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1 Introduction

Congruence relations are studied in lattices and semilattices(see, for example,
1] and [2] ). A definiton for congruence relations in partially ordered sets is
proposed in this article. A partial order on a set is an order which is reflexive,
anti-symmetric and transitive. A set with a partial order is called a poset(partially
ordered set). A poset in which any two elements have a least upper bound and a
greatest lower bound is called a lattice. An equivalence relation in a set is a relation
which is reflexive, symmetric and transitive. The collection of all equivalence
classes on a set corresponding to an equivalence relation form a partition. On
the other hand each partition on a set corresponds to an equivalence relation.
The books ([3],[4]) are referred to fundamental concepts and results. In a lattice
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(L,<) or (L,V,A), an equivalence relation 6, denoted by z = y (mod #) when
and y are related in L, is called a congruence relation, if it has the substitution
properties: z Ay =y Az (mod #) and 2 Vy =y V z (mod ) whenever 2 = y (mod
0) in L and z € L . A definition for congruence relations in posets will be given
in the next section. A corresponding fundamental theorem of homomorphism is
obtained. The definitions and the theorem are also extended to “doubly directed
sets”. Let us say that a poset (P, <) is a doubly directed set, if for given a,b € P,
there are ¢ and d in P such that c<a <dand ¢ < b <d.

2 Some definitions and examples

Definition 2.1. Let (P, <) be a poset. Let 6 be an equivalence relation on P. It
is called a congruence relation, if the following hold in P.

(i) If 1 < xo and x1 = y1 (mod 6), then there is an element yo in P such that
X2 = y2 (mod 0) and y1 < yo.

(i1) If x1 < x9 and x2 = yo (mod 0), then there is an element y1 in P such that
x1 =41 (mod 0) and y1 < yo.

(i) If x =2 (mod 0) and x <y < z, then x =y (mod 0).

Example 2.1. Let 6 be an usual (lattice) congruence relation on a lattice (L, <)
or (L,V,N\) mentioned in the previous section. If 1 < x9 and x1 = y1 (mod 6)
in L , then xo = 21 Va2 = y1 Va2 (mod 0) and y1 < y1 V x2. If x1 < 29 and
Ta = y2 (mod 8) in L , then x1 = x1 ANxa = 21 Aya (mod ) and x1 A ya < ys.
Thus the conditions (i) and (i) of the previous definition are satisfied. In view of
the lemma in page 22 in [3], the condition (iii) of the previous definition is also
satisfied.

Example 2.2. Consider the lattice given by the Hasse diagram in figure 1. Con-
sider the partition {{1},{a,b},{c,d},{e,0} }. This defines a congruence relation
0 mentioned in definition 2.1 . However, eV d = b, OV d=d, e= 0 (mod 0) and
b#d (mod8).
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Example 2.3. Consider the poset given by the Hasse diagram in figure 2. Then
the partition {{a,d},{b,c}} defines an equivalence relation. It is not a congruence
relation that satisfies the conditions (i), (i) and (iii) of definition 2.1.

Example 2.4. Let (P,<) be a poset. Define an equivalence relation 8 on P by
a=b(mod@)if and only if {r e P:x <a}y={r € P:2 <b} and {x € P:
x> a} ={x € P:x>b}, (see definition 4.3 in chapter 2 in [3] ) . If x1 < x2
and x1 = y1 (mod 0), then xo € {x € P :x > 21} ={x € P :x > y1}, so
that y1 < x2. If 11 < x2 and o = yo (mod 0), then x1 € {x € P : x < x2}={x
€ P:x <y} sothat x1 < ya. If 11 = 21 (mod 0) and 1 < y1 < z1, then
{rePiz<zunt={reP:z<x}={recP:z<ytand{xeP: :z>
v} ={xe€eP:x>znr={xe€P:x >y} sothat 1 =y (mod ). These
three statements prove that 0 is a congruence relation of definition 2.1, because the
other cases of verification are trivial.

Let us recall that a mapping T : P, — Py from a poset Py to a poset Py is said
to be order preserving, if T'(a) < T(b) in Pa, whenever a < b in P.

Definition 2.2. A mapping T : P, — P» from a poset Py to a poset Py is inversely
order preserving if the following are satisfied whenever a < b for some a,b € T(Py).

(I) For given a; € T~1(a), there is a by € T~1(b) such that ay < by
(II) For given by € TY(b), there is an az € T~ 1(a) such that as < by
(II) If 2,2 € T"Ya) and x <y < z in Py, theny € T~ (a).

3 A fundamental theorem of homomorphism

Theorem 3.1. Let 6 be an equivalence relation on a poset (P,<). If 0 is a congru-
ence relation mentioned in definition 2.1, then P/ becomes a poset and the natural
quotient mapping w : P — P/0 is a surjective, order preserving and inversely order
preserving mapping. On the other hand, for a given mapping T : P — Py from
P onto a poset Py which is order preserving and inversely order preserving, the
partition { T~'(a) : a € P1} leads to a congruence relation of definition 2.1.

Proof First part: When 6 is a congruence relation, let [z] denote the equiva-
lence class containing x. Define an order relation < on P/ by the rule: [z] < [y]
if and only if for given x; € [z] and y; € [y], there are x5 € [z] and y2 € [y] such
that 21 < yo and z3 < y;. Note that [z] < [z], Va € P.

To prove anti-symmetricity, suppose [z] < [y] and [y] < [z] in P/#. Then there
are y; € [y] and x1 € [z] such that < y; < z1. Then, by (iii) of definition 2.1,
y =z ( mod 6). This proves the anti-symmetricity of the relation in P/#. To
prove transitivity, consider the relations [z] < [y] and [y] < [z] in P/6. Then, to
given 7 € [z], there are y; € [y] and 21 € [z] such that 1 < y; and y; < 21 so
that x1 < z1. Similarly, to given z; € [2], there are y; € [y] and 1 € [x] such that
21 < yp and y; < z1 so that 7 < z;. This proves transitivity and hence P/ is

also a poset.
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Suppose © < y in P. Then, by (i) of definition 2.1, for given x; € [z], there
is a y1 € [y], such that z; < y;. Similarly, for given yo € [y], there is a x5 € [z],
such that 2o < ya. So [z] < [y]. Thus the mapping © : P — P/ defined by
m(x) = [z] is order preserving. The definition 2.1 and the definition 2.6 imply that
7 is inversely order preserving. Second part: Now, let 8 denote the equivalence
relation defined by {T~'(a) : a € P;} for the given mapping 7 : P — P;. The
definition 2.1 and the definition 2.6 imply that 6 is a congruence relation. This
completes the proof of the theorem.

4 Doubly directed sets

A poset (P, <) is a doubly directed set if any two elements in P have
an upper bound and a lower bound.

Definition 4.1. Let (P, <) be a doubly directed set. Let 6 be an equivalence
relation on P. It is called a congruence relation if it satisfies the following:

(i) If x and y are given, if z > x, z >y, and if t = x1 (mod 0), y = 11
(mod 0) in P, then there is a z; in P such that zy > x1,21 > y1 and
z =2z (mod@).

(ii) If © and y are given, if z < x,z <y, and if x = xo(mod 0), y = ya
(mod 0) in P, then there is a zo in P such that zo < xa, 29 < y2, and
z = z9 (mod 0).

(11i) If t =z (mod 0) and x <y < z, then x =y (mod 0)

Let us observe that the conditions (i),(ii) and (iii) of definition 4.1 imply
the corresponding conditions (i),(ii) and (iii) of definition 2.1, where z; =
y2,2 = xg and = y = x1 (for(i)). Let us now rephrase the definition 2.6.

Definition 4.2. A mapping T : P, — P5 from a doubly directed set Py to a
doubly directed set Ps is inversely direction preserving, if the following are
satisfied:

(1) If a, b, ¢ are in T(Py) satisfying a < ¢ and b < ¢, then for given
a1 € T Y(a),by € T7(b), there is a ¢ € T Y(c) such that a; < ¢;
and by < e¢;.

(1) If a, b, ¢ are in T(Py) satisfying a > ¢ and b > ¢, then for given
az € T7Y(a),by € T7(b), there is a co € T~ *(c) such that ag > c3
and by > co.
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(II) If a € T(Py) and z,2 € T a), and x < y < z in P, then y €
T (a).

Let us again observe that the conditions (I),(II) and (III) of definition
4.2 imply that corresponding conditions (I),(II) and (III) of definition 2.6,
where ¢; = b,c = b,by = a1 and b = a (for(I)). Let us now rephrase the
theorem 3.1.

Theorem 4.1. Let 0 be an equivalence relation on a doubly directed set
(P,<). If 0 is a congruence relation mentioned in definition 4.1, then P/
becomes a doubly directed set and the natural quotient mapping © : P — P/0
18 a surjective, order preserving and inversely direction preserving mapping.
On the other hand, for a given mapping T from P onto a doubly directed
set Py which is order preserving and inversely direction preserving, the
partition {T~'(a) : a € P} leads to a congruence relation of definition 4.1.

Proof First part: Let us follow the notations and definitions used in
the proof for the first part of the theorem 3.1. Then P/ is a poset. Let us
fix x and y in P and hence [z] and [y]| in P/# to verify that P/6 is a doubly
directed set. Since P is a doubly directed set, there are a and b in P such
that a < x < band a <y <b. Then it follows from the definition 4.1 that
[a] < [z] < [b] and [a] < [y] < [b] in P/H. Thus P/6 is a doubly directed

set; and  is inversely direction preserving. Second part: The definitions
4.1 and 4.2 imply the second part to complete the proof of the theorem.

References

[1] R. Giacobazzi, F. Ranzato, Some properties of complete congruence
lattices, Algebra Univers. 40 (1998) 189-200.

[2] D. Papert, Congruence relations in semilattices, J. London Math.Soc.
39 (1964) 723-729.

[3] G. Birkoff, Lattice Theory, Second edition, Amer.Math.Soc., New
York, 1948.

[4] E.Harzheim, Ordered sets, Springer, New York, 2005.

(Received 5 December 2013)
(Accepted 2 January 2015)

TuAL J. MaTH. Online @ |http://thaijmath.in.cmu.ac.th


http://thaijmath.in.cmu.ac.th

	Introduction
	Some definitions and examples
	A fundamental theorem of homomorphism
	Doubly directed sets

