The Generalized Hyers-Ulam-Rassias Stability of a Quadratic Functional Equation

P. Nakmahachalasint

Abstract : We give the general solution of the functional equation

$$
f(2 x-y)+f(2 y-z)+f(2 z-x)+2 f(x+y+z)=7 f(x)+7 f(y)+7 f(z)
$$

and investigate its generalized Hyers-Ulam-Rassias stability.
Keywords : Quadratic Functional Equation; Hyers-Ulam-Rassias Stability. 2000 Mathematics Subject Classification : 39B22, 39B52, $39 B 82$.

1 Introduction

In 1940, S.M. Ulam [11] posed a problem on the stability of the linear functional equation before the Mathematics Club of the University of Wisconsin. The problem can be stated as follows:

Let X and Y be Banach spaces. For every $\varepsilon>0$, does there exist $\delta>0$ such that for a function $f: X \rightarrow Y$ satisfying a δ-linear condition, $\|f(x+y)-f(x)-f(y)\| \leq \delta$, for all $x, y \in X$, there exists a function $T: X \rightarrow Y$ such that $\|f(x)-T(x)\| \leq \epsilon$ for all $x \in X$?
This problem was answered by D. H. Hyers [6] and was generalized by Th. M. Rassias [10]. Since then, the stability of various functional equations, including linear functional equations $[5,4,7,8]$ and quadratic functional equations $[1,2,3,9]$, was thoroughly studied,

The classical quadratic functional equation:

$$
f(x+y)+f(x-y)=2 f(x)+2 f(y)
$$

admits a solution in the form $f(x)=a x^{2}$ on the set of real numbers and every solution of this equation is said to be a quadratic function [3]. J. M. Rassias [9] derived the stability of the generalized version of the above quadratic functional equation :

$$
Q\left(a_{1} x_{1}+a_{2} x_{2}\right)+Q\left(a_{2} x_{1}-a_{1} x_{2}\right)=\left(a_{1}^{2}+a_{2}^{2}\right)\left[Q\left(x_{1}\right)+Q\left(x_{2}\right)\right]
$$

which covers a wide range of quadratic functional equations in two variables.

In this paper, we propose a different quadratic functional equation in three variables:

$$
f(2 x-y)+f(2 y-z)+f(2 z-x)+2 f(x+y+z)=7 f(x)+7 f(y)+7 f(z) .
$$

We will give the general solution of this functional equation and will investigate its generalized Hyers-Ulam-Rassias stability.

2 The General Solution

The following theorem provide the general solution of the proposed functional equation by establishing a connection with the classical quadratic functional equation.

Theorem 2.1 Let X and Y be real vector spaces. A function $f: X \rightarrow Y$ satisfies the functional equation

$$
\begin{equation*}
f(2 x-y)+f(2 y-z)+f(2 z-x)+2 f(x+y+z)=7 f(x)+7 f(y)+7 f(z) \tag{2.1}
\end{equation*}
$$

for all $x, y, z \in X$ if and only if it satisfies the quadratic functional equation

$$
\begin{equation*}
f(x+y)+f(x-y)=2 f(x)+2 f(y) \tag{2.2}
\end{equation*}
$$

for all $x, y \in X$.
Proof. Suppose a function $f: X \rightarrow Y$ satisfies (2.1). Setting $(x, y, z)=(x, x, x)$ in (2.1), we simply have $f(3 x)=9 f(x)$ for all $x \in X$, which in turn implies that $f(0)=0$ by putting $x=0$. Setting $(x, y, z)=(-x, x, x)$ in (2.1), we have

$$
f(-3 x)+f(x)+f(3 x)+2 f(x)=7 f(-x)+7 f(x)+7 f(x) .
$$

Using the previously derived equation, $f(3 x)=9 f(x)$ for all $x \in X$, the above equation simplifies to $f(-x)=f(x)$ for all $x \in X$. Thus, f is an even function. Setting $(x, y, z)=(x, 0,0)$ in (2.1), we get

$$
f(2 x)+f(0)+f(-x)+2 f(x)=7 f(x)+7 f(0)+7 f(0),
$$

which yields $f(2 x)=4 f(x)$ for all $x \in X$. Letting $z=0$ in (2.1), we obtain

$$
f(2 x-y)+f(2 y)+f(-x)+2 f(x+y)=7 f(x)+7 f(y)+7 f(0),
$$

or simply

$$
\begin{equation*}
f(2 x-y)+2 f(x+y)=6 f(x)+3 f(y) . \tag{2.3}
\end{equation*}
$$

Letting $z=-y$ in (2.1), we have

$$
f(2 x-y)+f(3 y)+f(-2 y-x)+2 f(x)=7 f(x)+7 f(y)+7 f(-y),
$$

which simplifies to

$$
\begin{equation*}
f(2 x-y)+f(x+2 y)=5 f(x)+5 f(y) \tag{2.4}
\end{equation*}
$$

Eliminating $f(2 x-y)$ from (2.3) and (2.4), we are left with

$$
f(x+2 y)+f(x)=2 f(x+y)+2 f(y)
$$

The functional equation (2.2) follows from putting $(x, y)=(x-y, y)$ in the above equation.

Suppose that a function $f: X \rightarrow Y$ satisfies (2.2). Setting $(x, y)=(x+y, z)$ as well as the other two cyclic permutations of the variables x, y, and z in (2.2), we obtain a set of equations :

$$
\begin{align*}
f(x+y+z)+f(x+y-z) & =2 f(x+y)+2 f(z) \\
f(x+y+z)+f(x-y+z) & =2 f(x+z)+2 f(y) \tag{2.5}\\
f(x+y+z)+f(-x+y+z) & =2 f(y+z)+2 f(x)
\end{align*}
$$

Setting $(x, y)=(x, y-z)$ and all cyclic permutations of the variables in (2.2), we have another set of equations :

$$
\begin{align*}
f(x+y+z)+f(x-y+z) & =2 f(x)+2 f(y-z), \\
f(-x+y+z)+f(x+y-z) & =2 f(y)+2 f(z-x) \tag{2.6}\\
f(x-y+z)+f(-x+y+z) & =2 f(z)+2 f(x-y)
\end{align*}
$$

Subtracting half the sum of all equations in (2.6) from the sum of all equations in (2.5), we are left with

$$
\begin{align*}
3 f(x+y+z)= & 2(f(x+y)+f(y+z)+f(z+x)) \\
& -(f(x-y)+f(y-z)+f(z-x))+(f(x)+f(y)+f(z)) \tag{2.7}
\end{align*}
$$

If we rewrite (2.2) as $f(x+y)=2 f(x)+2 f(y)-f(x-y)$ and perform cyclic permutation of all variables, then (2.7) simplifies to

$$
\begin{equation*}
3 f(x+y+z)=9(f(x)+f(y)+f(z))-3(f(x-y)+f(y-z)+f(z-x)) \tag{2.8}
\end{equation*}
$$

Setting $(x, y)=(x, x-y)$ and all cyclic permutations of variables in (2.2), we have

$$
\begin{align*}
f(2 x-y)+f(y) & =2 f(x)+2 f(x-y) \\
f(2 y-z)+f(z) & =2 f(y)+2 f(y-z) \tag{2.9}\\
f(2 z-x)+f(x) & =2 f(z)+2 f(z-x)
\end{align*}
$$

If we use (2.9) to eliminate $f(x-y), f(y-z)$, and $f(z-x)$ in (2.8), then (2.1) follows, and the proof is complete.

3 The Generalized Hyers-Ulam-Rassias Stability

The following theorem gives a general condition for which a true quadratic function exists near an approximately quadratic function.

Theorem 3.1 Let X be a real vector space and Y be a Banach space. Let ϕ : $X^{3} \rightarrow[0, \infty)$ be a function such that

$$
\begin{equation*}
\sum_{i=0}^{\infty} \frac{\phi\left(3^{i} x, 3^{i} x, 3^{i} x\right)}{9^{i}} \text { converges and } \lim _{n \rightarrow \infty} \frac{\phi\left(3^{n} x, 3^{n} y, 3^{n} z\right)}{9^{n}}=0 \tag{3.1}
\end{equation*}
$$

for all $x, y, z \in X$. If a function $f: X \rightarrow Y$ satisfies

$$
\begin{align*}
\| f(2 x-y)+f(2 y-z)+f(2 z-x) & +2 f(x+y+z) \\
& -7 f(x)-7 f(y)-7 f(z) \| \leq \phi(x, y, z) \tag{3.2}
\end{align*}
$$

for all $x, y, z \in X$, then there exists a unique function $T: X \rightarrow Y$ which satisfies (2.1) and

$$
\begin{equation*}
\|f(x)-T(x)\| \leq \frac{1}{18} \sum_{i=0}^{\infty} \frac{\phi\left(3^{i} x, 3^{i} x, 3^{i} x\right)}{9^{i}} \quad \forall x \in X \tag{3.3}
\end{equation*}
$$

The function T is given by

$$
\begin{equation*}
T(x)=\lim _{n \rightarrow \infty} \frac{f\left(3^{n} x\right)}{9^{n}} \quad \forall x \in X \tag{3.4}
\end{equation*}
$$

Proof. Setting $x=y=z$ in (3.2), we have

$$
\|3 f(x)+2 f(3 x)-21 f(x)\| \leq \phi(x, x, x) \quad \forall x \in X
$$

Dividing the above inequality by 18 , we get

$$
\begin{equation*}
\left\|\frac{f(3 x)}{9}-f(x)\right\| \leq \frac{1}{18} \phi(x, x, x) \tag{3.5}
\end{equation*}
$$

Suppose that

$$
\left\|\frac{f\left(3^{n} x\right)}{9^{n}}-f(x)\right\| \leq \frac{1}{18} \sum_{i=0}^{n-1} \frac{\phi\left(3^{i} x, 3^{i} x, 3^{i} x\right)}{9^{i}}
$$

for a positive integer n and for all $x \in X$. Then

$$
\begin{aligned}
\left\|\frac{f\left(3^{n+1} x\right)}{9^{n+1}}-f(x)\right\| & \leq\left\|\frac{f\left(3^{n+1} x\right)}{9^{n+1}}-\frac{f\left(3^{n} x\right)}{9^{n}}\right\|+\left\|\frac{f\left(3^{n} x\right)}{9^{n}}-f(x)\right\| \\
& =\frac{1}{9^{n}}\left\|\frac{f\left(3 \cdot 3^{n} x\right)}{9}-f\left(3^{n} x\right)\right\|+\left\|\frac{f\left(3^{n} x\right)}{9^{n}}-f(x)\right\| \\
& \leq \frac{1}{9^{n}} \cdot \frac{1}{18} \phi\left(3^{n} x, 3^{n} x, 3^{n} x\right)+\frac{1}{18} \sum_{i=0}^{n-1} \frac{\phi\left(3^{i} x, 3^{i} x, 3^{i} x\right)}{9^{i}} \\
& =\frac{1}{18} \sum_{i=0}^{n} \frac{\phi\left(3^{i} x, 3^{i} x, 3^{i} x\right)}{9^{i}}
\end{aligned}
$$

By mathematical induction, we conclude that

$$
\left\|\frac{f\left(3^{n} x\right)}{9^{n}}-f(x)\right\| \leq \frac{1}{18} \sum_{i=0}^{n-1} \frac{\phi\left(3^{i} x, 3^{i} x, 3^{i} x\right)}{9^{i}}
$$

for every positive integer n and for all $x \in X$.
We have to show that the sequence $\left\{\frac{f\left(3^{n} x\right)}{9^{n}}\right\}$ converges for all $x \in X$. For every positive integer m, consider

$$
\begin{aligned}
\left\|\frac{f\left(3^{n+m} x\right)}{9^{n+m}}-\frac{f\left(3^{n} x\right)}{9^{n}}\right\| & =\frac{1}{9^{n}}\left\|\frac{f\left(3^{m} \cdot 3^{n} x\right)}{9^{m}}-f\left(3^{n} x\right)\right\| \\
& \leq \frac{1}{18 \cdot 9^{n}} \sum_{i=0}^{m-1} \frac{\phi\left(3^{i} \cdot 3^{n} x, 3^{i} \cdot 3^{n} x, 3^{i} \cdot 3^{n} x\right)}{9^{i}} \\
& \leq \frac{1}{18} \sum_{i=0}^{\infty} \frac{\phi\left(3^{i+n} x, 3^{i+n} x, 3^{i+n} x\right)}{9^{i+n}}
\end{aligned}
$$

By condition (3.1), the right-hand side approaches 0 when $n \rightarrow \infty$. Thus, the sequence is a Cauchy sequence. Due to the completeness of the Banach space, Y,

$$
T(x)=\lim _{n \rightarrow \infty} \frac{f\left(3^{n} x\right)}{9^{n}} \quad \forall x \in X
$$

is well-defined. We can see that (3.3) holds.
To show that T indeed satisfies (2.1), we set $(x, y, z)=\left(3^{n} x, 3^{n} y, 3^{n} z\right)$ in (3.2) and divide the resulting equation by 9^{n}. The result is

$$
\begin{aligned}
& \frac{1}{9^{n}} \| f\left(3^{n}(2 x-y)\right)+f\left(3^{n}(2 y-z)\right)+f\left(3^{n}(2 z-x)\right) \\
& \quad+2 f\left(e^{n}(x+y+z)\right)-7 f\left(3^{n} x\right)-7 f\left(3^{n} y\right)-7 f\left(3^{n} z\right) \| \leq \frac{\phi\left(3^{n} x, 3^{n} y, 3^{n} z\right)}{9^{n}}
\end{aligned}
$$

Taking the limit as $n \rightarrow \infty$ and noting the definition of T, the above equation becomes
$\|T(2 x-y)+T(2 y-z)+T(2 z-x)+2 T(x+y+z)-7 T(x)-7 T(y)-7 T(z)\| \leq 0$ for all $x, y, z \in X$. Therefore, T satisfies (2.1).

To prove the uniqueness of T, suppose that there exists another quadratic function $S: X \rightarrow Y$ such that S satisfies (2.1) and

$$
\|f(x)-S(x)\| \leq \frac{1}{18} \sum_{i=0}^{\infty} \frac{\phi\left(3^{i} x, 3^{i} x, 3^{i} x\right)}{9^{i}} \quad \forall x \in X
$$

By Theorem 2.1, every solution of (2.1) is also a solution of the classical quadratic functional equation and, thus, exhibits the quadratic property; i.e., $T(n x)=$
$n^{2} T(x)$ for every positive integer n and for all $x \in X$. Therefore,

$$
\begin{aligned}
\|S(x)-T(x)\| & =\frac{1}{9^{n}}\left\|S\left(3^{n} x\right)-T\left(3^{n} x\right)\right\| \\
& \leq \frac{1}{9^{n}}\left\|S\left(3^{n} x\right)-f\left(3^{n} x\right)\right\|+\frac{1}{9^{n}}\left\|T\left(3^{n} x\right)-f\left(3^{n} x\right)\right\| \\
& \leq 2 \cdot \frac{1}{9^{n}} \cdot \frac{1}{18} \sum_{i=0}^{\infty} \frac{\phi\left(3^{i} \cdot 3^{n} x, 3^{i} \cdot 3^{n} x, 3^{i} \cdot 3^{n} x\right)}{9^{i}} \\
& =\frac{1}{9} \sum_{i=0}^{\infty} \frac{\phi\left(3^{i+n} x, 3^{i+n} x, 3^{i+n} x\right)}{9^{i+n}} \quad \forall x \in X
\end{aligned}
$$

By condition (3.1), the right-hand side goes to 0 as $n \rightarrow \infty$, and it follows that $S(x)=T(x)$ for all $x \in X$. Hence, T is unique.

Theorem 3.2 Let X be a real vector space and Y be a Banach space. Let ϕ : $X^{3} \rightarrow[0, \infty)$ be a function such that

$$
\begin{equation*}
\sum_{i=1}^{\infty} 9^{i} \phi\left(\frac{x}{3^{i}}, \frac{x}{3^{i}}, \frac{x}{3^{i}}\right) \text { converges and } \lim _{n \rightarrow \infty} 9^{n} \phi\left(\frac{x}{3^{n}}, \frac{x}{3^{n}}, \frac{x}{3^{n}}\right)=0 \tag{3.6}
\end{equation*}
$$

for all $x, y, z \in X$. If a function $f: X \rightarrow Y$ satisfies

$$
\begin{align*}
\| f(2 x-y)+f(2 y-z)+f(2 z-x) & +2 f(x+y+z) \\
& -7 f(x)-7 f(y)-7 f(z) \| \leq \phi(x, y, z) \tag{3.7}
\end{align*}
$$

for all $x, y, z \in X$, then there exists a unique function $T: X \rightarrow Y$ which satisfies (2.1) and

$$
\begin{equation*}
\|f(x)-T(x)\| \leq \frac{1}{18} \sum_{i=1}^{\infty} 9^{i} \phi\left(\frac{x}{3^{i}}, \frac{x}{3^{i}}, \frac{x}{3^{i}}\right) \quad \forall x \in X . \tag{3.8}
\end{equation*}
$$

The function T is given by

$$
\begin{equation*}
T(x)=\lim _{n \rightarrow \infty} 9^{n} f\left(\frac{x}{3^{n}}\right) \quad \forall x \in X . \tag{3.9}
\end{equation*}
$$

Proof. The proof begins in the same manner as that of Theorem 3.1. The only difference starts with the replacement of inequality (3.5) by

$$
\left\|f(x)-9 f\left(\frac{x}{3}\right)\right\| \leq \frac{1}{2} \phi\left(\frac{x}{3}, \frac{x}{3}, \frac{x}{3}\right)
$$

which can be extended by mathematical induction to

$$
\left\|f(x)-9^{n} f\left(\frac{x}{3^{n}}\right)\right\| \leq \frac{1}{18} \sum_{i=1}^{n} 9^{i} \phi\left(\frac{x}{3^{i}}, \frac{x}{3^{i}}, \frac{x}{3^{i}}\right) .
$$

The rest of the proof follows in the same fashion and will be omitted here.

It should be noted that the Hyers-Ulam stability can be obtained from Theorem 3.1 with an appropriate choice of the function ϕ in the following corollary.

Corollary 3.3 If a function $f: X \rightarrow Y$ satisfies the functional equation
$\|f(2 x-y)+f(2 y-z)+f(2 z-x)+2 f(x+y+z)-7 f(x)-7 f(y)-7 f(z)\| \leq \varepsilon$
for some $\varepsilon>0$ and for all $x, y, z \in X$, then there exists a unique quadratic function $T: X \rightarrow Y$ such that

$$
\|f(x)-T(x)\| \leq \frac{\varepsilon}{16} \quad \forall x \in X
$$

Proof. We choose $\phi(x, y, z)=\varepsilon$ for all $x, y, z \in X$. Being in accordance with condition (3.1) in Theorem 3.1, it follows that

$$
\|f(x)-T(x)\| \leq \frac{1}{18} \sum_{i=0}^{\infty} \frac{\varepsilon}{9^{i}}=\frac{\varepsilon}{16}
$$

for all $x \in X$ as desired.
For the Hyers-Ulam-Rassias stability, we again choose an appropriate ϕ function, then apply Theorems 3.1 and 3.2.

Corollary 3.4 If a function $f: X \rightarrow Y$ satisfies the functional equation

$$
\begin{aligned}
\| f(2 x-y)+f(2 y-z)+ & f(2 z-x)+2 f(x+y+z) \\
& -7 f(x)-7 f(y)-7 f(z) \| \leq \varepsilon\left(\|x\|^{p}+\|y\|^{p}+\|z\|^{p}\right)
\end{aligned}
$$

with $0<p<2$ or $p>2$ for some $\varepsilon>0$ and for all $x, y, z \in X$, then there exists a unique quadratic function $T: X \rightarrow Y$ such that

$$
\|f(x)-T(x)\| \leq \frac{3 \varepsilon}{2\left|9-3^{p}\right|}\|x\|^{p} \quad \forall x \in X
$$

Proof. We choose $\phi(x, y, z)=\varepsilon\left(\|x\|^{p}+\|y\|^{p}+\|z\|^{p}\right)$ for all $x, y, z \in X$. If $0<$ $p<2$, then condition (3.1) in Theorem 3.1 is fulfilled, and, consequently,

$$
\|f(x)-T(x)\| \leq \frac{1}{18} \sum_{i=0}^{\infty} \frac{3 \varepsilon \cdot\left\|3^{i} x\right\|^{p}}{9^{i}}=\frac{3 \varepsilon}{2\left(9-3^{p}\right)}\|x\|^{p}
$$

If $p>2$, then condition (3.6) in Theorem 3.2 is fulfilled, and, consequently,

$$
\|f(x)-T(x)\| \leq \frac{1}{18} \sum_{i=1}^{\infty}\left(9^{i} \cdot 3 \varepsilon\left\|3^{-i} x\right\|^{p}\right)=\frac{3 \varepsilon}{2\left(3^{p}-9\right)}\|x\|^{p}
$$

This completes the proof.

References

[1] J.-H. Bae and K.-W. Jun, On the Generalized Hyers-Ulam-Rassias Stability of an n-Dimensional Quadratic Functional Equation, J. Math. Anal. Appl., 258 (2001), 183-193.
[2] J.-H. Bae, K.-W. Jun and S.-M. Jung, On the Stability of a Quadratic Functional Equation, Kyungpook Math. J., 43 (2003), 415-423.
[3] I.-S. Chang and H.-M. Kim, On the Hyers-Ulam Stability of Quadratic Functional Equations, J. Inequal. Pure Appl. Math., 3 (2002), Art. 33.
[4] K.-W. Jun and H.-M. Kim, Stability Problem of Ulam for Generalized Forms of Cauchy Functional Equations, J. Math. Anal. Appl., 312(2005), 535-547.
[5] S.-M. Jung, Hyers-Ulam-Rassias Stability of Jensen's Equations and Its Application, Proc. Amer. Math. Soc., 126(1998), 3137-3143.
[6] D. H. Hyers, On the Stability of the Linear Functional Equations, Proc. Natl. Acad. Sci., 27 (1941), 222-224.
[7] M. H. Moslehian, On the Stability of the Orthogonal Pexiderized Cauchy Equation, J. Math. Anal. Appl., 318 (2006), 211-223.
[8] W.-G. Park and J.-H. Bae, On a Cauchy-Jensen Functional Equation and Its Stability, J. Math. Anal. Appl., 323 (2006), 634-643.
[9] J. M. Rassias, On the General Quadratic Functional Equation, Bol. Soc. Mat. Mexicana, 11 (2005), 259-268.
[10] Th. M. Rassias, On the Stability of the Linear Mapping in Banach Spaces, Proc. Amer. Math. Soc., 72 (1978), 297-300.
[11] S. M. Ulam, Problems in Modern Mathematics, John Wiley \& Sons, New York, U.S.A., 1964.
(Received 23 January 2006)
P. Nakmahachalasint

Department of Mathematics
Chulalongkorn University
Faculty of Science
Bangkok 10330, Thailand.
e-mail : Paisan.N@chula.ac.th

