6]) and (L7).

2 Preliminaries

For this we suppose that ug(t, x) is a given function. Substituting uo(¢, ) into
([T2), one obtains

vo(t,x) = ug(t,x)/V (¢, ). (2.1)

By virtue of the inverse function theorem, there exist functions T'(7,y), X(7,y)
such that
t=T(ry), = =X(1,y). (2.2)

After substituting (Z2)) into equation (L2, one obtains the transformation of the
function wug(t, z):
UO(Ta y) = uO(tv .I)/V(t, I)a
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where ¢t and z are defined by ([2.2). Notice that the function vy (7,y) satisfies the
relation
vo(H(t), Y (t,x)) = uo(t,z)/V(t,x). (2.3)

Differentiating equation (23] with respect to ¢ and x, one gets
'UQ-,—H/ + ’UOyY;g = (UQ/V)t, ’UOme = (’U,O/V)m (24)
Solving linear system (2:4) with respect to the derivatives vg, and wg,, one has

Vor (Tu y) = Ail(YVt(uO/V);E -Y, (UQ/V)t),

voy (T, y) = —A" H (ug ) V), (2.5)

where it assumed that A = —H'Y, # 0. Differentiating second equation (Z3])
with respect to ¢ and x, one obtains

voyr H' + v0yy Y = A1, voyyYe = Aa, (2.6)
where
Ar = ((H' (uo/V)e) Dy = AH (uo/V)2)e) | A2,
Ay = ((H'(uo/V)a) Du = A(H (uo/V)2)2) [ A2
Hence, the derivative vy, is
Voyy = AN T ALH'. (2.7)
That is the equation (L8] become (II), where
a; = ATY3by,
az = —ATYWTIQ2H'V,Y, — H'Y,,V — H'Y2Vby + Y, Y2Vby),

as = —Aflvfl(H’meYm — H'V, Y0 — H/V1Y12b2 — H/ngbgv
—VtYmgbl + VzYtYﬁbl).

3 Main Results

3.1 Equivalence problem for equation u; = u,, + a(x)u

This section studies equations (I8) which are equivalent to equation (6.
Since for equation (L6])

ap=-1, ax=0, az=a(x). (3.1)

Hence equation (2.8)) become

1= —A_1Ym3b1,
0= 2H'V,Y, — H'Y,,V — HY2Vby + Y;Y2Vby, (3.2)
a= —Ailvfl(H/meYm —H'V, Y, — H/VmY5b2 — H’Yﬁbgv '

—VtYm?’bl + VthYm2b1).
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The problem is to find conditions for the coefficients b1(7,y), b2(7,y), b3(7,y)
which guarantee existence of the functions H(t), Y (¢, z), V (¢, z) transforming the
coefficients of (4] into (I]). Solution of this problem consists of the analysis of
compatibility of (32).

From the first equation of equation ([B.2]), one has

H' =b Y2 (3.3)

Then

Yow = —b1,Y,2/(2b1). (3.4)

The second equation and the third equation of equation ([B.2)) can be solved with
respect to Y; and V,:

Y = (—4V,Yyby 4 Y2V (=byy + 2b1bs))/(201V), (3.5)

Viw = (=b1yVaY.2 4+ 2ViYyby — 2V, Yiby + 2V, Y.2b1bo

Comparing the mixed derivatives (Y;)ze — (Yzz): = 0, one finds

Vie = (AViY Vb3 + 2ViY203 (byy, — 2b1bo) — AV, Y203 + AV, Y, Y203 (—byy
+2b1b2) + V, Y, by (—4bryyby + b3, + 4byybiby — 4b3b3 — 8b7bs)
=8V, Y 2ab} + 2Y,Y 201V (—b1yyb1 + 203, + 2b3b3) 4 4Y;Y,abiV
FY 2V (—2b1yyy b3 + 91y b1yby — Tb3, — 6b1ybay b3 + 10b1,b3bs
+4bay, b3 — 8bgy b3 — 4bTbabs) + 2Y,3b1 V (biry H'by — b1-b1y H'
+biyaby — 2ablbs) — 8Y.2a,b3V)/(8Y.2b3).
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The equation (Vyz): — (Viz )z = 0 gives

Vie = (=32V2Y2b1V + 128V, V2V 301 + 80V, V. Y, Y261V + 8V, V, Y203V (3by,
—10b1by) + SV Y2Y,bEVE — 16V,Y, V3640 V2 + 2V, Y252V 2 (b2,
AB2b3) — 128V, Y3ab V2 — 64VAY,Y2b) + 32V3Y b3 (b1, + 2b1b2)
C32V2Y2Y, bV 4 32V2Y, Y363V (b, + 2b1b2) + 8V2Y OBV (81, b1
—9b2 — Abyybiby — 8boyb? — 46202 + 24b2by) + 6AVEY 03V (— by, H'
+3aby) — SV YWV 1+ AV, Y2Y 23V 2 (byy + 6biby) + 2V, Y, Y02V
(4bryyby + 562, — Abyybiby — 16bayb? — 126263 + 2452b3) + 16V, Y, V,2b3V2
(—leTHI + 7@()1) + VwYmel VQ(—Sblyuyb% + 68b1yyb1yb1 - 73b?y
—26b2, b1by + 8biybayb? + Aby b6 + T2b1,b2bs — 16bay, b3 + 32b, bibs
+8b3b8 — A8b3babs) + 8VaYABRV2(—byyy H'b1 — byrbyy H' + by, H'bibo
—|—5b1yab1 - 14&()%()2) + 4n2Y$b%V3(—3b1yyb1 + Gb%U + 2b%b3)
+8Y2Y,abt V3 + 2Y,Y5by V3 (—10b1yyyb% + 50b1yyb1yby + 6b1yyb2bs
—43D3, — 1262 b1by — 18byyboyb? + A8by,b2bs + 12Dy, b — 32Dy, b
—863bsbs) + AV, Y302V (301, H'by — 3b1-biy H' — 4ab2hy) — 32Y,Y2a, b4V
—l—Y;Vs(—Sblyyyyb? + 50b11ﬂﬂ/b1yb% + 12b11ﬂﬂ/b§b2 + 40b%yyb% - 195b1yyb%ybl
—54byyyb1yb2by — 32b1yybayb? + 64byy, b3by + 11353, + 4263 byby
+58D2 by b2 — 9852, b2bs — 36b1ybayy bt + 36b1ybaybibs + 6dbyy by, bl
321, b3babs + 16bayyybt — 24bsy, biby — 64byyblbs — 32bs,, bt
43203, b2by + 8H202Ds + 64b202) + 2V Pby V3(dby gy H'D? — Thirybyy H'by
—GblTyH/b%bg - 4b17—b1yyHlb1 + 7b17—b%yHl + GblTblyHlblbz — b%yabl
16bs, H'D + 4ab302) + 16Y2a,b3V3(—by, + 2b1bs)
1323043 (—ag, — 202))/(32Y364V2).
(3.8)
Equating (V). = (Viz)t, one obtains

gze = (Y7 A3)/(1607), (3.9)

where A3 = —b1°\. Notice that by virtue of A # 0, one has A3 # 0. Because a
does not depend on ¢, differentiating ([8.9) with respect to ¢, one has

Vo= (=20V2620 + 2V, Y, V(15b1,Ag — 2Xg,by) + Y2 V2

20ab2AsV2) /(200205 V), (3.10)
where
Ao = —biyybr + 2b3, — 2b1,b1by + 2by, b7 — 4bibs,
Mg = —10b17b3A3 + 5b3, A3 — by Azybr — 10b1,b1ba A3 + 2X3,b3
+2X3,b3b2 + BA2 3.
Substitution of V; into (B7) and (B8) gives
Aryp = (—IGVIQYIQb%/\5 — SVIYEbl)\GV + Yx4)\7V2 + 40Yxazb:{’/\3v2 (3 11)

(1501, A3 — 2Xa,b1))/(40063X21V2),

AVabi s + YoV =0, (3.12)
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where

A= 2b17ybf — 2b1:b1yb3 — 2b14y,bT + 10b1yy b1y by — 2b1,,bTby — 9BF,
+4b7,b1by — 6b1ybaybT 4 8b1,bTbs + 4bsy, b3 — 8bsy b7,

As = —15003,A3 + 25b1y Azybi Az + 150b1,b1b2A3 — 150b9,bT A3
+10A3yybTAs — 1223, b7 4 30007b3 A3 + T5A2A3,

Mo = —300b1,b2b5)2 + 15b1, Asha + 40Ag,b3b3\s + 12Xa, b1 A,
—10A4ybi Mg + 2501\,

Ar = 140b3-b2Ashg — 30002,52b5 3 — 5502, As A + 200by,bs, b2,
0By, Aay b5 As + 1251, AgybiAa + 600b1,b7bybs A2
+110b1yb1b2/\3/\4 — 275b1y/\1 /\g — bly/\G — 400()37()?/\%
400D, 54522 + 50A1,b1IAZ — 80A3,bbabs s — 24, b2ba N
F10As,b1 AL A3 — 2004 bEA; — S0064D2A2 — 40002b3 Ao A2
50b1ba A A2 + 20152 Ng — TOA2A3 A + 1222,

Differentiating [B.11)) with respect to ¢, one has

64V3Y 303 (15b1, AaAs — 14Aa, b1 + BAsybiAs)

F16V2YAB2V (120163 M5 A5 — 6062, A\ + 5biy Asybi s
+120b1yb1b2/\3/\5 + 15b1y>\3/\6 — 28/\3yb1>\6 — 10/\57—1)?)\3

10X, 022 A3 + 10A6, b1 s + 40B253XaAs — 60223 A5 + 14A4Ns)

AV, Y 2by V2(260b1,b3As A6 — 13062, As A6 + 10b1y Agy b1 As
4260b1,b1b2AsAg + 14Aayb1 A7 — 206533 — 20A6,b2ba A5 — 5A7ybiAs
406263 A376 — 10A AsAs — 130A0A3 06 + 28AsAg) + 480V, Y 2a b  AsAs V2
+Y$6V3(7140b17—b%/\3)\7 + 70()%11/\3/\7 — 5b1y>\7yb1/\3 — 140b1yb1b2/\3>\7

437

+10/\77-b'“1)’/\3 + 10)\7yb%b2/\3 — 1‘0)\1)\3)\6 + 70X A3 A7 — 14/\4/\7)
+12OY3azb§’/\3/\6V3 =0.
Substituting a,, into (9], one finds

16V2Y,b2(15b1, A3 A5 — 26A3,b1 0 + 105, b1 \3) + 8V, Y2b, V
(—15b1,AsAs — 24As,b1 A6 + 10A6,b1 A3 + 4062325 A5 + 204 )s)
+Y£’V2 (45b1y>\3/\7 + 22)\3yb1>\7 — 10/\7yb1>\3 + 801)%1)3)\3)\6
+250A3 + 4X46) + 80a,b3A3 A5 V2 = 0.

Further study depends on the value of As.

Case 1: A5 #0.
From equations (B.12) and (B.I4]), one finds

Vi = Yo A6 V/(4b1 )
Ay = Yms)\g/(80bzf)\3)\g),
where

As = 10A7,biAsA2 — 45b1,AsAsA2 — 2203, b1 AZA7 — 2223,b1 As A2
—10As5,b1A3A2 — 45b1, A3 A2A7 + 20 A6y b1 AsAs Ag — 250A4A2.

(3.13)

(3.14)

(3.15)
(3.16)
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Equation (I3]) becomes

0552, A XAz — 280b1 b2 e A7 — 280b1 b2 AZAZ + 956, AsAZA2
221, Mgy b ARy — 2261, Ay bIAZAZ — 190b1,b1ba A A2 A7
—190b1,b1ba A5 AZAZ — 25001, MAAZ + 45b1, AsAZAg A7 + 45b1, A3 A5 A2
“hiAsAs + 44 b2ba A3 Ar + 4403, b200A2A2 — BAg,biAZAG AT (3.17)
—6/\3yb1)\5>\% — 20/\571)?)\3)\5/\% + 40)\6717%/\3/\%/\6 + 20)\7717%/\3)\?)
+500b1b2/\§>\g + 2b1boAsAg + 140)\2)\3/\?/\7 + 140)\2)\3)\%)\%

+250/\§/\§>\6 — 28/\4)\%)\7 — 28/\4)\%/\% + AgAsg = 0.

Substituting V, into (B.0), one has

Aoy = (15b1,A3A5A6 — Azyb1As As + BAsybiAshe — 2062bgAs A2

3.18
AD)/ (5b A3 As). (319
Comparing the mixed derivatives (V;), — (V) = 0, one gets
40b1yb%b3/\3/\g — 20()171)%)\3)\?)/\6 — 20()%1/)\3)\?)/\6 + 2b1y/\3yb1/\g/\6
+40b1yb1ba A3 AEAG + 15b1, A3 A5 A2 + 21, Mg A3 — 4AX3,b3ba A2 N6 (3.19)
—2A3yb1 A5 A2 — 205,65 X35 06 + 20603 A3AE — 80b3babs A3 D ’
—4b1baAg A3 + 10A1 A3A3 + 10A2A3A2 06 — 2M4A2X6 — Ag = 0.
Substituting a, into ([BIT), one obtains
15b1y A3 A5 A8 — 2A35b1 A5 A8 + BA12 + 2A3N7 + 20302 = 0, (3.20)
where
A2 = gbly/\g/\5/\8 + 2>\3yb1>\5/\8 + 6/\5yb1>\3)\8 — 2/\8yb1/\3/\5-
Since a does not depend on ¢, the equation (a,): = 0 gives
35b%y)\3)\§)\g — 10b1y A3yb1 A2 s — 160b1,b3A3AENs
—T0b1,b1b2 A3 AEAs + Bb1yA12As + 45b1, A3 A5 A6 A8 + 203, bTba A2 \g (3.21)

“BAaybiAsAsAs — 60As, b3 A3 A5 s + 20As, B3A5A2 — 10b1baA1sAs
—b5A12)¢ + 80/\2)\3/\%/\8 — 16)\4/\%/\8 =0.

If conditions (BI7)-B21)) are satisfied, then the system of equation [B2) is com-
patible. Thus, we have obtained that conditions B.I7)-(B.2I) guarantee that the
parabolic equation (4] is equivalent to (6.

Case 2: \5 =0.
From ([BI2), one has that, A\¢ = 0, and equation (BI4) becomes

)\7y = (45b1y)\3)\7 + 22)\3yb1)\7 + 250)\%)/(10[)1)\3) (322)

Notice that the condition A3 # 0 implies A7y # 0. Differentiating a,, in BI1]) with
respect to t, one gets
12V,biAg + YadioV = 0, (3.23)
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where

Xo = GAaybiAr — 451, Mg A7 — 2508,

Ao = 420b1,b1b2As Ay — 840b1-b3A3 A7 — 21062, A3 A7 — 3500b1, A4
—11b1yAe + 60A7-b3 A + 7000b1baAS + 22b1by Mg + 420 A3 A5 A7

—84X4A7.

From definition of Ag, one finds A3,. Then [B.22)) becomes

A7y = (630b1,A3\7 + 350013 + 11X9)/(30b1 \3).

Case 2.1: \g # 0.
From (3.23)), one finds

V, = =Y, A10V/(12b1 Ag).

Substituting V,, into (3.6) and (B, one has

Moy = (45b1,A10X3A7 09 + 309, b1 A 10 A3 A7 — 360b3b3 A3 A7 A2
—250A 103 h0 — A10A2 — 18X\ A722)/(30b1 A3 A7 \g),

3
az =Y A1,

where

A= (—12b1,03 008 + 662, A 1023 — 6b1y A10yb1 A3 + 61y Aoy biAioAg
—1201,b1baA10A2 — 3b1y A2 Ag + 12X10,b3A2 + 12X10,b2b2 A3
+2/\10yb1/\10)\9 — 12/\9-,—[)11%)\10/\9 — 12)\9yb%b2)\10/\9 — 2)\9yb1)\%0

—|—24b%b3/\10)\g + 18/\1)\8 + 6/\10/\2/\3)/(144():13)\8)

439

(3.24)

(3.25)

(3.26)

(3.27)

Differentiating [3.27) with respect to ¢, and substituting a, into (B1I]), one gets
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5400b1,b1, b2 A1 A A7 A3 — 108001, b3bs A 10 As AT AS
—1800b1,b3A 20 As A7 A2 — 270053, Ao As A A
13562, Aoy b1 Ao AsAzAZ — 14580062, b3 A1 AZAZAS
+10800b%yb1b2>\10/\3/\7>\g + 2250()%7!)\%0/\3/\7)\3
—270b1, Mor b3 A0 A ATAZ — 540b1, A0y b2 A 10 Ag AT A2
—90b1, Aoy b1 A2 AsArAg + 201600b1,b4bo A1 AZAZAS
—81000001,63 A1 ASATAS — 3240b1,b3A 11 As A7 AL
9720061, b3 A3 AZAZA3 — 1080051, 6262 A 10 A3 A7 AL
450051, b1bo N 2o As AT AZ — 450b1, A s Ar A
750061, A2 ASA2 + 3001, A20A3 — 270001, A0 A2 As AT AS
+540b1, A1o A AT AS + 2431, AA3
+194400A 11,765 A3NZNS + 5409, b1b2 A19 A3 A7 A
90N, b3AZo A5 AT Ag + 54020, BB A1 A3 AT A2
+180/\9yb%b2>\%0/\3)\7>\9 + 15/\9yb1/\?0/\3/\7
1620000055211 A3ATAZ + 6480b2D5 A1 Ag Ar AL
194400042 A 13 A2AZA3 — 54000063 A 1A 11 ASATA2
—21606%A 10 A1 A3 ATAS — 3240068 10 A 13 AZAZA2
15000515202 NAAZ — 60b1bsAZ A3
+5400b1b2A10 A2 A3 A7 A3 — 1080b1b2 A 10 Ag A7 NG
486b1bo XA — 250003 M Ag — 10A3 A2
+9OO)\%O)\2)\3)\7)\§ — 180)\%0)\4)\7)\3 — 81)\10)\%)\3 =0,

(3.28)

600b3A2A7 A3 — 10000b3A11 A3 — 40b3A11 A3 Ao + 3A2 = 0, (3.29)

where
)\13 = 3b1y)\11 — 2)\11yb1.

Therefore the conditions A\s = 0, A\g = 0, (324, (3:28), (328) and [B29)) guarantee

that the parabolic equation (4] equivalent to equation (8.

Case 2.2: \g = 0.
From [B23) and (3.24), it follow that

)\10 = 07

A1y = T(9b1, A7 + 50A3)/(3b1). (3.30)

Therefore the conditions A5 = 0, A\g = 0, A\g = 0, A\;0 = 0 and (B30) guarantee
that the parabolic equation (4] equivalent to equation (6.
We can summarize the results by following theorem.

Theorem 3.1. The parabolic equation [{I4)) is equivalent to equation (L.4) if and
only if the coefficients of (I4]) obey one of the following conditions:

(A) equations (3I7)-(F21), in this case the functions H(t),Y (t,z),V(t,x) and
a(x) are obtained by solving involutive system of equations (I3)-(33), (TI0),
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(3.13), (3.18);
(B) equations s =0, A\¢ =0, (3-29), (3.24), (328), (3.29), in this case the func-

tions H(t),Y (t,z),V(t,z) and a(x) are obtained by solving involutive system of

equations (3.3)-(2.3), (B10), (3.23), (3.27);
(C) equations A5 = 0, A\¢ = 0, \g = 0, A10 = 0, (330), in this case the func-
tions H(t),Y (t,z),V(t,z) and a(x) are obtained by solving involutive system of

equations (Z3)-(3.4), (310), (311).

We present an example to illustrate Theorem (BI).

Example 3.2. Consider the linear second-order parabolic partial differential equa-
tion
70, + yv, — (Y77 4+ 1)v — T30, = 0. (3.31)

It has the form of equation (1.4) with the following coefficients
by =1/72, by = y/7°, bs = —(e¥/ "7 +1)/7°. (3.32)

Coefficients of equation (3.32) satisfy conditions (A) in Theorem (31]). Hence,
the parabolic equation (FF1|) is equivalent to equation (IL.8). For finding transfor-
mation H(t),Y (t,x), V(t,x) which mapping equation (FIF1) into equation (I.4),
and a(z) one needs to solve equations (3.3)-(33), (Z10), (313) and (TI10).

Substituting by, ba, by into Ag, one has A\¢ = 0. Thus equation [F13) becomes
Ve, =0, ie.,
V =V().

Substituting by into equation (3-)), one has Yy, = 0. Hence,
Y = H(t)(a(t) + B(t)),
where a(t) and B(t) are arbitrary functions. From equation (316)), one finds
a= et 4 O,

where C' is arbitrary constant, which can chosen, for example C' = 0. Substituting

V,Y, and a into (33), (310), (33), one obtains
H =ao? V' =a’V/H, o/ =0, 8'=0 (3.33)

Since any particular solution for equations (3.33) can be used, we seta =1, 8 = 0.
Hence, H=1t,Y =tx, V =1t and a(x) = e®. Therefore, one obtains the following
transformations

T=t,y=tr, v="1tu,

mapping equation (F.31) into the equation

Ut = Ugy + €7 0.
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3.2 Equivalence problem for equation u; = u,, + m%u

This section studies equations (4] which are equivalent to equation (7).
Since for equation (L), the coefficient is

a(x) = k/z%, (k #0), (3.34)

we continue studying the various cases from the previous section.
Case 1: A5 #0.

Substituting a in (334) into (3I0), one has
k= —Y3X\s23/ (16063 \3A3). (3.35)
Since k is constant, differentiating ([B:35]) with respect to z, one obtains

YmAlziE — 6b1>\3>\5>\8 =0. (336)

Case 1.1: M2 #£0.
In this case, one can find

Yz = 6b1>\3>\5/\8/(/\12$). (337)
Substituting Y, into (3.4), one has

3/\12yb1>\3>\5/\8 — 18b1y)\12/\3)\5>\8 — 6/\3yb1/\12>\5)\8

3.38
—12X5,b1 A12A3As + 202, = 0. (3.38)

Comparing the mixed derivatives (Y;), — (Yz): = 0, one obtains

60A1220 A5 AZAs — 12012 A2 As A2 A5 + 10552, Ao As A2 s
—10b1, Aoy AsA2As + 1051, Agy b1 AiaAZAs + 4061, s, b1 A2 A AsAs
21061, b1ba A2 M AZAs — b1y Ao s — 45b1, A2 A As A6 As

+20>\12~rb?>\3>\§/\8 + 20>\12yb%b2>\3/\§/\8 + 10>\12yb1/\3>\5>\6>\8 (339)
_20>\3yb%b2>\12/\g/\8 — 22>\3yb1/\12)\5/\6/\8 — 20)\5717%/\12)\3)\5/\8
—80A54b3baA12A3 A5 A8 — 40A55b1 A 12A3 A6 As — 20As,-bF A1 A3 AE

10b102A 20N + 5AZyA6 — 12X A A2As = 0.

Therefore the condition (B17)-B21]) and (338)-(B3.39) guarantee that the parabolic
equation (4] equivalent to equation (7).

Case 1.2: A2 = 0.
Equation ([336]) implies A\ = 0. Then (B21]) is the identity and equation (3.20)
and [B.IT) become

A7 = =M/ s, (3.40)

A6 = As(b1y — 2b1by). (3.41)
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Substituting A¢ into (BIR) and [BI9)), one gets

Xoy = (1563, M50 — biyaybids + 5biyAsybiAs — 3001,b1b2 A3\

20 b2bs\s — 10May b2bads — 2062badshs — Aads)/(5birg), 42

b%u — 4b%ub1b2 + 4b1ub2yb% + 4b1yb%b% — 8b1ub%b3 + 10b1y)\2 - 8()27()%
—8bay by — AAayby + 4N, = 0.

Therefore the conditions Ag = 0, A\12 = 0, (340)-B42)) and (343) guarantee that
the parabolic equation (I4) equivalent to equation (LT).

(3.43)

Case 2 : \; =0.
Case 2.1: \g #0.
Substituting a from (B34) into (21), one has

E=—-Y3\23)2. (3.44)
Differentiating k£ with respect to ¢ and x, one gets

45bfy/\11/\3/\7/\9 — 90b1yb1b2 A 11 A3 A7 A9 — 151y A13 A3 A7 g
—60A11-03 A3 A7 X9 + 30b1b2 A 13 A3 7 Ag + 250101173 (3.45)
FA10A11 A0 + 5A10A13A3 A7 — 90A11 A2 A3 A7 A9 + 18A11 A4 A7 A9 = O,
,Tym)\lg — 6b1)\11 =0. (346)
Case 2.1.1 : A3 #0.
Solving ([B.46]) with respect to Y, one obtains
Ym = 6b1A11/(A13$). (347)
Substituting Y, into (3.4]), one has
0 = 3A13yb1A11 — 9b1, A1 A3 + 2025, (3.48)

The requirement (Y;), — (Yz): = 0, leads to condition

225()%”/\11)\13)\3)\7)\9 — 1801)17-17%/\11/\13)\3)\7/\9

—90b1y>\13yb1/\11)\3)\7x\9 — 450b1yb1b2>\11)\13/\3/\7)\9

—90b1y A 10A 11 M3 A3 A7 — 45b1y A T3 A3 A7 A9 — 180A11-b3A13 A3 7 A9
+180A 13,63 A 11 A3 A7 Ag + 180A13,03b2 A 11 Az A7 A (3.49)
+30)\13y51)\10)\11)\3)\7 + 90b1b2)\%3)\3)\7)\9 — 250)\10)\11)\13)\%

—A10A 111300 + 15)\10)\%3)\3)\7 + 9011 A 13 2 A3 7 A9

—18/\11>\13/\4/\7)\9 = 0.

Therefore the conditions (3.24), (324), B28), (329), B43), (348) and (3:49)

guarantee that the parabolic equation ([L4]) equivalent to equation (7).

Case 2.1.2: \i3=0.
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Equation (46) and (3.29) imply A;; = 0 and A\; = 0. This contradicts A7 # 0.
Case 2.2: \g = 0.
Equation (B3I1)) is

3YAA22% + 80063 A2k (25Y, A3x — 9b1 A7) = 0. (3.50)
Analyzing equation ([350) one obtains that 25Y, A3z — 9b1 A7 # 0. Hence,

k= =3V N\2x1/(800b3N2(25Y . N — 9b1A7)). (3.51)
Differentiating k& with respect to x, one has

675Y,b1 A3 2z — 1875Y,2A\72% + 108b3A2 = 0. (3.52)

Differentiating ([B.52) with respect to ¢ and z, one gets

93750V, Y301 A5 (13b1, A7 4+ T0A3) + 33750V, Y2b2 M Az
(—13b1yAr — TOAD) + 5400V, Y, b3 AgAZ(—13b1, Ay — T0AD)
H18T5Y AN AV a? (—220b1,63 A5 + 11063, A3 — 220b1,b1b2 A3

+105A0)s — 214) + 675Y3by AAAZV 2:(220b1,62 A5 — 11062, A3 (3.53)

+220b1yb1b2/\3 — 10523 + 21/\4) + 108Yw2b%/\§‘/(220b17b%/\3

—110()%1}/\3 + 220b1yb1b2/\3 — 10523 + 21/\4) =0,
3125Y12)\g$2(—39b1y)\7 — 220)\%) + 375Y$bl)\§)\7$(117b1y)\7 (3 54)

+63503) + 1356202 (52by, A7 + 28573) = 0.
Using (3.52) and (B.54), one finds
Y, = —3b1\7/(25\5z). (3.55)

Substituting Y, into 353 and equations Yy, = (Yz)az, Yie = (Ya)t, (Vo) = (Yo,

one obtains identities. Therefore the conditions A5 = 0, Ag =0, Ag =0, A\jg =0

and (3.30) guarantee that the parabolic equation (4] equivalent to equation (LT).
Therefore the results can be summarized by the following theorem.

Theorem 3.3. The parabolic equation ({I4)) is equivalent to equation ({I.7) if and
only if the coefficients of (14)) obey one of the following conditions:

(A) equations (3.17)-(321), (3:33),(3:39), in this case the functions H(t),Y (t,x),
V(t,x) and k are obtained by solving involutive system of equations (3.3), (3.3]),
(310), (3.13), (3:33), (3-57);

(B) A\s =0, \12 =0, (544)-(573), (343), in this case the functions H(t),Y (t,x),
V(t,z) and k are obtained by solving involutive system of equations (F3)-(Z3H),
E10), (313), [3:33);

(C) (5Z3), (320), (323), (329), (543), (343), (3-49), in this case the functions
H(t), Y(t,z),V(t,x) and k are obtained by solving involutive system of equations
@3, @D, EI0), B2, FLD), OIV;

(D) X5 =0, 6 =0, g =0, \jg =0, (330), in this case the functions H(t),
Y (t,z),V(t,z) and k are obtained by solving involutive system of equations (T3,

(23), 3.9), (210), (3.21), B33
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Remark. Equation (4] equivalent to (L7 if and only if it satisfies following
relation

3125/(3k) = 4(506250b%, A3, b1 X4 — 75937563, A3 — 13500003, A3, b33

1800062, X3, 593 — 120061, X4, biAs + 3208, 6508, (350)

We consider the following example.

Example 3.4. Consider the linear second-order parabolic partial differential equa-
tion
y%v, +y(27° + ¥, — 3730 — 72y, = 0. (3.57)

It is an equation of the form (1.7) with the coefficients
by = 1/72, by = (27° + %) /(%y), b3 = —3/y”. (3.58)

One can check that the coefficients (F38) obey the conditions (D) in Theorem
(Z3). Furthermore, they also satisfy condition (F36l). Thus, the parabolic equa-
tion (3.57) is equivalent to equation (1.7). For finding a transformation mapping
equation (3.57) into equation ([1.7), one need to solve equations (3.3), (3.3), (3.4),
EI0), (321, (Z353) for H(t),Y (t,z), V(t,z) and k.

Substituting by, ba, by into equation (FHH), one has

Y, —-Y =0.
Substituting the general solution of this equation
Y=c(t)H )z (3.59)

into equation (F21)), one has k = 1, where c¢1(t) is an arbitrary function. From
equations (Z3) and (33), one obtains

H' =¢3, (3.60)
2c10V, + (¢jx? — 2¢1)V = 0.
The general solution of the last equation is
V= cz(t)a:ef(cll/‘lcl)ﬁ.
Substituting the function V into [3.4), one gets
(cfcrea — 2¢Pen)a” 4 (2¢)cica — 4ched) = 0.
Splitting this equation with respect to x, we have

e =202,

216y = dyea. (3.61)
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The general solution of the system of ordinary differential equations (F.61) is
c1 = 1/(kit + k2),
3 = (1/(ks(kit + k2))).
Substituting c¢1 into [3.60), one has
H' =1/(kit + ko). (3.62)

Further study depends on quantity of k1.
Case k1 #0
The general solution of (362) is

H =kq — 1/(k1(kat + k2)).
Because of k1 # 0, ks # 0 and ka, k4 are arbitrary constant. Setting k1 = 1,
ko =0, k3 =1, kg = 0. Therefore, one obtains the following transformations
1 €T I2 422 /43
S P SRR R Coy
T = ta y - t25 U= \/Ee I
mapping equation (3.07) into the equation

Ut = Ugy + U
x

Case k1 =0
For this case we have

Cc1 = 1//€2, C% = 1//€2,
where ko # 0. The general solution of (3.63) is
t
k3
where ks is arbitrary constant. Setting ko =1, ks = 0. Therefore, one obtains the
following transformations

H = + ks

T=1t,y=1tr, v=27au,

mapping equation (3.07) into the equation

Ut = Ugy + —5U.
T

4 Conclusion

This paper is devoted to finding conditions which the parabolic equation (0.3)
to be equivalent to (0.1)-(0.2). Conditions which guarantee that the second-order
parabolic differential equations is equivalent to one of the canonical forms are
found in theorem (BI]) and ([B3]), respectively.
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