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Abstract : Let H be a complex Hilbert space and B(H) the algebra of all
bounded linear operators on H. We give the concrete forms of surjective linear
maps φ : B(H) → B(H) which preserve the generalized projections, operator
pairs whose products are nonzero generalized projections or operator pairs whose
triple Jordan products are nonzero generalized projections in both directions.

Keywords : linear preserver problems; Jordan homomorphisms; generalized pro-
jection.
2010 Mathematics Subject Classification : 15A86.

1 Introduction

Linear preserver problems is an active research area in matrix, operator theory
and Banach algebras. It has attracted the attention of many mathematicians in
the last few decades ([1]-[11]). By a linear preserver we mean a linear map of
an algebra A into itself which, roughly speaking, preserves certain properties of
some elements in A . Linear preserver problems concern the characterization of
such maps. Automorphisms and anti-automorphisms certainly preserve various
properties of the elements. Therefore, it is not surprising that these two types of
maps often appear in the conclusions of the results. In this paper,we shall con-
centrate on the case when A = B(H), the algebra of all bounded linear operators
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on a complex Hilbert space H. We should point out that a great deal of work has
been devoted to the case when H is finite dimensional,that is, the case when A

is a matrix algebra (see survey articles [6], [12], [13]), and that the first papers
concerning this case date back to the previous century [5].

The aim of this paper is to characterize a continuous linear maps

φ : B(H) → B(H)

which preserve the generalized projections, operator pairs whose products are
nonzero generalized projections or operator pairs whose triple Jordan products
are nonzero generalized projections in both directions.

2 Preliminaries

First we introduce some notation and terminology, for more we can refer to
[14].

Definition 2.1. Let H be a separable Hilbert space and B(H) be a algebra of all
bounded linear operators on H. Operator T ∈ B(H) is a generalized projection if
T 2 = T ∗. The set of all generalized projection on H is denoted by G P(H).

Proposition 2.2. If T is a generalized projection in B(H) then T 3 is a projection.

If T is a projection in B(H) then T is a generalized projection.

Theorem 2.3. Let T ∈ B(H). Then the following conditions are equivalent:

1. T is a generalized projection.

2. T is a normal operator and T 4 = T.

3. T is a partial-isometry and T 4 = T.

Theorem 2.4. Let S, T ∈ G P(H). Then S + T ∈ G P(H) if and only if ST =
TS = 0.

A linear map φ from algebra A into an algebra B is called a n-Jordan homo-
morphism if φ(xn) = φ(x)n for every x ∈ A where n is a natural fixed numbers. A
well known result of Herstein [15] shows that a n-Jordan homomorphism on prime
algebra A is either an homomorphism or an anti-homomorphism, multiplied by
a ∈ C where an−1 = 1.

Throughout H denotes a Hilbert space. By B(H) we denote the algebra of all
linear bounded operators on H. Also, for T ∈ B(H), R(T ) denotes the range of T
and N(T ) the kernel of T.
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3 Main Results

Let φ be a linear map on B(H). If for any A ∈ B(H), φ(A) is a generalized
projection if and only if A is, then we say that φ preserves generalized projections
in both directions. If for any A,B ∈ B(H), φ(A)φ(B) is a nonzero projection if
and only if ABis, then we say that φ preserves operator pairs whose products are
nonzero projections in both directions. If for any A,B ∈ B(H), φ(A)φ(B)φ(A) is
a nonzero projection if and only if ABAis, then we say that φ preserves operator
pairs whose triple Jordan products are nonzero projections in both directions.

Theorem 3.1. Let H be a complex Hilbert space and let φ : B(H) → B(H) be

a linear continuous surjective map. If φ preserves generalized projections in both

directions. Then, there exists a unitary operator U and a constant a with a3 = 1
such that φ takes one of the following forms.

φ(A) = aUAU∗

or

φ(A) = aUAtU∗

for all A ∈ B(H), where At is the transpose of A with respect to an arbitrary but

fixed orthonormal base of H.

We first prove this lemma.

Lemma 3.2. φ is injective.

Proof. Let A in B(H) such that φ(A) = 0. Then A is a generalized projection, so

A4 = A, (3.1)

since φ(2A) = 0 and φ preserves generalized projection in both directions, then
2A is a generalized projection, hence

16A4 = 2A. (3.2)

By 3.1 and 3.2 8A = A, so A = 0, consequently φ is injective.

Now we will prove The Theorem 3.1.

Proof. We consider two mutually orthogonal projections p and q, so p + q is a
projection. It follows that p + q, p and q are generalized projections. Since φ
preserves generalized projections then φ(p + q), φ(p) and φ(q) are generalized
projections. We have

φ(p+ q) = φ(p) + φ(q),

from Theorem 2.4
φ(p)φ(q) = φ(q)φ(p) = 0.
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We know that p and q are generalized projection, then φ(p) and φ(q) are generalized
projections, this implies that

φ(p) = φ(p)∗2

and
φ(q) = φ(q)∗2,

consequently

φ((ap+ bq)2) = (aφ(p) + bφ(q))∗2 for all a, b ∈ R. (3.3)

Now by spectral theorem that the real linear combination of mutually orthogonal
projections is dense in the set of all self-adjoint operators B(H). Then for every
self-adjoint A, there is a sequence of operators Pn, such that A = limPn and

Pn =

n
∑

i=1

αiEi

where αi ∈ R and Ei are mutually orthogonal projections. Using 3.3, we get

φ((Pn)
2) = (φ(Pn))

∗2.

Since φ is continuous, so by passing to limit

φ(A)∗2 = φ(A2)

for all self-adjoint operator A ∈ B(H). Indeed for S, T are self-adjoint operator,
then S + T is self-adjoint. Thus

φ((S + T )2) = (φ(S) + φ(T ))∗2,

so

φ(ST + TS) = φ(S)∗φ(T )∗ + φ(T )∗φ(S)∗.

Now, we can write any operator A ∈ B(H) in the form A = S + iT where S, T
are self-adjoint operator. then

φ(A2) = φ(S2 − T 2 + i(ST + TS)),

= φ(S)2 − φ(T )2 + iφ(ST + TS)

= φ(S)∗2 − φ(T )∗2 + i(φ(S)∗φ(T )∗ + φ(T )∗φ(S)∗)

= φ(A∗)∗2

for all A in B(H). It follows that φ(A4) = φ(A∗2)∗2 = φ(A)4 for all A ∈ B(H),
(i.e., φ is a 4-Jordan-homomorphism ). It is well-known that every 4-Jordan-
homomorphism of a prime algebra is a homomorphism or an anti-homomorphism
multiplied by a such that a3 = 1. Since B(H) is a prime algebra. Thus φ is
a homomorphism or an anti-homomorphism multiplied by a such that a3 = 1,
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by Lemma 3.2 φ is injective so φ is an automorphism or an anti-automorphism
multiplied by a. Then there is an invertible operator U such that

φ(A) = aUBU−1

for all A in B(H) or

φ(A) = aUAtU−1

for all A in B(H). We only consider the first form of φ, the proof of the second
form is similar to the first. Moreover, we have φ(p)2 = φ(p)∗, for all orthogonal
projection p ∈ B(H), so

a2UpU−1 = aU∗−1pU∗,

this implies that

U(cp+ dq)U−1 = U∗−1(cp+ dq)U∗,

for all c, d ∈ R.
Now by using the spectral theorem that the real linear combination of mutually
orthogonal projections is dense in the set of all self-adjoint operators B(H), we
obtain

USU−1 = U∗−1SU∗,

for all S self-adjoint operator, or any operator A ∈ B(H) is written in the form
A = S + iT where S, T are self-adjoint operator, then we get

UAU−1 = U(S + iT )U−1

= USU−1 + iUTU−1

= U∗−1SU∗ + iU∗−1TU∗

= U∗−1(S + iT )U∗

= U∗−1AU∗,

for all A in B(H). Consequently,

U∗UA = AU∗U for all A ∈ B(H),

since the center of B(H) are scalar operators, then U∗U = λI. Since U∗U is a
positive operator, then λ is a positive real number, hence you can reduce a λ = 1,
but U is an invertible operator, so

U∗U = UU∗ = I.

We get the existence of a unitary operator U such as the form of φ in the desired
theorem.

Theorem 3.3. Let H be a complex Hilbert space with dimH ≥ 2 and let φ :
B(H) → B(H) be a linear continue and surjective map. If φ preserves operator

pairs whose products are nonzero generalized projections in both directions, then
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there exist a unitary operator U ∈ B(H) and a constant a with a6 = 1 such that

one of the following holds.

φ(A) = aUAU∗

or

φ(A) = aUAtU∗

for all A ∈ B(H), where At is the transpose of A with respect to an arbitrary but

fixed orthonormal base of H.
For proof of Theorem we will need to proof this lemma.

Lemma 3.4. φ is injective and φ(I) = aI, for some a such that a6 = 1.

Proof. Let A ∈ B(H) such that φ(A) = 0. if A 6= 0, then there exist a vector
x ∈ B(H) such that Ax 6= 0. let B = x⊗Ax

||Ax||2 . AB is an non zero projection

generalized projection, which implies that φ(A)φ(B) is an non zero generalized
projection. But φ(A)φ(B) = 0 a contradiction, thus φ is injective.

Suppose that φ(A) = I. If A /∈ CI, then there exist an non zero vectors x ∈ H
such that x and Ax are linearly independent. Put B = x⊗Ax

||Ax||2 , then AB is a

non zero generalized projection. So is φ−1(A)φ−1(B) = φ−1(B) is a non-zero
generalized projection, so φ−1(B)2 = φ−1(B)∗. This implies that φ−1(B)∗ is a
generalized projection, so φ−1(B)∗ is a generalized projection and so B2 is an
non zero generalized projection. It follows that B6 is a non zero projection. Now
B6 = 〈x,Ax〉5 x⊗Ax

||Ax||12 . Then x and Ax are linearly dependent. This contradiction

shows that A = aI for some constant a. Since A6 = a6I must be a non-zero
projection. Then a6 = 1 which completes the proof.

Now we prove the Theorem 3.3.

Proof. From Lemma 3.4, there are two cases to consider.
Case1, φ(I) = I. So φ preserves generalized projections, by Theorem 3.1 we will
get the result.
Case2, φ(I) = aI. We can instead work with the linear map ψ defined by ψ(A) =
aφ(A), for all A ∈ B(H). This map clearly is unital linear continuous and bijective
map that preserves generalized projections in both directions.

Theorem 3.5. Let H be a complex Hilbert space with dimH ≥ 2 and let φ :
B(H) → B(H) be a linear continuous surjective map. If φ preserves operator pairs

whose triple Jordan products are nonzero generalized projection in both directions,

then there exist a unitary operator U ∈ B(H) and a constant a with a9 = 1 such

that one of the following holds.

φ(A) = aUAU∗

or

φ(A) = aUAtU∗

for all A ∈ B(H), At is the transpose of A with respect to an arbitrary but fixed

orthonormal base of H.
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For proof of Theorem we will need to proof this lemma.

Lemma 3.6. φ is injective and φ(I) = aI, for some a such that a9 = 1.

Proof. Let A ∈ B(H) such that φ(A) = 0. If A 6= 0, then there exists a unit vector
x ∈ H such that 〈Ax, x〉 6= 0. Let B = x⊗x√

〈Ax,x〉
. It is clear that ABA = x ⊗ x is

a non zero-projection so a non-zero generalized projection. Then φ(A)φ(B)φ(A)
is a non-zero generalized projection. However, φ(A)φ(B)φ(A) = 0, contradiction.
Thus, φ is injective.

On the other hand, suppose that φ(I) = A. We claim that A ∈ CI. In fact we
have A3 = E is a non-zero generalized projection. If E is not unitary operator.
By [14], R(E) is closed, then H = R(E)⊕N(E). Since AE = EA, then

A =
[

A11 0

0 A22

]

with A3

11
is a unitary operator in R(E) and A3

22
= 0. Let p be the projection from

N(E) onto the kernel of A22. Then p 6= 0 and A22pA22 = 0. Let Bz = A11⊕ zp for
all z ∈ C. Note that ABzA = E 6= 0. Then φ−1(A)φ−1(Bz)φ

−1(A) = φ−1(Bz) is a
non-zero generalized projection so φ−1(Bz)

3 = φ−1(Bz)
∗3 is a non-zero generalized

projection. Thus B3

z = A3

11
⊕ z3p is a non-zero generalized projection. This

Contradiction. It follows that E is a unitary operator and A is invertible, since E
is a non-zero generalized projection, then A9 = I.

Now we prove that A = aI for some constant a ∈ C, a9 = 1. For any unit vector
x ∈ H, there is a non zero vector y ∈ H such that Ax = A∗y since A is invertible.
Put B = x⊗y

||Ax||2 . Then ABA = Ax⊗Ax
||Ax||2 is a non zero generalized projection, which

implies that φ−1(A)φ−1(B)φ−1(A) = φ−1(B) is a non-zero generalized projection,
so φ−1(B)3 = φ−1(B)∗3 is a non-zero generalized projection. Therefore B3 is a

non-zero generalized projection and so B9 = 〈x,y〉8

||Ax||18x⊗ y is a non-zero projection.

It follows that y = axx for some non-zero constant ax ∈ C. Hence, A∗y = axA
∗x =

Ax. Note that A is invertible. It follows that A∗ = aA for some constant a ∈ C from
Theorem 2.3 in [16]. Thus, A∗9 = a9A9 = I so a9 = 1. The proof is complete.

Now we prove the Theorem 3.5.

Proof. From Lemma 3.6, we have two cases.
In the first case φ(I) = I, then φ preserves generalized projections, from Theorem
3.1 the desired result follows.
In the second case φ(I) = aI where a 6= 1. Repeating the same with ψ = aφ,
completes the proof.
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