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Abstract : In this paper, we consider the class of polynomials P (z) = anz
n +

n
∑

ν=µ

an−νz
n−ν , 1 ≤ µ ≤ n, having all zeros in |z| ≤ k, k ≤ 1 and thereby establish

several interesting estimates pertaining to the maximum modulus of the polar
derivative of a polynomial P (z). Our results not only generalize and refine some
known polynomial inequalities, but also a variety of interesting results can be
deduced from these by a fairly uniform procedure.
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1 Introduction and Statement of Results

Let P (z) be a polynomial of degree n and P ′(z) be its derivative. Then accord-
ing to the well-known Bernstien’s inequality [4] on the derivative of a polynomial,
we have

Max|z|=1|P
′(z)| ≤ nMax|z|=1|P (z)|. (1.1)

Equality holds in (1) if and only if P (z) has all its zeros at the origin.
For the class of polynomials P (z) having all zeros in |z| ≤ 1, Turan [11] proved
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that

Max|Z|=1|P
′(z)| ≥

n

2
Max|z|=1|P (z)|. (1.2)

Inequality (2) was refined by Aziz and Dawood [1] and they proved under the
same hypothesis that

Max|z|=1|P
′(z)| ≥

n

2
{Max|z|=1|P (z)|+Min|z|=1|P (z)|}. (1.3)

Both the inequalities (2) and (3) are best possible and become equality for
polynomials P (z) = αzn+β where |α| = |β|. As an extension of (2), it was shown
by Malik [10], that if P (z) has all its zeros in |z| ≤ k, k ≤ 1, then

Max|z|=1|P
′(z)| ≥

n

1 + k
Max|z|=1|P (z)|, (1.4)

where as the corresponding extension of (3) and a refinement of (4) was given by
Govil [8] who under the same hypothesis proved that

Max|z|=1|P
′(z)| ≥

n

1 + k

{

Max|z|=1|P (z)|+
1

kn−1
Min|z|=k|P (z)|

}

. (1.5)

In the literature, there already exist some refinements and generalizations of all
the above inequalities, for example see Aziz and Shah [3], Dewan, Mir and Yadav
[7], Govil, Rahman and Schemeisser [9], Dewan, Singh and Lal [5], etc.

By considering the class of polynomials P (z) = anz
n+

n
∑

υ=µ

an−υz
n−υ, 1 ≤ µ ≤

n, of degree n having all zeros in |z| ≤ k, k ≤ 1, Aziz and Shah [3] (see also Dewan,
Mir and Yadav [7]) proved

Max|z|=1|P
′(z)| ≥

n

1 + kµ

{

Max|z|=1|P (z)|+
1

kn−µ
Min|z|=k|P (z)|

}

. (1.6)

For µ = 1, inequality (6) reduces to inequality (5).
Let DαP (z) denotes the polar derivative of the polynomial P (z) of degree n with
respect to the point α. Then

DαP (z) = nP (z) + (α − z)P ′(z).

The polynomial DαP (z) is of degree at most n− 1 and it generalizes the ordinary
derivative in the sense that

Limα→∞

{

DαP (z)

α

}

= P ′(z).

Dewan, Singh and Lal [5] extended the inequality (6) to the polar derivative

of a polynomial P (z) by showing that if P (z) = anz
n +

n
∑

υ=µ

an−υz
n−υ, 1 ≤ µ ≤ n,
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has all its zeros in |z| ≤ k, k ≤ 1, then for every real or complex number α with
|α| ≥ kµ,

Max|z|=1|DαP (z)| ≥
n(|α| − kµ)

1 + kµ
Max|z|=1|P (z)|+

n(|α| + 1)

kn−µ(1 + kµ)
Min|z|=k|P (z)|

(1.7)
If we divide both sides of (7) by |α| and let |α| → ∞, we get (6).

Here, we shall prove the following more general result which includes not only
inequalities (6) and (7) as special cases, but also leads to a standard development
of interesting generalizations of some well-known results.

Theorem 1. If P (z) = anz
n+

n
∑

υ=µ

an−υz
n−υ, 1 ≤ µ ≤ n, is a polynomial of degree

n having all its zeros in |z| ≤ k, k ≤ 1, then for every real or complex number α

with |α| ≥ Aµ, we have

Max|z|=1|DαP (z)| ≥
n(|α| −Aµ)

1 +Aµ

Max|z|=1|P (z)|+
nAµ(|α|+ 1)

kn(1 +Aµ)
m (1.8)

where

Aµ =
n(|an| −

m
kn )k

2µ + µ|an−µ|k
µ−1

n(|an| −
m
kn )kµ−1 + µ|an−µ|

(1.9)

and m = Min|z|=k|P (z)|.
Remark 1. Since by Lemma 5 (stated in section 2 )we have Aµ ≤ kµ; 1 ≤ µ ≤ n,
Theorem 1 in particular holds for |α| ≥ kµ also.

Also when P (z) has all its zeros in |z| ≤ k, k ≤ 1, it is easy to verify, for
example by derivative test and Lemma 6, that for every α with |α| ≥ x, the
function

(

|α| − x

1 + x

)

Max|z|=1|P (z)|+
x(|α| + 1)m

kn(1 + x)
,

is a non-increasing function of x. If we combine this fact with Aµ ≤ kµ, we get
inequality (7) from Theorem 1.

If we do not have the knowledge of Min|z|=k|P (z)|, we can use the following
result, whose proof is similar to that of Theorem 1.

Theorem 2. If P (z) = anz
n+

n
∑

υ=µ

an−υz
n−υ, 1 ≤ µ ≤ n, is a polynomial of degree

n having all its zeros in |z| ≤ k, k ≤ 1, then for every real or complex number α

with |α| ≥ sµ, we have

Max|z|=1|DαP (z)| ≥ n

(

|α| − sµ

1 + sµ

)

Max|z|=1|P (z)|, (1.10)

where

sµ =
n|an|k

2µ + µ|an−µ|k
µ−1

n|an|kµ−1 + µ|an−µ|
. (1.11)

Remark 2. If we divide both sides of (10) by |α| and let |α| → ∞, we get an
interesting generalisation of a result due to Govil, Rahman and Schemeisser [9].



424 Thai J. Math. 13 (2015)/ A. Mir and B. Dar

Several other interesting results easily follow from Theorem 1. Here, we men-
tion few of these. If we divide both sides of (8) by |α| and let |α| → ∞, we
immediately get the following result.

Corollary 1. If P (z) = anz
n +

n
∑

υ=µ

an−υz
n−υ, 1 ≤ µ ≤ n, is a polynomial of

degree n having all its zeros in |z| ≤ k, k ≤ 1, then

Max|z|=1|P
′(z)| ≥

(

n

1 +Aµ

)

Max|z|=1|P (z)|+
nmAµ

kn(1 +Aµ)
(1.12)

where m = Min|z|=k|P (z)| and Aµ is defined in (9).

The result is sharp and equality in (12) holds for P (z) = (zµ + kµ)
n

µ , where n is
a multiple of µ.
Remark 3. Again by the same reasoning as in remark 1, it is easy to verify that
the function

(

n

1 + x
Max|z|=1|P (z)|+

nmx

kn(1 + x)

)

is a non-increasing function of x. If we combine this fact with Lemma 5 according
to which Aµ ≤ kµ for 1 ≤ µ ≤ n, we get inequality (6).

2 Lemmas

For the proof of Theorem 1, we need the following lemmas.

Lemma 1. If P (z) = anz
n +

n
∑

υ=µ

an−υz
n−υ, 1 ≤ µ ≤ n, is a polynomial of degree

n having all its zeros in |z| ≤ k, k ≤ 1, and q(z) = znP (1
z
) then

{

n|an|k
2µ + µ|an−µ|k

µ−1

n|an|kµ−1 + µ|an−µ

}

|P ′(z)| ≥ |q′(z)|, for |z| = 1 (2.1)

and
µ

n

∣

∣

∣

∣

an−µ

an

∣

∣

∣

∣

≤ kµ (2.2)

The above lemma is due to Aziz and Rather [2].

Lemma 2. If P (z) =
n
∑

υ=0
aυz

υ is a polynomial of degree n having all its zeros in

|z| ≤ k, k > 0, then

|q(z)| ≥
m

kn
for |z| ≤

1

k

and in particular

|an| >
m

kn
, (2.3)
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where m = Min|z|=k|P (z)| and q(z) = znP (1
z
).

The above lemma is due to Dewan, Singh and Mir [6].
Lemma 3. The function

sµ(x) =
nxk2µ + µ|an−µ|k

µ−1

nxkµ−1 + µ|an−µ|
, (2.4)

where k ≤ 1 and µ ≥ 1, is a non-increasing function of x.
Proof of Lemma 3. The proof follows by considering the first derivative test for
sµ(x).

Lemma 4. If P (z) = anz
n +

n
∑

υ=µ

an−υz
n−υ, 1 ≤ µ ≤ n, is a polynomial of degree

n having all its zeros in |z| ≤ k, k ≤ 1, and q(z) = znP (1
z
), then for |z| = 1,

|q′(z)| ≤ Aµ|P
′(z)| −

mnAµ

kn
, (2.5)

where

Aµ =
n
(

|an| −
m
kn

)

k2µ + µ|an−µ|k
µ−1

n
(

|an| −
m
kn

)

kµ−1 + µ|an−µ|
(2.6)

and
µ|an−µ|

n(|an| −
m
kn )

≤ kµ (2.7)

with m = Min|z|=k|P (z)|.

Proof of Lemma 4. By hypothesis, the polynomial P (z) = anz
n+

n
∑

υ=µ

an−υz
n−υ, 1 ≤

µ ≤ n, has all its zeros in |z| ≤ k, k ≤ 1. If P (z) has a zero on |z| = k, then m = 0
and the result follows from Lemma 1. Henceforth we assume that all the zeros of
P (z) lie in |z| < k, k ≤ 1, so that m > 0. Since m ≤ |P (z)| for |z| = k, therefore if
λ is any real or complex number with |λ| < 1, then

∣

∣

∣

∣

mλzn

kn

∣

∣

∣

∣

< |P (z)| for |z| = k.

Since all the zeros of P (z) lie in |z| < k, it follows by Rouche’s theorem that all
the zeros of P (z)− mλzn

kn also lie in |z| < k, k ≤ 1. Hence by Guass-Lucas theorem,
the polynomial

P ′(z)−
mnλzn−1

kn
(2.8)

also has all its zeros in |z| < k, k ≤ 1, for every λ with |λ| < 1. This implies

|P ′(z)| ≥
mn|z|n−1

kn
for |z| ≥ k, k ≤ 1. (2.9)

Because if (21) is not true, then there is a point z = z0 with |z0| ≥ k such that

|P ′(z0)| <
mn|z0|

n−1

kn
.
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We choose λ = knP ′(z0)

mnz
n−1

0

, so that |λ| < 1 and with this choice of λ, from (20), we

have

P ′(z0)−
mnλzn−1

0

kn
= 0,

where |z0| ≥ k, which contradicts the fact that all the zeros of

P ′(z)−
mnλzn−1

kn

lie in |z| < k, k ≤ 1. Now, we can apply inequality (13) of Lemma 1 to the
polynomial

P (z)−
mλzn

kn

and get,

s
′

µ|P
′(z)−

mnλzn−1

kn
| ≥ |q′(z)|, for |z| = 1, (2.10)

where

s
′

µ =
n|an − mλ

kn |k2µ + µ|an−µ|k
µ−1

n|an − mλ
kn |kµ−1 + µ|an−µ|

(2.11)

Since for every λ with |λ| < 1, we have

|an −
mλ

kn
| ≥ |an| −

m|λ|

kn
≥ |an| −

m

kn
(2.12)

and |an| >
m
kn by Lemma 2. Now combining (23), (24) and Lemma 3, we get for

every λ with |λ| < 1,

s
′

µ =
n|an − mλ

kn |k2µ + µ|an−µ|k
µ−1

n|an − mλ
kn |kµ−1 + µ|an−µ|

≤
n(|an| −

m
kn )k

2µ + µ|an−µ|k
µ−1

n(|an| −
m
kn )kµ−1 + µ|an−µ|

= Aµ.

(2.13)
Therefore using (25) and (22), we get

Aµ|P
′(z)−

mnλzn−1

kn
| ≥ |q′(z)| , for |z| = 1. (2.14)

If in (26), we choose the argument of λ such that

|P ′(z)−
mnλzn−1

kn
| = |P ′(z)| −

mn|λ|

kn

which easily follows from (21), we get

Aµ|P
′(z)| −

mn|λ|Aµ

kn
≥ |q′(z)| , for|z| = 1. (2.15)

Finally letting |λ| → 1 in (27), we get

Aµ|P
′(z)| ≥ |q′(z)|+

mnAµ

kn
, for|z| = 1,
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which proves (17).
To prove (19), we apply inequality (14) of Lemma 1 to the polynomial P (z)−

mλzn

kn , and get
µ|an−µ|

n|an − mλ
kn |

≤ kµ (2.16)

for every real or complex number λ with |λ| < 1.
Since by Lemma 2, we have |an| >

m
kn , we can choose argument of λ in (28) such

that

|an −
mλ

kn
| = |an| −

m|λ|

kn

and with this choice of the argument of λ, we get from (28) that

µ|an−µ|

n(|an| −
m|λ|
kn )

≤ kµ (2.17)

Inequality (19) now follows by making |λ| → 1 in (29).

Lemma 5. If P (z) = anz
n +

n
∑

υ=µ

an−υz
n−υ, 1 ≤ µ ≤ n, is a polynomial of degree

n having all its zeros in |z| ≤ k, k ≤ 1, then

Aµ ≤ kµ, (2.18)

where Aµ is defined as in Theorem 1.
Proof of Lemma 5. We have from inequality (19) of Lemma 4,

µ|an−µ| ≤ n(|an| −
m

kn
)kµ,

which implies,
{

µ|an−µ| − n(|an| −
m

kn
)kµ

}

≤ 0,

which is equivalent to

(kµ−1 − kµ)
{

µ|an−µ| − n(|an| −
m

kn
)kµ

}

≤ 0,

that is,

n(|an| −
m

kn
)k2µ + µ|an−µ|k

µ−1 ≤
(

µ|an−µ|+ n(|an| −
m

kn
)kµ−1

)

kµ,

from which inequality (30) follows.

Lemma 6. If P (z) = anz
n +

n
∑

ν=µ

an−νz
n−ν , 1 ≤ µ ≤ n, is a polynomial of degree

n having all zeros in |z| ≤ k, k ≤ 1 and m = Min|z|=k|P (z)|, then

m

kn
≤ Max|z|=1|P (z)|. (2.19)
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Proof of Lemma 6. Since P (z) has all its zeros in |z| ≤ k, k ≤ 1, we have from
inequality (17) of Lemma 4,

|q′(z)| ≤ Aµ|P
′(z)| −

mnAµ

kn
, for |z| = 1. (2.20)

On using (1) in (32), we get for |z| = 1,

|q′(z)| ≤ AµnMax|z|=1|P (z)| −
mnAµ

kn

= nAµ

{

Max|z|=1|P (z)| −
m

kn

}

,

which is true and this proves (31).

3 Proof of the Theorems

Proof of Theorem 1. If q(z) = znP (1
z
), then it can be easily verified that

|q′(z)| = |nP (z)− zP ′(z)| , for |z| = 1.

Also for |z| = 1, we have

n|P (z)| = |nP (z)− zP ′(z) + zP ′(z)|

≤ |nP (z)− zP ′(z)|+ |P ′(z)|

= |q′(z)|+ |P ′(z)|

(3.1)

The above inequality (33) when combined with inequality (17) of Lemma 4, gives
for |z| = 1,

n|P (z)| ≤ (1 +Aµ)|P
′(z)| −

mnAµ

kn
,

which implies

|P ′(z)| ≥

(

n

1 +Aµ

)

Max|z|=1|P (z)|+
mnAµ

kn(1 +Aµ)
, for |z| = 1. (3.2)

Now for every real or complex number α with |α| ≥ Aµ, the polar derivative of
P (z) with respect to α is

DαP (z) = nP (z) + (α − z)P ′(z).

This implies for |z| = 1,

|DαP (z)| ≥ |α||P ′(z)| − |nP (z)− zP ′(z)|

= |α||P ′(z)| − |q′(z)|
(3.3)
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Combining inequalities (35) and (17), we get

|DαP (z)| ≥ (|α| −Aµ)|P
′(z)|+

mnAµ

kn
, for|z| = 1. (3.4)

Inequality (36) in conjunction with inequality (34) gives for |z| = 1,

|DαP (z)| ≥ (|α| −Aµ)

{

(
n

1 +Aµ

)Max|z|=1|P (z)|+
mnAµ

kn(1 +Aµ)

}

+
mnAµ

kn
,

from which we can obtain Theorem 1.
Proof of Theorem 2. The proof of this theorem follows on the lines of the proof
of Theorem 1, but on applying Lemma 1 instead of Lemma 4. We omit the details.

Acknowledgement : We are much grateful to the referee for his valuable sug-
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