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Abstract : In this paper, we consider the class of polynomials P(z) = a,2" +

n

> ap—p2™ 7,1 < p < n, having all zeros in |z| < k, k <1 and thereby establish
v=p
several interesting estimates pertaining to the maximum modulus of the polar

derivative of a polynomial P(z). Our results not only generalize and refine some
known polynomial inequalities, but also a variety of interesting results can be
deduced from these by a fairly uniform procedure.
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1 Introduction and Statement of Results

Let P(z) be a polynomial of degree n and P’(z) be its derivative. Then accord-
ing to the well-known Bernstien’s inequality [4] on the derivative of a polynomial,
we have

Max), =1 |P'(2)| < nMax|, =1 |P(2)|. (1.1)

Equality holds in (1) if and only if P(z) has all its zeros at the origin.
For the class of polynomials P(z) having all zeros in |z| < 1, Turan [11] proved
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that n
Maz 1 |P'(2)] 2 5 Mazp | P(2)] (1.2)

Inequality (2) was refined by Aziz and Dawood [1] and they proved under the
same hypothesis that

Mazx|.—1|P'(2)] > g{Ma:r|z|:1|P(z)| + Min =1 |P(2)|}. (1.3)

Both the inequalities (2) and (3) are best possible and become equality for
polynomials P(z) = az™+ 8 where |a|] = |3|. As an extension of (2), it was shown
by Malik [10], that if P(z) has all its zeros in |z| < k, k < 1, then

n

Ma$|z|:1|P’(z)| > H—kMax‘z‘:ﬂP(z)L (1.4)

where as the corresponding extension of (3) and a refinement of (4) was given by
Govil [8] who under the same hypothesis proved that

n 1 )
Maw),—1|P'(2)] > T4k {Maa:|z|_1|P(z)| + WMzn|z|_k|P(z)|} ) (1.5)

In the literature, there already exist some refinements and generalizations of all
the above inequalities, for example see Aziz and Shah [3], Dewan, Mir and Yadav
[7], Govil, Rahman and Schemeisser [9], Dewan, Singh and Lal [5], etc.

By considering the class of polynomials P(z) = anz™+ Y. ap—y2" v, 1 <pu <
v=p
n, of degree n having all zeros in |z| < k, k < 1, Aziz and Shah [3] (see also Dewan,
Mir and Yadav [7]) proved

MCL:E‘Z‘:1|P/(Z)| >

n
> {Max|z|_1|P<z>| "

kn_MMin|z|_k|P(z)|}. (1.6)

For p = 1, inequality (6) reduces to inequality (5).
Let D, P(z) denotes the polar derivative of the polynomial P(z) of degree n with
respect to the point a. Then

Do P(2) =nP(2) + (o — 2)P'(2).

The polynomial D, P(z) is of degree at most n — 1 and it generalizes the ordinary
derivative in the sense that

LiMa—oo {D“P(Z) } = P'(2).

«

Dewan, Singh and Lal [5] extended the inequality (6) to the polar derivative

of a polynomial P(z) by showing that if P(2) = 2"+ >, an_p2" Y, 1 < pu <mn,
v=p
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has all its zeros in |z| < k, k < 1, then for every real or complex number a with
laf > k*,

_ nlla] k)
- 14k~

n(la| +1)

Maz), = |P(2)| + k=i (1 + k)

Min,—|P(2)]
(1.7)

Max|.|—1| Do P(2)]

If we divide both sides of (7) by |a| and let |a| — oo, we get (6).

Here, we shall prove the following more general result which includes not only
inequalities (6) and (7) as special cases, but also leads to a standard development
of interesting generalizations of some well-known results.

n
Theorem 1. If P(2) = an2"+ > an—vz™ Y, 1 < p < n, is a polynomial of degree
v=p
n having all its zeros in |z| < k,k < 1, then for every real or complex number «
with |a| > A, we have

Mazj—1|DoP(2)| > ] - 4,) Mm
(1t Ay

M —1|P
= TI1a, az | =1|P(2) +

(1.8)

where o .
A "llan] = )R 4 plan—ulk* (1.9)
P n(lan] = )R 4 plan—y]

and m = Min|,|—|P(2)|.
Remark 1. Since by Lemma 5 (stated in section 2 )we have Ay <k 1< p<n,
Theorem 1 in particular holds for |a| > k# also.

Also when P(z) has all its zeros in |z| < k,k < 1, it is easy to verify, for
example by derivative test and Lemma 6, that for every o with |a] > z, the
function

la| — z(lol + m
M —1|P _
( Tz ) Mem==1lP)]+ k(1 + )
is a non-increasing function of x. If we combine this fact with A, < k*, we get
inequality (7) from Theorem 1.
If we do not have the knowledge of Min,, | P(z)|, we can use the following
result, whose proof is similar to that of Theorem 1.
Theorem 2. If P(2) = anz"+ > an—pz" Y, 1 < p < n, is a polynomial of degree
v=p
n having all its zeros in |z| < k,k < 1, then for every real or complex number «
with |a| > s, we have

la] = sp

Max|.|—1|DaP(2)] > n ( ey

)Maxz_1|P(z)|, (1.10)

where ) )
nlk n—plkt™
5 = Manl +1“|“ L (1.11)
nlan k=1 + plan—y|

Remark 2. If we divide both sides of (10) by |a| and let |a] — oo, we get an
interesting generalisation of a result due to Govil, Rahman and Schemeisser [9].



424 Thai J. Math. 13 (2015)/ A. Mir and B. Dar

Several other interesting results easily follow from Theorem 1. Here, we men-
tion few of these. If we divide both sides of (8) by |a| and let |a] — oo, we
immediately get the following result.

n

Corollary 1. If P(2) = apz™ 4+ Y. an—0z" Y, 1 < p < n, is a polynomial of

=p
degree n having all its zeros in |z| < k, k < 1, then

n

1+ A4,

nmA
Max|z|_1|P’<z>|z< )Max|z|_1|P<z>|+ A (1.12)

T+ A,
where m = Min,,|—,|P(z)| and A, is defined in (9).
The result is sharp and equality in (12) holds for P(z) = (z* + k*) &, where n is
a multiple of p.

Remark 3. Again by the same reasoning as in remark 1, it is easy to verify that
the function

n nmx
(1+x azj=1| (Z>|+k"(1+x)>

is a non-increasing function of x. If we combine this fact with Lemma 5 according
to which A, < k* for 1 < pu < n, we get inequality (6).

2 Lemmas

For the proof of Theorem 1, we need the following lemmas.

Lemma 1. If P(2) = ap2" + > an—02™ ¥, 1 < u < n, is a polynomial of degree
v=p

n having all its zeros in 2| < k,k < 1, and g(z) = 2"P(%) then

{”lauw + lan—y k!
Alan o1+

}|P’<z>|z|q’<z>|, for =1 (1)

and
o
n

Gn—p

< kM (2.2)

an

The above lemma is due to Aziz and Rather [2].

Lemma 2. If P(z) = 3 a,z" is a polynomial of degree n having all its zeros in
v=0

|z| < k,k >0, then

| =

m
(=) = 7 for |2 <

and in particular

lan| > (2.3)

m
kn
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where m = Min),|—;|P(z)| and q(z) = 2" P(2).
The above lemma is due to Dewan, Singh and Mir [6].
Lemma 3. The function

su(T) =

nek* + plan_, k"1

nekh=1 4+ plan—,|

(2.4)

where k <1 and g > 1, is a non-increasing function of x.
Proof of Lemma 3. The proof follows by considering the first derivative test for

su(x).

n
Lemma 4. If P(z) = ap2" + > an—02™ ¥, 1 < pu < n, is a polynomial of degree
v=p

n having all its zeros in |z| < k,k < 1, and g(z) = 2"P(%), then for |2| =1,

4] < AP/ ()] - ", (25)
where o .
A# _ n (lanl - k_n) k=t ‘1‘ N|an—u|k# (2.6)
n (lanl - %) kr=1 + Mlan—u|
and
flan—p| < kM (2.7)

n(lan| — %)
with m = Min),—;|P(2)|.
Proof of Lemma 4. By hypothesis, the polynomial P(z) = an2™+ > ap_pz™ Y, 1 <

v=p

u < n, has all its zeros in |z| < k,k < 1. If P(z) has a zero on |z| = k, then m = 0
and the result follows from Lemma 1. Henceforth we assume that all the zeros of
P(z) liein |z| < k,k < 1, so that m > 0. Since m < |P(z)| for |z| = k, therefore if
A is any real or complex number with |A] < 1, then

mAz"
kn

< |P(2)] for |z| =k.

Since all the zeros of P(z) lie in |z| < k, it follows by Rouche’s theorem that all
the zeros of P(z) — mli‘fn also lie in |z| < k,k < 1. Hence by Guass-Lucas theorem,
the polynomial

by n—1
P@yﬂﬂ%}— (2.8)
also has all its zeros in |z| < k,k < 1, for every A with |A| < 1. This implies
n—1
|P@ﬂ2@%%—- for |z| >k k<1. (2.9)

Because if (21) is not true, then there is a point z = zo with |z9| > k such that

mn|zo|" 1

|P'(20)] < o
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We choose A = 22(z0) g4 that |A| < 1 and with this choice of A, from (20), we

=1
mnzy
have

mnAzt !
P'(z)) - —=90
(20) o

where |z9| > k, which contradicts the fact that all the zeros of

:O,

mnAz" !
P(z) - ————
() - ™22
lie in |z] < k,k < 1. Now, we can apply inequality (13) of Lemma 1 to the
polynomial

mAz"
P(z) —
() -
and get,
/ mniz" !
sulP'(z) = —— = 1d' ), for|z| =1, (2.10)
where

e T (2.11)
nlan — T2k 4 pilan—,| .

Since for every A with |A\| < 1, we have

mA m| Al m
|@n——|>|an|—72|an|—ﬁ

(2.12)

and |a,| > 7% by Lemma 2. Now combining (23), (24) and Lemma 3, we get for
every A with |A] < 1,

; nlan = AR plan R n(lan] — SR+ plan_, k4!

" nla, — 71?_3“{“_1 +plan—pl T n(lan| — kﬂn)kﬂil + plan—pl e
(2.13)
Therefore using (25) and (22), we get
, mnAz""1 ,
Al P(z) = =22 1d'(2)] for [of =1L (2.14)
If in (26), we choose the argument of A such that
n—1
P/(z) = P P () -
which easily follows from (21), we get
mn|A|A
AP ) =T 5 1) forlzl =1 (2.15)

Finally letting |A\| — 1 in (27), we get

AulP'(2)] = |¢' (2)] +
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which proves (17).
To prove (19), we apply inequality (14) of Lemma 1 to the polynomial P(z) —

mAz"

i, and get
H|an7u|
n kn

for every real or complex number A\ with |A| < 1.

Since by Lemma 2, we have |a,,| > &, we can choose argument of A in (28) such
that
mA m|A|
|lan — F| = lan| - L

and with this choice of the argument of A\, we get from (28) that

Lﬂ < ph (2.17)
n(jan| — 22)

Inequality (19) now follows by making |A\| — 1 in (29).
Lemma 5. If P(2) = ap2" + > an—02™ ¥, 1 < pu < n,is a polynomial of degree
v=p

n having all its zeros in |z| < k,k < 1, then
Ay < KM, (2.18)

where A, is defined as in Theorem 1.
Proof of Lemma 5. We have from inequality (19) of Lemma 4,

m
,UJ|an7,u| < n(|an| - ﬁ)k‘uv
which implies,
m
{mlan-u| = n(lan| = 220k} <0,

which is equivalent to

— m
(k=" = 1) {tlan—| = nllan| = Zo)k* } <0,
that is,
m _ m _
nlan] = 1) + prlan—u k™ < (lan—y] + nllan| = 20k ) k2,

from which inequality (30) follows.
Lemma 6. If P(2) = ap2"+ > an_p,2" ", 1 < pu < n, is a polynomial of degree

v=p

n having all zeros in |z| <k, k <1 and m = Min,;—|P(z)], then

m
T < Max|, = |P(2)|. (2.19)
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Proof of Lemma 6. Since P(z) has all its zeros in |z| < k, k < 1, we have from
inequality (17) of Lemma 4,

mnA,
kn

1¢/(2)] < AP (2)| = T2t for || = 1. (2.20)

On using (1) in (32), we get for |z] =1,
mnA,
kn

= nA#{Maﬂi\z\:ﬂP(z) - kﬁn}’

|4'(2)] < AynMaz|. =1 P(2)] -

which is true and this proves (31).

3 Proof of the Theorems

Proof of Theorem 1. If ¢(z) = 2" P(2), then it can be easily verified that

' (2)] = InP(2) = 2P'(2)| , for |2| = 1.
Also for |z| = 1, we have

nlP()| = nP() — 2P(2) + 2P/(2)
[nP(z2) — 2P'(2)| + | P'(2)] (3.1)
|

=d'(2)| + [P'(2)|

IN

The above inequality (33) when combined with inequality (17) of Lemma 4, gives
for |z| =1,

nlP()] < (14 AP ()] - "o
which implies
wvﬂ>(7l)M%ﬂHM+—ﬁﬁi— for lzl=1.  (3.2)
“\1+4, == k(14 A,)

Now for every real or complex number « with |a| > A, the polar derivative of
P(z) with respect to « is

DoP(z) =nP(z) + (o — 2) P'(2).
This implies for |z| = 1,

|DaP(2)] = [al|[P'(2)] = [nP(2) — 2P'(2)]
= lal[P'(z)] = l¢'(2)
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Combining inequalities (35) and (17), we get

A
[DaP(2) = (Jal = 4,)|P'(2)] + T2, forls] = 1. (3.4)

n

Inequality (36) in conjunction with inequality (34) gives for |z| = 1,

n mnA mnA
D,P > — A — WM 4P 14 1
| @ (Z)| = (|CY| H) {(1 4#) ax\z\—l' (Z)| k"(l 4#)} e

from which we can obtain Theorem 1.
Proof of Theorem 2. The proof of this theorem follows on the lines of the proof
of Theorem 1, but on applying Lemma 1 instead of Lemma 4. We omit the details.
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