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1 Introduction

Inverse problems are encountered in various branches of science and engineer-
ing. Mechanical, aerospace and chemical engineers; mathematicians, astrophysi-
cists, geophysicists, statisticians and specialists of many other disciplines are all
interested in inverse problems, each with different applications in mind. In the field
of heat transfer, using inverse analysis for the estimation of surface conditions such
as temperature and heat flux, or the determination of thermal properties such as
thermal conductivity and heat capacity of solids by utilizing the transient tempera-
ture measurements taken within the medium has numerous practical applications.
By principle of conservation, we have [1, 2]

a0ut +∇J = 0, (1.1)

where a0 is a heat conduction coefficient.
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In théorie Analytique de la Chaleur, Fourier stated his famous law

J = −D0∇u,

where J is the rate of flow of heat energy per unit time through a unit area and
D0 is the conductivity. By consideration the rotational curent we have [3–5]

J = −D0∇u+ µ0u. (1.2)

Substitution (1.2) into (1.1) yields

ut −∇.(a(t)∇u) + b(t)∇u = 0,

where a(t) = D0(t)
a0(t)

is the diffusivity and b(t) = µ0(t)
a0(t)

is a transport coefficient.

Now we consider the following one-dimensional parabolic partial differential
equation in a slab

ut − a(t)uxx + b(t)ux = 0, (1.3)

in the domain D={(x, t) | 0 < x < 1, 0 < t < T } for some T > 0. We require that
the solution of (1.3) satisfies the primary initial and boundary conditions

u(x, 0) = f0(x), 0 ≤ x ≤ 1, (1.4)

ux(0, t) = G0(u(0, t)), 0 ≤ t ≤ T, (1.5)

ux(1, t) = H0(u(1, t)), 0 ≤ t ≤ T, (1.6)

where a, b, G0, H0 and f0 are all considered known and sufficiently smooth on
their domains. Then the problem is concerned with the determination of temper-
ature distribution u(x, t) in the interior region of the solid as a function of time
and position. We shall refer to such traditional problems as the direct parabolic
problems.

We now consider a problem similar to that given by (1.3)-(1.6), but the bound-
ary coundition functions H0, G0 at boundary surfaces are unknown. To compen-
sate for the lack of information on the boundary conditions, measured functions
u(0, t) = g0(t) and u(1, t) = h0(t) are given at the boundary points x = 0, x = 1
at any time t, 0 ≤ t ≤ T , where T is the final time. This is an inverse parabolic
problem because it is concerned with the estimation of the unknown H0, G0 [6].
The mathematical formulation of this problem is to find (u, H0, G0) so that

ut − a(t)uxx + b(t)ux = 0, in D, (1.7)

u(x, 0) = f0(x), 0 ≤ x ≤ 1, (1.8)

ux(0, t) = G0(u(0, t)), 0 ≤ t ≤ T, (1.9)

ux(1, t) = H0(u(1, t)), 0 ≤ t ≤ T, (1.10)

and the overspecified data

u(0, t) = g0(t), 0 ≤ t ≤ T, (1.11)

u(1, t) = h0(t), 0 ≤ t ≤ T. (1.12)

This is an inverse parabolic problem with unknown boundary conditions.
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2 The Inverse Problem (1.7)-(1.12)

For equation of the form

ut − a(t)uxx + b(t)ux = 0,

set

x = ξ +

∫ φ(τ)

0

b(η)dη,

and

t = φ(τ),

where φ is the inverse of the mapping

τ =

∫ φ(τ)

0

a(η)dη.

Clearly,

φ′(τ) = [a(φ(τ))]−1 ≡ [a(t)]−1.

Follows from t = φ(τ). Using U(ξ, τ) = u(ξ +
∫ φ(τ)

0
b(η)dη, φ(τ)), The problem

(1.7)-(1.10) becomes

Uτ = Uξξ, s1(τ) < ξ < s2(τ), 0 < τ < T1, (2.1)

U(ξ, 0) = f(ξ), 0 ≤ ξ ≤ 1, (2.2)

Uξ(s1(τ), τ) = G(U(s1(τ), τ)), 0 ≤ τ ≤ T1, (2.3)

Uξ(s2(τ), τ) = H(U(s2(τ), τ)), 0 ≤ τ ≤ T1, (2.4)

and, similarly (1.11) and (1.12) yield

U(s1(τ), τ)) = g(τ), 0 ≤ τ ≤ T1, (2.5)

U(s2(τ), τ)) = h(τ), 0 ≤ τ ≤ T1, (2.6)

where

s1(τ) = −
∫ φ(τ)

0

b(η)dη,

s2(τ) = 1−
∫ φ(τ)

0

b(η)dη,

and

T1 =

∫ T

0

a(η)dη.

In the next section it will be shown that the above inverse problem has a unique
solution.
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3 Existence and Uniqueness

We consider now the problem of determining the (U , G, H) that satisfies in the
(2.1)-(2.4), where the data f , G, andH sufficiently smooth, si ∈ Cγ([0, T1]), γ > 1

2 ,
i = 1, 2. Since,

δ = inf
0≤τ≤T1

| s1(τ) − s2(τ) |= 1 > 0,

and

∆ = sup
0≤τ≤T1

| s1(τ) − s2(τ) |= 1 < ∞.

Then the problem (2.1)-(2.4) has a unique solution of the form [7].

U(ξ, τ) = v(ξ, τ) +

∫ τ

0

K(ξ − s1(t), τ − t)G(U(s1(t), t))dt

+

∫ τ

0

K(ξ − s2(t), τ − t)H(U(s2(t), t))dt, (3.1)

where

v(ξ, τ) =

∫ ∞

−∞

K(ξ − x, τ)f(x)dx,

and f denotes a continuous extension of f with compact support,

K(ξ, τ) =
1√
4πτ

exp

(

− ξ2

4τ

)

. (3.2)

Differentiating equation (3.1) with respect to ξ and using (2.5) and (2.6) we obtain
respectively,

G(g(τ)) = vξ(s1(τ), τ) − 2−1G(g(τ)) +

∫ τ

0

∂K

∂ξ
(s1(τ) − s1(t), τ − t)G(g(t))dt

+

∫ τ

0

∂K

∂ξ
(s1(τ) − s2(t), τ − t)H(h(t))dt, (3.3)

and

H(h(τ)) = vξ(s2(τ), τ) + 2−1H(h(τ)) +

∫ τ

0

∂K

∂ξ
(s2(τ)− s1(t), τ − t)G(g(t))dt

+

∫ τ

0

∂K

∂ξ
(s2(τ) − s2(t), τ − t)H(h(t))dt. (3.4)

Lemma 3.1. For si ∈ Cγ([0, T1]), γ > 1
2 , i = 1, 2, there exists a positive constant

c1 = c1(T1, | s2 |γ , γ) such that

∣

∣

∣

∣

∂K

∂ξ
(s2(τ)− s2(t), τ − t)

∣

∣

∣

∣

≤ c1(τ − t)−(1/2).
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Proof. From inequality,
exp{−ξ} ≤ 1/ξ,

we have

∣

∣

∣

∣

∂K

∂ξ
(s2(τ)− s2(t), τ − t)

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

−2(s2(τ) − s2(t))

4(τ − t)
√

4π(τ − t)

∣

∣

∣

∣

∣

exp

{−(s2(τ)− s2(t))
2

4(τ − t)

}

≤ 1√
π
| (s2(τ) − s2(t))

−1(τ − t)−(1/2) |,

and s2 ∈ Cγ([0, T1]), thus, there exists a positive constant c1 = c1(T1, | s2 |γ , γ)
such that

∣

∣

∣

∣

∂K

∂ξ
(s2(τ) − s2(t), τ − t)

∣

∣

∣

∣

≤ c1(τ − t)−(1/2).

Lemma 3.2. For si ∈ Cγ([0, T1]), γ > 1
2 , i = 1, 2, there exists a positive constant

c2 = c2(T1, | s2 |γ , γ) such that

∣

∣

∣

∣

∂K

∂ξ
(s1(τ) − s2(t), τ − t)

∣

∣

∣

∣

≤ c2(τ − t)−(1/2).

Proof. Consider

(s1(τ) − s2(t))
2 = ([s1(τ) − s2(τ)] + [s2(τ) − s2(t)])

2

= (s1(τ) − s2(τ)
2 + 2(s1(τ) − s2(τ))(s2(τ) − s2(t)) + (s2(τ)− s2(t))

2

≥ δ2 − ǫ∆2 + (1− ǫ−1)(s2(τ) − s2(t))
2.

Selecting ǫ = δ2

2∆2 = 1
2 , we get

(s1(τ) − s2(t))
2 ≥ 2−1 − (s2(τ) − s2(t))

2 ≥ 2−1− | s2 |2γ | τ − t |2γ .

Consequently,

exp

{

− (s1(τ)− s2(t))
2

4(τ − t)

}

≤ exp{4−1 | s2 |2γ T 2γ−1
1 } exp

{

− 1

8(τ − t)

}

.

Since δ = 1 > 0, it follows, from exp{−ξ} ≤ 1/ξ that there exists a constant
c2 = c2(T1, | s2 |γ , γ) such that

∣

∣

∣

∣

∂K

∂ξ
(s1(τ) − s2(t), τ − t)

∣

∣

∣

∣

≤ c2(τ − t)−(1/2),

and in a similar manner there exists a constant c3 = c3(T1, | s1 |γ , γ) such that

∣

∣

∣

∣

∂K

∂ξ
(s2(τ) − s1(t), τ − t)

∣

∣

∣

∣

≤ c3(τ − t)−(1/2).
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Theorem 3.3 (Main Theorem). For f(x) ∈ C([0, 1]), g(τ) ∈ C0
(ν)((0, T1]), and

h(τ) ∈ C0
(ν)((0, T1]), there exists unique functions G(g(τ)) ∈ C0

(ν)((0, T1]), and

H(h(τ)) ∈ C0
(ν)((0, T1]), which satisfy (3.3)-(3.4) for some 0 < τ ≤ T1. Moreover,

the solution to the problem (2.1)-(2.6) exists and is unique.

Proof. Set

H1 =
∂K

∂ξ
(s1(τ) − s1(t), τ − t)G(g(t)) +

∂K

∂ξ
(s1(τ) − s2(t), τ − t)H(h(t)),

and

H2 =
∂K

∂ξ
(s2(τ) − s1(t), τ − t)G(g(t)) +

∂K

∂ξ
(s2(τ) − s2(t), τ − t)H(h(t)).

We have

| H1
1 −H2

1 | =
∣

∣

∣

∣

∂K

∂ξ
(s1(τ)− s1(t), τ − t)(G1(g(t))−G2(g(t)))

+
∂K

∂ξ
(s1(τ)− s2(t), τ − t)(H1(h(t))−H2(h(t)))

∣

∣

∣

∣

,

| H1
2 −H2

2 | =
∣

∣

∣

∣

∂K

∂ξ
(s2(τ)− s1(t), τ − t)(G1(g(t))−G2(g(t)))

+
∂K

∂ξ
(s2(τ)− s2(t), τ − t)(H1(h(t))−H2(h(t)))

∣

∣

∣

∣

.

Now, from lemmas (3.1) and (3.2) we see that

| H1
1 −H2

1 |≤ L(τ, t){| G1(g(t))−G2(g(t)) | + | H1(h(t))−H2(h(t)) |},

| H1
2 −H2

2 |≤ L(τ, t){| G1(g(t))−G2(g(t)) | + | H1(h(t))−H2(h(t)) |}.
Where

L(τ, t) = c4(T1, | s1 |γ , | s2 |γ , γ)(τ − t)−(1/2),

and
∫ τ2

τ1

L(τ2, t)dt = 2c4(T1, | s2 |γ , γ)(τ2 − τ1)
(1/2) = α(τ2 − τ1).

For some monotone-increasing function α with

lim
η→0+

α(η) = 0.

Then the system of linear Volterra integral equations of the first kind (3.3)-(3.4)
has a unique solution (G, H). Therefore, the solution to the problem (2.1)-(2.6)
exists and is unique ([7–10]).

In the next section, the stability of solution will be discussed.
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4 Stability Solutions (U , G, H)

By demonstrating the following theorem we prove the stability of solution
(U , G, H).

Theorem 4.1. Let (U1, G1, H1) and (U2, G2, H2) be two solutions of problem
(2.1)-(2.6) corresponding to two given data (f1, g1, h1) and (f2, g2, h2). Then
these solutions are stable.

Proof. Using (3.2) we obtain

∣

∣

∣

∣

∫ τ

0

K(ξ − s2(t), τ − t))dt

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫ τ

0

1
√

4π(τ − t)
exp{−(ξ − s2(t))

2

4(τ − t)
}dt

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

∫ τ

0

1
√

4π(τ − t)

4(τ − t)

(ξ − s2(t))2
dt

∣

∣

∣

∣

∣

≤ MT
3/2
1 ,

where M = M(| s1 |γ , | s2 |γ , γ). Now by Lemma 3.2 we have

∣

∣

∣

∣

∫ τ

0

{

∂K

∂ξ
(s1(τ) − s2(t), τ − t)

}

dt

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫ τ

0

c2(τ − t)−(1/2)dt

∣

∣

∣

∣

≤ 2c1T
1/2
1 .

Putting
M1 = M1(T1, | s1 |γ , | s2 |γ , ‖G‖T1

, γ),

and
M2 = M2(T1, | s1 |γ , | s2 |γ , ‖H‖T1

, γ),

we obtain

| U1(ξ, τ) − U2(ξ, τ) |≤| f1 − f2 | +M1‖g1 − g2‖T1
+M2‖h1 − h2‖T1

,

therefore, the solution for U is stable. Similar results may be obtained for the
solutions G and H . This completes the proof of stability solutions.
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