Thai Journal of Mathematics Volume 13 (2015) Number 2: 399–403

http://thaijmath.in.cmu.ac.th

A Congruence Relation in Partially Ordered Sets

C. Ganesamoorthy † and SG. Karpagavalli ‡,1

†Department of Mathematics, Alagappa University, Karaikudi-630 004, Tamil Nadu, India e-mail: ganesamoorthyc@gmail.com

[‡]Department of Mathematics, Dr. Umayal Ramanathan College for Women Karaikudi-630 004, Tamil Nadu, India

e-mail: sgkarpa@gmail.com

Abstract: A concept of congruence relations in partially ordered sets is introduced in this article. A fundamental theorem for homomorphism is obtained. Further extensions to "doubly directed" sets are obtained.

Keywords: directed set; congruence relation; partition. **2010** Mathematics Subject Classification: 06B10; 18B35.

1 Introduction

Congruence relations are studied in lattices and semilattices(see, for example, [1] and [2]). A definiton for congruence relations in partially ordered sets is proposed in this article. A partial order on a set is an order which is reflexive, anti-symmetric and transitive. A set with a partial order is called a poset(partially ordered set). A poset in which any two elements have a least upper bound and a greatest lower bound is called a lattice. An equivalence relation in a set is a relation which is reflexive, symmetric and transitive. The collection of all equivalence classes on a set corresponding to an equivalence relation form a partition. On the other hand each partition on a set corresponds to an equivalence relation. The books ([3],[4]) are referred to fundamental concepts and results. In a lattice

Copyright $\ \odot$ $\ 2015$ by the Mathematical Association of Thailand. All rights reserved.

¹Corresponding author.

 (L,\leq) or (L,\vee,\wedge) , an equivalence relation θ , denoted by $x\equiv y\pmod{\theta}$ when x and y are related in L, is called a congruence relation, if it has the substitution properties: $x\wedge y\equiv y\wedge z\pmod{\theta}$ and $x\vee y\equiv y\vee z\pmod{\theta}$ whenever $x\equiv y\pmod{\theta}$ in L and $z\in L$. A definition for congruence relations in posets will be given in the next section. A corresponding fundamental theorem of homomorphism is obtained. The definitions and the theorem are also extended to "doubly directed sets". Let us say that a poset (P,\leq) is a doubly directed set, if for given $a,b\in P$, there are c and d in P such that $c\leq a\leq d$ and $c\leq b\leq d$.

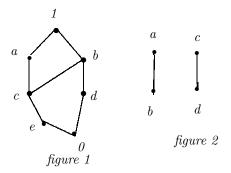
2 Some definitions and examples

Definition 2.1. Let (P, \leq) be a poset. Let θ be an equivalence relation on P. It is called a congruence relation, if the following hold in P.

- (i) If $x_1 \leq x_2$ and $x_1 \equiv y_1 \pmod{\theta}$, then there is an element y_2 in P such that $x_2 \equiv y_2 \pmod{\theta}$ and $y_1 \leq y_2$.
- (ii) If $x_1 \leq x_2$ and $x_2 \equiv y_2 \pmod{\theta}$, then there is an element y_1 in P such that $x_1 \equiv y_1 \pmod{\theta}$ and $y_1 \leq y_2$.
- (iii) If $x \equiv z \pmod{\theta}$ and $x \leq y \leq z$, then $x \equiv y \pmod{\theta}$.

Example 2.1. Let θ be an usual (lattice) congruence relation on a lattice (L, \leq) or (L, \vee, \wedge) mentioned in the previous section. If $x_1 \leq x_2$ and $x_1 \equiv y_1 \pmod{\theta}$ in L, then $x_2 = x_1 \vee x_2 \equiv y_1 \vee x_2 \pmod{\theta}$ and $y_1 \leq y_1 \vee x_2$. If $x_1 \leq x_2$ and $x_2 \equiv y_2 \pmod{\theta}$ in L, then $x_1 = x_1 \wedge x_2 \equiv x_1 \wedge y_2 \pmod{\theta}$ and $x_1 \wedge y_2 \leq y_2$. Thus the conditions (i) and (ii) of the previous definition are satisfied. In view of the lemma in page 22 in [3], the condition (iii) of the previous definition is also satisfied.

Example 2.2. Consider the lattice given by the Hasse diagram in figure 1. Consider the partition $\{\{1\}, \{a,b\}, \{c,d\}, \{e,0\}\}\}$. This defines a congruence relation θ mentioned in definition 2.1. However, $e \lor d = b$, $\theta \lor d = d$, $e \equiv \theta \pmod{\theta}$ and $b \neq d \pmod{\theta}$.



Example 2.3. Consider the poset given by the Hasse diagram in figure 2. Then the partition $\{\{a,d\},\{b,c\}\}$ defines an equivalence relation. It is not a congruence relation that satisfies the conditions (i), (ii) and (iii) of definition 2.1.

Example 2.4. Let (P, \leq) be a poset. Define an equivalence relation θ on P by $a \equiv b \pmod{\theta}$ if and only if $\{x \in P : x < a\} = \{x \in P : x < b\}$ and $\{x \in P : x > a\} = \{x \in P : x > b\}$, (see definition 4.3 in chapter 2 in [3]). If $x_1 < x_2$ and $x_1 \equiv y_1 \pmod{\theta}$, then $x_2 \in \{x \in P : x > x_1\} = \{x \in P : x > y_1\}$, so that $y_1 < x_2$. If $x_1 < x_2$ and $x_2 \equiv y_2 \pmod{\theta}$, then $x_1 \in \{x \in P : x < x_2\} = \{x \in P : x < y_2\}$ so that $x_1 < y_2$. If $x_1 \equiv z_1 \pmod{\theta}$ and $x_1 \leq y_1 \leq z_1$, then $\{x \in P : x < z_1\} = \{x \in P : x < x_1\} = \{x \in P : x < y_1\}$ and $\{x \in P : x > x_1\} = \{x \in P : x > y_1\}$ so that $x_1 \equiv y_1 \pmod{\theta}$. These three statements prove that θ is a congruence relation of definition 2.1, because the other cases of verification are trivial.

Let us recall that a mapping $T: P_1 \to P_2$ from a poset P_1 to a poset P_2 is said to be order preserving, if $T(a) \leq T(b)$ in P_2 , whenever $a \leq b$ in P_1 .

Definition 2.2. A mapping $T: P_1 \to P_2$ from a poset P_1 to a poset P_2 is inversely order preserving if the following are satisfied whenever $a \le b$ for some $a, b \in T(P_1)$.

- (I) For given $a_1 \in T^{-1}(a)$, there is a $b_1 \in T^{-1}(b)$ such that $a_1 \leq b_1$
- (II) For given $b_2 \in T^{-1}(b)$, there is an $a_2 \in T^{-1}(a)$ such that $a_2 \leq b_2$
- (III) If $x, z \in T^{-1}(a)$ and $x \le y \le z$ in P_1 , then $y \in T^{-1}(a)$.

3 A fundamental theorem of homomorphism

Theorem 3.1. Let θ be an equivalence relation on a poset (P, \leq) . If θ is a congruence relation mentioned in definition 2.1, then P/θ becomes a poset and the natural quotient mapping $\pi: P \to P/\theta$ is a surjective, order preserving and inversely order preserving mapping. On the other hand, for a given mapping $T: P \to P_1$ from P onto a poset P_1 which is order preserving and inversely order preserving, the partition $\{T^{-1}(a): a \in P_1\}$ leads to a congruence relation of definition 2.1.

Proof First part: When θ is a congruence relation, let [x] denote the equivalence class containing x. Define an order relation \leq on P/θ by the rule: $[x] \leq [y]$ if and only if for given $x_1 \in [x]$ and $y_1 \in [y]$, there are $x_2 \in [x]$ and $y_2 \in [y]$ such that $x_1 \leq y_2$ and $x_2 \leq y_1$. Note that $[x] \leq [x]$, $\forall x \in P$.

To prove anti-symmetricity, suppose $[x] \leq [y]$ and $[y] \leq [x]$ in P/θ . Then there are $y_1 \in [y]$ and $x_1 \in [x]$ such that $x \leq y_1 \leq x_1$. Then, by (iii) of definition 2.1, $y \equiv x \pmod{\theta}$. This proves the anti-symmetricity of the relation in P/θ . To prove transitivity, consider the relations $[x] \leq [y]$ and $[y] \leq [z]$ in P/θ . Then, to given $x_1 \in [x]$, there are $y_1 \in [y]$ and $z_1 \in [z]$ such that $x_1 \leq y_1$ and $y_1 \leq z_1$ so that $x_1 \leq z_1$. Similarly, to given $z_1 \in [z]$, there are $y_1 \in [y]$ and $x_1 \in [x]$ such that $x_1 \leq y_1$ and $y_1 \leq z_1$ so that $x_1 \leq y_1$ and $y_1 \leq z_1$ so that $x_1 \leq z_1$. This proves transitivity and hence P/θ is also a poset.

Suppose $x \leq y$ in P. Then, by (i) of definition 2.1, for given $x_1 \in [x]$, there is a $y_1 \in [y]$, such that $x_1 \leq y_1$. Similarly, for given $y_2 \in [y]$, there is a $x_2 \in [x]$, such that $x_2 \leq y_2$. So $[x] \leq [y]$. Thus the mapping $\pi: P \to P/\theta$ defined by $\pi(x) = [x]$ is order preserving. The definition 2.1 and the definition 2.6 imply that π is inversely order preserving. **Second part:** Now, let θ denote the equivalence relation defined by $\{T^{-1}(a): a \in P_1\}$ for the given mapping $T: P \to P_1$. The definition 2.1 and the definition 2.6 imply that θ is a congruence relation. This completes the proof of the theorem.

4 Doubly directed sets

A poset (P, \leq) is a doubly directed set if any two elements in P have an upper bound and a lower bound.

Definition 4.1. Let (P, \leq) be a doubly directed set. Let θ be an equivalence relation on P. It is called a congruence relation if it satisfies the following:

- (i) If x and y are given, if $z \ge x$, $z \ge y$, and if $x \equiv x_1 \pmod{\theta}$, $y \equiv y_1 \pmod{\theta}$ in P, then there is a z_1 in P such that $z_1 \ge x_1, z_1 \ge y_1$ and $z \equiv z_1 \pmod{\theta}$.
- (ii) If x and y are given, if $z \le x, z \le y$, and if $x \equiv x_2 \pmod{\theta}$, $y \equiv y_2 \pmod{\theta}$ in P, then there is a z_2 in P such that $z_2 \le x_2$, $z_2 \le y_2$, and $z \equiv z_2 \pmod{\theta}$.
- (iii) If $x \equiv z \pmod{\theta}$ and $x \leq y \leq z$, then $x \equiv y \pmod{\theta}$

Let us observe that the conditions (i),(ii) and (iii) of definition 4.1 imply the corresponding conditions (i),(ii) and (iii) of definition 2.1, where $z_1 = y_2, z = x_2$ and $x = y = x_1$ (for(i)). Let us now rephrase the definition 2.6.

Definition 4.2. A mapping $T: P_1 \to P_2$ from a doubly directed set P_1 to a doubly directed set P_2 is inversely direction preserving, if the following are satisfied:

- (I) If a, b, c are in $T(P_1)$ satisfying $a \le c$ and $b \le c$, then for given $a_1 \in T^{-1}(a), b_1 \in T^{-1}(b)$, there is a $c_1 \in T^{-1}(c)$ such that $a_1 \le c_1$ and $b_1 \le c_1$.
- (II) If a, b, c are in $T(P_1)$ satisfying $a \ge c$ and $b \ge c$, then for given $a_2 \in T^{-1}(a), b_2 \in T^{-1}(b)$, there is a $c_2 \in T^{-1}(c)$ such that $a_2 \ge c_2$ and $b_2 \ge c_2$.

(III) If $a \in T(P_1)$ and $x, z \in T^{-1}(a)$, and $x \leq y \leq z$ in P_1 , then $y \in T^{-1}(a)$.

Let us again observe that the conditions (I),(II) and (III) of definition 4.2 imply that corresponding conditions (I),(II) and (III) of definition 2.6, where $c_1 = b, c = b, b_1 = a_1$ and b = a (for(I)). Let us now rephrase the theorem 3.1.

Theorem 4.1. Let θ be an equivalence relation on a doubly directed set (P, \leq) . If θ is a congruence relation mentioned in definition 4.1, then P/θ becomes a doubly directed set and the natural quotient mapping $\pi: P \to P/\theta$ is a surjective, order preserving and inversely direction preserving mapping. On the other hand, for a given mapping T from P onto a doubly directed set P_1 which is order preserving and inversely direction preserving, the partition $\{T^{-1}(a): a \in P_1\}$ leads to a congruence relation of definition 4.1.

Proof First part: Let us follow the notations and definitions used in the proof for the first part of the theorem 3.1. Then P/θ is a poset. Let us fix x and y in P and hence [x] and [y] in P/θ to verify that P/θ is a doubly directed set. Since P is a doubly directed set, there are a and b in P such that $a \le x \le b$ and $a \le y \le b$. Then it follows from the definition 4.1 that $[a] \le [x] \le [b]$ and $[a] \le [y] \le [b]$ in P/θ . Thus P/θ is a doubly directed set; and π is inversely direction preserving. **Second part:** The definitions 4.1 and 4.2 imply the second part to complete the proof of the theorem.

References

- [1] R. Giacobazzi, F. Ranzato, Some properties of complete congruence lattices, Algebra Univers. 40 (1998) 189-200.
- [2] D. Papert, Congruence relations in semilattices, J. London Math.Soc. 39 (1964) 723-729.
- [3] G. Birkoff, Lattice Theory, Second edition, Amer.Math.Soc., New York, 1948.
- [4] E.Harzheim, Ordered sets, Springer, New York, 2005.

(Received 5 December 2013) (Accepted 2 January 2015)

 ${f T}$ HAI ${f J.}$ ${f M}$ ATH. Online @ http://thaijmath.in.cmu.ac.th