Some Inequalities Concerning the Polar Derivative of a Polynomial

Abdullah Mir and Bilal Dar
Department of Mathematics, University of Kashmir
Srinagar-190006, India
e-mail : mabdullah_mir@yahoo.co.in
darbilal85@ymail.com

Abstract : In this paper, we consider the class of polynomials $P(z)=a_{n} z^{n}+$ $\sum_{\nu=\mu}^{n} a_{n-\nu} z^{n-\nu}, 1 \leq \mu \leq n$, having all zeros in $|z| \leq k, k \leq 1$ and thereby establish several interesting estimates pertaining to the maximum modulus of the polar derivative of a polynomial $P(z)$. Our results not only generalize and refine some known polynomial inequalities, but also a variety of interesting results can be deduced from these by a fairly uniform procedure.

Keywords : polar derivative; polynomials; zeros; maximum modulus; inequalities in the complex domain.
2010 Mathematics Subject Classification : 30A10; 30C10; 30C15.
\|

1 Introduction and Statement of Results

Let $P(z)$ be a polynomial of degree n and $P^{\prime}(z)$ be its derivative. Then according to the well-known Bernstien's inequality [4] on the derivative of a polynomial, we have

$$
\begin{equation*}
\operatorname{Max}_{|z|=1}\left|P^{\prime}(z)\right| \leq n \operatorname{Max}_{|z|=1}|P(z)| . \tag{1.1}
\end{equation*}
$$

Equality holds in (1) if and only if $P(z)$ has all its zeros at the origin.
For the class of polynomials $P(z)$ having all zeros in $|z| \leq 1$, Turan [11] proved

[^0]that
\[

$$
\begin{equation*}
\operatorname{Max}_{|Z|=1}\left|P^{\prime}(z)\right| \geq \frac{n}{2} \operatorname{Max}_{|z|=1}|P(z)| . \tag{1.2}
\end{equation*}
$$

\]

Inequality (2) was refined by Aziz and Dawood [1] and they proved under the same hypothesis that

$$
\begin{equation*}
\operatorname{Max}_{|z|=1}\left|P^{\prime}(z)\right| \geq \frac{n}{2}\left\{\operatorname{Max}_{|z|=1}|P(z)|+\operatorname{Min}_{|z|=1}|P(z)|\right\} \tag{1.3}
\end{equation*}
$$

Both the inequalities (2) and (3) are best possible and become equality for polynomials $P(z)=\alpha z^{n}+\beta$ where $|\alpha|=|\beta|$. As an extension of (2), it was shown by Malik [10], that if $P(z)$ has all its zeros in $|z| \leq k, k \leq 1$, then

$$
\begin{equation*}
\operatorname{Max}_{|z|=1}\left|P^{\prime}(z)\right| \geq \frac{n}{1+k} \operatorname{Max}_{|z|=1}|P(z)| \tag{1.4}
\end{equation*}
$$

where as the corresponding extension of (3) and a refinement of (4) was given by Govil [8] who under the same hypothesis proved that

$$
\begin{equation*}
\operatorname{Max}_{|z|=1}\left|P^{\prime}(z)\right| \geq \frac{n}{1+k}\left\{\operatorname{Max}_{|z|=1}|P(z)|+\frac{1}{k^{n-1}} \operatorname{Min}_{|z|=k}|P(z)|\right\} \tag{1.5}
\end{equation*}
$$

In the literature, there already exist some refinements and generalizations of all the above inequalities, for example see Aziz and Shah [3], Dewan, Mir and Yadav [7], Govil, Rahman and Schemeisser [9], Dewan, Singh and Lal [5], etc.

By considering the class of polynomials $P(z)=a_{n} z^{n}+\sum_{v=\mu}^{n} a_{n-v} z^{n-v}, 1 \leq \mu \leq$ n, of degree n having all zeros in $|z| \leq k, k \leq 1$, Aziz and Shah [3] (see also Dewan, Mir and Yadav [7]) proved

$$
\begin{equation*}
\operatorname{Max}_{|z|=1}\left|P^{\prime}(z)\right| \geq \frac{n}{1+k^{\mu}}\left\{\operatorname{Max}_{|z|=1}|P(z)|+\frac{1}{k^{n-\mu}} \operatorname{Min}_{|z|=k}|P(z)|\right\} \tag{1.6}
\end{equation*}
$$

For $\mu=1$, inequality (6) reduces to inequality (5).
Let $D_{\alpha} P(z)$ denotes the polar derivative of the polynomial $P(z)$ of degree n with respect to the point α. Then

$$
D_{\alpha} P(z)=n P(z)+(\alpha-z) P^{\prime}(z)
$$

The polynomial $D_{\alpha} P(z)$ is of degree at most $n-1$ and it generalizes the ordinary derivative in the sense that

$$
\operatorname{Lim}_{\alpha \rightarrow \infty}\left\{\frac{D_{\alpha} P(z)}{\alpha}\right\}=P^{\prime}(z)
$$

Dewan, Singh and Lal [5] extended the inequality (6) to the polar derivative of a polynomial $P(z)$ by showing that if $P(z)=a_{n} z^{n}+\sum_{v=\mu}^{n} a_{n-v} z^{n-v}, 1 \leq \mu \leq n$,
has all its zeros in $|z| \leq k, k \leq 1$, then for every real or complex number α with $|\alpha| \geq k^{\mu}$,

$$
\begin{equation*}
\operatorname{Max}_{|z|=1}\left|D_{\alpha} P(z)\right| \geq \frac{n\left(|\alpha|-k^{\mu}\right)}{1+k^{\mu}} \operatorname{Max}_{|z|=1}|P(z)|+\frac{n(|\alpha|+1)}{k^{n-\mu}\left(1+k^{\mu}\right)} \operatorname{Min}_{|z|=k}|P(z)| \tag{1.7}
\end{equation*}
$$

If we divide both sides of (7) by $|\alpha|$ and let $|\alpha| \rightarrow \infty$, we get (6).
Here, we shall prove the following more general result which includes not only inequalities (6) and (7) as special cases, but also leads to a standard development of interesting generalizations of some well-known results.
Theorem 1. If $P(z)=a_{n} z^{n}+\sum_{v=\mu}^{n} a_{n-v} z^{n-v}, 1 \leq \mu \leq n$, is a polynomial of degree n having all its zeros in $|z| \leq k, k \leq 1$, then for every real or complex number α with $|\alpha| \geq A_{\mu}$, we have

$$
\begin{equation*}
\operatorname{Max}_{|z|=1}\left|D_{\alpha} P(z)\right| \geq \frac{n\left(|\alpha|-A_{\mu}\right)}{1+A_{\mu}} M a x_{|z|=1}|P(z)|+\frac{n A_{\mu}(|\alpha|+1)}{k^{n}\left(1+A_{\mu}\right)} m \tag{1.8}
\end{equation*}
$$

where

$$
\begin{equation*}
A_{\mu}=\frac{n\left(\left|a_{n}\right|-\frac{m}{k^{n}}\right) k^{2 \mu}+\mu\left|a_{n-\mu}\right| k^{\mu-1}}{n\left(\left|a_{n}\right|-\frac{m}{k^{n}}\right) k^{\mu-1}+\mu\left|a_{n-\mu}\right|} \tag{1.9}
\end{equation*}
$$

and $m=M i n_{|z|=k}|P(z)|$.
Remark 1. Since by Lemma 5 (stated in section 2)we have $A_{\mu} \leq k^{\mu} ; 1 \leq \mu \leq n$, Theorem 1 in particular holds for $|\alpha| \geq k^{\mu}$ also.

Also when $P(z)$ has all its zeros in $|z| \leq k, k \leq 1$, it is easy to verify, for example by derivative test and Lemma 6 , that for every α with $|\alpha| \geq x$, the function

$$
\left(\frac{|\alpha|-x}{1+x}\right) M a x_{|z|=1}|P(z)|+\frac{x(|\alpha|+1) m}{k^{n}(1+x)}
$$

is a non-increasing function of x. If we combine this fact with $A_{\mu} \leq k^{\mu}$, we get inequality (7) from Theorem 1.

If we do not have the knowledge of $M i n_{|z|=k}|P(z)|$, we can use the following result, whose proof is similar to that of Theorem 1.
Theorem 2. If $P(z)=a_{n} z^{n}+\sum_{v=\mu}^{n} a_{n-v} z^{n-v}, 1 \leq \mu \leq n$, is a polynomial of degree n having all its zeros in $|z| \leq k, k \leq 1$, then for every real or complex number α with $|\alpha| \geq s_{\mu}$, we have

$$
\begin{equation*}
\operatorname{Max}_{|z|=1}\left|D_{\alpha} P(z)\right| \geq n\left(\frac{|\alpha|-s_{\mu}}{1+s_{\mu}}\right) \operatorname{Max}_{|z|=1}|P(z)| \tag{1.10}
\end{equation*}
$$

where

$$
\begin{equation*}
s_{\mu}=\frac{n\left|a_{n}\right| k^{2 \mu}+\mu\left|a_{n-\mu}\right| k^{\mu-1}}{n\left|a_{n}\right| k^{\mu-1}+\mu\left|a_{n-\mu}\right|} . \tag{1.11}
\end{equation*}
$$

Remark 2. If we divide both sides of (10) by $|\alpha|$ and let $|\alpha| \rightarrow \infty$, we get an interesting generalisation of a result due to Govil, Rahman and Schemeisser [9].

Several other interesting results easily follow from Theorem 1. Here, we mention few of these. If we divide both sides of (8) by $|\alpha|$ and let $|\alpha| \rightarrow \infty$, we immediately get the following result.
Corollary 1. If $P(z)=a_{n} z^{n}+\sum_{v=\mu}^{n} a_{n-v} z^{n-v}, 1 \leq \mu \leq n$, is a polynomial of degree n having all its zeros in $|z| \leq k, k \leq 1$, then

$$
\begin{equation*}
\operatorname{Max}_{|z|=1}\left|P^{\prime}(z)\right| \geq\left(\frac{n}{1+A_{\mu}}\right) \operatorname{Max}_{|z|=1}|P(z)|+\frac{n m A_{\mu}}{k^{n}\left(1+A_{\mu}\right)} \tag{1.12}
\end{equation*}
$$

where $m=\operatorname{Min}_{|z|=k}|P(z)|$ and A_{μ} is defined in (9).
The result is sharp and equality in (12) holds for $P(z)=\left(z^{\mu}+k^{\mu}\right)^{\frac{n}{\mu}}$, where n is a multiple of μ.
Remark 3. Again by the same reasoning as in remark 1, it is easy to verify that the function

$$
\left(\frac{n}{1+x} M a x_{|z|=1}|P(z)|+\frac{n m x}{k^{n}(1+x)}\right)
$$

is a non-increasing function of x. If we combine this fact with Lemma 5 according to which $A_{\mu} \leq k^{\mu}$ for $1 \leq \mu \leq n$, we get inequality (6).

2 Lemmas

For the proof of Theorem 1, we need the following lemmas.
Lemma 1. If $P(z)=a_{n} z^{n}+\sum_{v=\mu}^{n} a_{n-v} z^{n-v}, 1 \leq \mu \leq n$, is a polynomial of degree n having all its zeros in $|z| \leq k, k \leq 1$, and $q(z)=z^{n} \overline{P\left(\frac{1}{\bar{z}}\right)}$ then

$$
\begin{equation*}
\left\{\frac{n\left|a_{n}\right| k^{2 \mu}+\mu\left|a_{n-\mu}\right| k^{\mu-1}}{n\left|a_{n}\right| k^{\mu-1}+\mu \mid a_{n-\mu}}\right\}\left|P^{\prime}(z)\right| \geq\left|q^{\prime}(z)\right|, \quad \text { for } \quad|z|=1 \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\mu}{n}\left|\frac{a_{n-\mu}}{a_{n}}\right| \leq k^{\mu} \tag{2.2}
\end{equation*}
$$

The above lemma is due to Aziz and Rather [2].
Lemma 2. If $P(z)=\sum_{v=0}^{n} a_{v} z^{v}$ is a polynomial of degree n having all its zeros in $|z| \leq k, k>0$, then

$$
|q(z)| \geq \frac{m}{k^{n}} \quad \text { for } \quad|z| \leq \frac{1}{k}
$$

and in particular

$$
\begin{equation*}
\left|a_{n}\right|>\frac{m}{k^{n}} \tag{2.3}
\end{equation*}
$$

where $m=\operatorname{Min}_{|z|=k}|P(z)|$ and $q(z)=z^{n} \overline{P\left(\frac{1}{\bar{z}}\right)}$.
The above lemma is due to Dewan, Singh and Mir [6].
Lemma 3. The function

$$
\begin{equation*}
s_{\mu}(x)=\frac{n x k^{2 \mu}+\mu\left|a_{n-\mu}\right| k^{\mu-1}}{n x k^{\mu-1}+\mu\left|a_{n-\mu}\right|} \tag{2.4}
\end{equation*}
$$

where $k \leq 1$ and $\mu \geq 1$, is a non-increasing function of x.
Proof of Lemma 3. The proof follows by considering the first derivative test for $s_{\mu}(x)$.
Lemma 4. If $P(z)=a_{n} z^{n}+\sum_{v=\mu}^{n} a_{n-v} z^{n-v}, 1 \leq \mu \leq n$, is a polynomial of degree n having all its zeros in $|z| \leq k, k \leq 1$, and $q(z)=z^{n} \overline{P\left(\frac{1}{\bar{z}}\right)}$, then for $|z|=1$,

$$
\begin{equation*}
\left|q^{\prime}(z)\right| \leq A_{\mu}\left|P^{\prime}(z)\right|-\frac{m n A_{\mu}}{k^{n}} \tag{2.5}
\end{equation*}
$$

where

$$
\begin{equation*}
A_{\mu}=\frac{n\left(\left|a_{n}\right|-\frac{m}{k^{n}}\right) k^{2 \mu}+\mu\left|a_{n-\mu}\right| k^{\mu-1}}{n\left(\left|a_{n}\right|-\frac{m}{k^{n}}\right) k^{\mu-1}+\mu\left|a_{n-\mu}\right|} \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\mu\left|a_{n-\mu}\right|}{n\left(\left|a_{n}\right|-\frac{m}{k^{n}}\right)} \leq k^{\mu} \tag{2.7}
\end{equation*}
$$

with $m=\operatorname{Min}_{|z|=k}|P(z)|$.
Proof of Lemma 4. By hypothesis, the polynomial $P(z)=a_{n} z^{n}+\sum_{v=\mu}^{n} a_{n-v} z^{n-v}, 1 \leq$ $\mu \leq n$, has all its zeros in $|z| \leq k, k \leq 1$. If $P(z)$ has a zero on $|z|=k$, then $m=0$ and the result follows from Lemma 1. Henceforth we assume that all the zeros of $P(z)$ lie in $|z|<k, k \leq 1$, so that $m>0$. Since $m \leq|P(z)|$ for $|z|=k$, therefore if λ is any real or complex number with $|\lambda|<1$, then

$$
\left|\frac{m \lambda z^{n}}{k^{n}}\right|<|P(z)| \quad \text { for } \quad|z|=k
$$

Since all the zeros of $P_{n}(z)$ lie in $|z|<k$, it follows by Rouche's theorem that all the zeros of $P(z)-\frac{m \lambda z^{n}}{k^{n}}$ also lie in $|z|<k, k \leq 1$. Hence by Guass-Lucas theorem, the polynomial

$$
\begin{equation*}
P^{\prime}(z)-\frac{m n \lambda z^{n-1}}{k^{n}} \tag{2.8}
\end{equation*}
$$

also has all its zeros in $|z|<k, k \leq 1$, for every λ with $|\lambda|<1$. This implies

$$
\begin{equation*}
\left|P^{\prime}(z)\right| \geq \frac{m n|z|^{n-1}}{k^{n}} \quad \text { for } \quad|z| \geq k, k \leq 1 \tag{2.9}
\end{equation*}
$$

Because if (21) is not true, then there is a point $z=z_{0}$ with $\left|z_{0}\right| \geq k$ such that

$$
\left|P^{\prime}\left(z_{0}\right)\right|<\frac{m n\left|z_{0}\right|^{n-1}}{k^{n}}
$$

We choose $\lambda=\frac{k^{n} P^{\prime}\left(z_{0}\right)}{m n z_{0}^{n-1}}$, so that $|\lambda|<1$ and with this choice of λ, from (20), we have

$$
P^{\prime}\left(z_{0}\right)-\frac{m n \lambda z_{0}^{n-1}}{k^{n}}=0
$$

where $\left|z_{0}\right| \geq k$, which contradicts the fact that all the zeros of

$$
P^{\prime}(z)-\frac{m n \lambda z^{n-1}}{k^{n}}
$$

lie in $|z|<k, k \leq 1$. Now, we can apply inequality (13) of Lemma 1 to the polynomial

$$
P(z)-\frac{m \lambda z^{n}}{k^{n}}
$$

and get,

$$
\begin{equation*}
s_{\mu}^{\prime}\left|P^{\prime}(z)-\frac{m n \lambda z^{n-1}}{k^{n}}\right| \geq\left|q^{\prime}(z)\right|, \quad \text { for }|z|=1 \tag{2.10}
\end{equation*}
$$

where

$$
\begin{equation*}
s_{\mu}^{\prime}=\frac{n\left|a_{n}-\frac{m \lambda}{k^{n}}\right| k^{2 \mu}+\mu\left|a_{n-\mu}\right| k^{\mu-1}}{n\left|a_{n}-\frac{m \lambda}{k^{n}}\right| k^{\mu-1}+\mu\left|a_{n-\mu}\right|} \tag{2.11}
\end{equation*}
$$

Since for every λ with $|\lambda|<1$, we have

$$
\begin{equation*}
\left|a_{n}-\frac{m \lambda}{k^{n}}\right| \geq\left|a_{n}\right|-\frac{m|\lambda|}{k^{n}} \geq\left|a_{n}\right|-\frac{m}{k^{n}} \tag{2.12}
\end{equation*}
$$

and $\left|a_{n}\right|>\frac{m}{k^{n}}$ by Lemma 2. Now combining (23), (24) and Lemma 3, we get for every λ with $|\lambda|<1$,

$$
\begin{equation*}
s_{\mu}^{\prime}=\frac{n\left|a_{n}-\frac{m \lambda}{k^{n}}\right| k^{2 \mu}+\mu\left|a_{n-\mu}\right| k^{\mu-1}}{n\left|a_{n}-\frac{m \lambda}{k^{n}}\right| k^{\mu-1}+\mu\left|a_{n-\mu}\right|} \leq \frac{n\left(\left|a_{n}\right|-\frac{m}{k^{n}}\right) k^{2 \mu}+\mu\left|a_{n-\mu}\right| k^{\mu-1}}{n\left(\left|a_{n}\right|-\frac{m}{k^{n}}\right) k^{\mu-1}+\mu\left|a_{n-\mu}\right|}=A_{\mu} \tag{2.13}
\end{equation*}
$$

Therefore using (25) and (22), we get

$$
\begin{equation*}
A_{\mu}\left|P^{\prime}(z)-\frac{m n \lambda z^{n-1}}{k^{n}}\right| \geq\left|q^{\prime}(z)\right| \quad, \text { for } \quad|z|=1 \tag{2.14}
\end{equation*}
$$

If in (26), we choose the argument of λ such that

$$
\left|P^{\prime}(z)-\frac{m n \lambda z^{n-1}}{k^{n}}\right|=\left|P^{\prime}(z)\right|-\frac{m n|\lambda|}{k^{n}}
$$

which easily follows from (21), we get

$$
\begin{equation*}
A_{\mu}\left|P^{\prime}(z)\right|-\frac{m n|\lambda| A_{\mu}}{k^{n}} \geq\left|q^{\prime}(z)\right|, \quad \text { for }|z|=1 \tag{2.15}
\end{equation*}
$$

Finally letting $|\lambda| \rightarrow 1$ in (27), we get

$$
A_{\mu}\left|P^{\prime}(z)\right| \geq\left|q^{\prime}(z)\right|+\frac{m n A_{\mu}}{k^{n}}, \text { for }|z|=1
$$

which proves (17).
To prove (19), we apply inequality (14) of Lemma 1 to the polynomial $P(z)-$ $\frac{m \lambda z^{n}}{k^{n}}$, and get

$$
\begin{equation*}
\frac{\mu\left|a_{n-\mu}\right|}{n\left|a_{n}-\frac{m \lambda}{k^{n}}\right|} \leq k^{\mu} \tag{2.16}
\end{equation*}
$$

for every real or complex number λ with $|\lambda|<1$.
Since by Lemma 2, we have $\left|a_{n}\right|>\frac{m}{k^{n}}$, we can choose argument of λ in (28) such that

$$
\left|a_{n}-\frac{m \lambda}{k^{n}}\right|=\left|a_{n}\right|-\frac{m|\lambda|}{k^{n}}
$$

and with this choice of the argument of λ, we get from (28) that

$$
\begin{equation*}
\frac{\mu\left|a_{n-\mu}\right|}{n\left(\left|a_{n}\right|-\frac{m|\lambda|}{k^{n}}\right)} \leq k^{\mu} \tag{2.17}
\end{equation*}
$$

Inequality (19) now follows by making $|\lambda| \rightarrow 1$ in (29).
Lemma 5. If $P(z)=a_{n} z^{n}+\sum_{v=\mu}^{n} a_{n-v} z^{n-v}, 1 \leq \mu \leq n$, is a polynomial of degree n having all its zeros in $|z| \leq k, k \leq 1$, then

$$
\begin{equation*}
A_{\mu} \leq k^{\mu} \tag{2.18}
\end{equation*}
$$

where A_{μ} is defined as in Theorem 1.
Proof of Lemma 5. We have from inequality (19) of Lemma 4,

$$
\mu\left|a_{n-\mu}\right| \leq n\left(\left|a_{n}\right|-\frac{m}{k^{n}}\right) k^{\mu},
$$

which implies,

$$
\left\{\mu\left|a_{n-\mu}\right|-n\left(\left|a_{n}\right|-\frac{m}{k^{n}}\right) k^{\mu}\right\} \leq 0,
$$

which is equivalent to

$$
\left(k^{\mu-1}-k^{\mu}\right)\left\{\mu\left|a_{n-\mu}\right|-n\left(\left|a_{n}\right|-\frac{m}{k^{n}}\right) k^{\mu}\right\} \leq 0,
$$

that is,

$$
n\left(\left|a_{n}\right|-\frac{m}{k^{n}}\right) k^{2 \mu}+\mu\left|a_{n-\mu}\right| k^{\mu-1} \leq\left(\mu\left|a_{n-\mu}\right|+n\left(\left|a_{n}\right|-\frac{m}{k^{n}}\right) k^{\mu-1}\right) k^{\mu},
$$

from which inequality (30) follows.
Lemma 6. If $P(z)=a_{n} z^{n}+\sum_{\nu=\mu}^{n} a_{n-\nu} z^{n-\nu}, 1 \leq \mu \leq n$, is a polynomial of degree n having all zeros in $|z| \leq k, k \leq 1$ and $m=\operatorname{Min}_{|z|=k}|P(z)|$, then

$$
\begin{equation*}
\frac{m}{k^{n}} \leq M a x_{|z|=1}|P(z)| . \tag{2.19}
\end{equation*}
$$

Proof of Lemma 6. Since $P(z)$ has all its zeros in $|z| \leq k, k \leq 1$, we have from inequality (17) of Lemma 4,

$$
\begin{equation*}
\left|q^{\prime}(z)\right| \leq A_{\mu}\left|P^{\prime}(z)\right|-\frac{m n A_{\mu}}{k^{n}}, \quad \text { for }|z|=1 \tag{2.20}
\end{equation*}
$$

On using (1) in (32), we get for $|z|=1$,

$$
\begin{aligned}
\left|q^{\prime}(z)\right| & \leq A_{\mu} n M a x_{|z|=1}|P(z)|-\frac{m n A_{\mu}}{k^{n}} \\
& =n A_{\mu}\left\{\operatorname{Max}_{|z|=1}|P(z)|-\frac{m}{k^{n}}\right\}
\end{aligned}
$$

which is true and this proves (31).

3 Proof of the Theorems

Proof of Theorem 1. If $q(z)=z^{n} \overline{P\left(\frac{1}{\bar{z}}\right)}$, then it can be easily verified that

$$
\left|q^{\prime}(z)\right|=\left|n P(z)-z P^{\prime}(z)\right|, \text { for }|z|=1
$$

Also for $|z|=1$, we have

$$
\begin{align*}
n|P(z)| & =\left|n P(z)-z P^{\prime}(z)+z P^{\prime}(z)\right| \\
& \leq\left|n P(z)-z P^{\prime}(z)\right|+\left|P^{\prime}(z)\right| \tag{3.1}\\
& =\left|q^{\prime}(z)\right|+\left|P^{\prime}(z)\right|
\end{align*}
$$

The above inequality (33) when combined with inequality (17) of Lemma 4, gives for $|z|=1$,

$$
n|P(z)| \leq\left(1+A_{\mu}\right)\left|P^{\prime}(z)\right|-\frac{m n A_{\mu}}{k^{n}}
$$

which implies

$$
\begin{equation*}
\left|P^{\prime}(z)\right| \geq\left(\frac{n}{1+A_{\mu}}\right) \operatorname{Max}_{|z|=1}|P(z)|+\frac{m n A_{\mu}}{k^{n}\left(1+A_{\mu}\right)} \quad, \text { for } \quad|z|=1 \tag{3.2}
\end{equation*}
$$

Now for every real or complex number α with $|\alpha| \geq A_{\mu}$, the polar derivative of $P(z)$ with respect to α is

$$
D_{\alpha} P(z)=n P(z)+(\alpha-z) P^{\prime}(z)
$$

This implies for $|z|=1$,

$$
\begin{align*}
\left|D_{\alpha} P(z)\right| & \geq|\alpha|\left|P^{\prime}(z)\right|-\left|n P(z)-z P^{\prime}(z)\right| \\
& =|\alpha|\left|P^{\prime}(z)\right|-\left|q^{\prime}(z)\right| \tag{3.3}
\end{align*}
$$

Combining inequalities (35) and (17), we get

$$
\begin{equation*}
\left|D_{\alpha} P(z)\right| \geq\left(|\alpha|-A_{\mu}\right)\left|P^{\prime}(z)\right|+\frac{m n A_{\mu}}{k^{n}}, \text { for }|z|=1 \tag{3.4}
\end{equation*}
$$

Inequality (36) in conjunction with inequality (34) gives for $|z|=1$,

$$
\left|D_{\alpha} P(z)\right| \geq\left(|\alpha|-A_{\mu}\right)\left\{\left(\frac{n}{1+A_{\mu}}\right) M a x_{|z|=1}|P(z)|+\frac{m n A_{\mu}}{k^{n}\left(1+A_{\mu}\right)}\right\}+\frac{m n A_{\mu}}{k^{n}},
$$

from which we can obtain Theorem 1.
Proof of Theorem 2. The proof of this theorem follows on the lines of the proof of Theorem 1, but on applying Lemma 1 instead of Lemma 4. We omit the details.

Acknowledgement : We are much grateful to the referee for his valuable suggestions regarding the paper.

References

[1] A. Aziz, Q.M. Dawood, Inequalities for a polynomial and its derivative, J. Approx. Theory 54 (1988) 306-313.
[2] A. Aziz, N.A. Rather, Some Zygmund type inequalities for polynomials, J. Math. Anal. Appl. 289 (2004) 14-29.
[3] A. Aziz, W.M. Shah, An integral mean estimate for polynomials, Indian J. Pure Appl. Math. 28 (1997) 1413-1419.
[4] S. Bernstein, Lecons Sur Les Proprietes Extremals et la Meilleure Approximation des Fonctions Analytiques d'une Fonctions Reelle, Gauthier-villars, Paris, 1926.
[5] K.K. Dewan, N. Singh, R. Lal, Inequalities for the polar derivative of a polynomial, Intl. J. Pure. Appl. Math. 33 (2006) 109-117.
[6] K.K. Dewan, N. Singh, A. Mir, Extensions of some polynomial inequlities to the polar derivative, J. Math. Anal. Appl. 352 (2009) 807-815.
[7] K.K. Dewan, A. Mir, R.S. Yadav Integral mean estimates for polynomials whose zeros are with in a circle, IJMMS 4 (2001) 231-235.
[8] N.K. Govil, Some inequalities for derivative of polynomials, J. Approx. Theory 66 (1991) 29-35.
[9] N.K. Govil, Q.I. Rahman, G. Schemeisser On the derivative of a polynomial, Illinois J. Math. 23 (1979) 319-330.
[10] M.A. Malik, On the derivative of a polynomial, J. London Math. Soc. 1 (1969) 57-60.
[11] P.Turan, Über die ableitung von polynomen, Compositio Math. 7 (1939) 8995.
(Received 11 December 2012)
(Accepted 5 April 2013)

Thai J. Math. Online @ http://thaijmath.in.cmu.ac.th

[^0]: ${ }^{1}$ The work of the first author is supported by University of Kashmir under No: F(Seed Money Grant) RES/KU/13.

 Copyright © 2015 by the Mathematical Association of Thailand. All rights reserved.

