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1 Introduction and Preliminaries

In [2], Sedghi et al. have introduced a new structure of generalized metric
spaces as follows.

Definition 1.1 ([2, Definition 2.1]). Let X be a nonempty set. An S-metric on
X is a function S : X3 −→ [0,∞) that satisfies the following conditions for all
x, y, z, a ∈ X .

1. S(x, y, z) = 0 if and only if x = y = z.

2. S(x, y, z) ≤ S(x, x, a) + S(y, y, a) + S(z, z, a).

The pair (X,S) is called an S-metric space.

1This work is discussed at The Dong Thap Seminar on Mathematical Analysis.
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The following is the intuitive geometric example for S-metric spaces.

Example 1.2 ([2, Example 2.4]). Let X = R
2 and d be the ordinary metric on

X . Put
S(x, y, z) = d(x, y) + d(x, z) + d(y, z)

for all x, y, z ∈ X , that is, S is the perimeter of the triangle given by x, y, z. Then
S is an S-metric on X .

An interesting work relating to this notion is to state fixed point theorems for
maps on S-metric spaces. In this line, some results have been proved in [2–4].
Recently, Karapinar et al. have proved a fixed point theorem for a class of maps
on metric spaces that satisfy the Ćirić’s quasi-contraction depending on another
map in [1]. This result gives rise to stating an analogue for maps on S-metric
spaces.

In this paper, we prove a fixed point theorem for a class of maps depending on
another map on S-metric spaces. As applications, we get the fixed point theorems
in [1, 2]. Also, examples are given to analyze the results.

We recall some notions, lemmas and examples which will be useful later.

Lemma 1.3 ([2, Lemma 2.5]). Let (X,S) be an S-metric space. Then

S(x, x, y) = S(y, y, x)

for all x, y ∈ X.

Lemma 1.4. Let (X,S) be an S-metric space. Then

S(x, x, z) ≤ 2S(x, x, y) + S(y, y, z)

and
S(x, x, z) ≤ 2S(x, x, y) + S(z, z, y)

for all x, y, z ∈ X.

Proof. It is a direct consequence of Definition 1.1 and Lemma 1.3.

Definition 1.5 ([2]). Let (X,S) be an S-metric space.

1. A sequence {xn} ⊂ X is said to converge to x ∈ X if S(xn, xn, x) → 0 as
n → ∞. That is, for each ε > 0, there exists n0 ∈ N such that for all n ≥ n0

we have S(xn, xn, x) < ε. We write xn → x for brevity.

2. A sequence {xn} ⊂ X is said to be Cauchy if S(xn, xn, xm) → 0 as n,m →
∞. That is, for each ε > 0, there exists n0 ∈ N such that for all n,m ≥ n0

we have S(xn, xn, xm) < ε.

3. The S-metric space (X,S) is said to be complete if every Cauchy sequence
is a convergent sequence.
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From [2, Examples in page 260] we have the following example.

Example 1.6.

1. Let R be the real line. Then

S(x, y, z) = |x− z|+ |y − z|

for all x, y, z ∈ R is an S-metric on R. This S-metric is called the usual
S-metric on R. Furthermore, the usual S-metric space R is complete.

2. Let Y be a nonempty subset of R. Then

S(x, y, z) = |x− z|+ |y − z|

for all x, y, z ∈ Y is an S-metric on Y . If Y is a closed subset of the usual
metric space R, then the S-metric space Y is complete.

Lemma 1.7 ([2, Lemma 2.10]). Let (X,S) be an S-metric space. If xn → x in
X then the limit point x is unique.

Lemma 1.8 ([2, Lemma 2.12]). Let (X,S) be an S-metric space. If xn → x and
yn → y then S(xn, xn, yn) → S(x, x, y).

Definition 1.9 ([2]). Let (X,S) be an S-metric space. For r > 0 and x ∈ X , we
define the open ball BS(x, r) with center x and radius r as follows.

BS(x, r) = {y ∈ X : S(y, y, x) < r}.

The topology induced by the S-metric or the S-metric topology is the topology
generated by the base of all open balls in X .

Lemma 1.10. Let {xn} be a sequence in X. Then xn → x in the S-metric space
(X,S) if and only if xn → x in the S-metric topological space X.

Proof. It is a direct consequence of Definition 1.5(1) and Definition 1.9.

Lemma 1.11 ([4, Corollary 2.4]). Let f : X −→ Y be a map from an S-metric
space X to an S-metric space Y . Then f is continuous at x ∈ X if and only if
f(xn) → f(x) whenever xn → x.

The following lemma states the relation between a metric and an S-metric.

Lemma 1.12. Let (X, d) be a metric space. Then we have

1. Sd(x, y, z) = d(x, z) + d(y, z) for all x, y, z ∈ X is an S-metric on X.

2. xn → x in (X, d) if and only if xn → x in (X,Sd).

3. {xn} is Cauchy in (X, d) if and only if {xn} is Cauchy in (X,Sd).

4. (X, d) is complete if and only if (X,Sd) is complete.
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Proof. (1) See [2, Example (3), page 260].

(2) xn → x in (X, d) if and only if d(xn, x) → 0, if and only if

Sd(xn, xn, x) = 2d(xn, x) → 0

that is, xn → x in (X,Sd).

(3) {xn} is Cauchy in (X, d) if and only if d(xn, xm) → 0 as n,m → ∞, if and
only if

Sd(xn, xn, xm) = 2d(xn, xm) → 0

as in n,m → ∞, that is, {xn} is Cauchy in (X,Sd).

(4) It is a direct consequence of (2) and (3).

The following example shows that there exists an S-metric S satisfying S 6= Sd

for all metrics d.

Example 1.13. Let X = R and S(x, y, z) = |y+z−2x|+ |y−z| for all x, y, z ∈ X .
By [2, Example (1), page 260], (X,S) is an S-metric space. We shall prove that
there does not exist any metric d such that S = Sd. Indeed, suppose to the
contrary that there exists a metric d with S(x, y, z) = d(x, z) + d(y, z) for all
x, y, z ∈ X . Then d(x, z) = 1

2
S(x, x, z) = |x−z| and d(x, y) = S(x, y, y) = 2|x−y|

for all x, y, z ∈ X . It is a contradiction.

2 Main Results

In the line of notations and definitions in [5, 6] we have the following definitions.

Definition 2.1. Let (X,S) be an S-metric space, T, F : X −→ X be two maps
and Y ⊂ X , x ∈ X . Then we denote

1. δ(Y ) = sup{S(x, x, y) : x, y ∈ Y };

2. OT,F (x, n) = {Tx, TFx, TF 2x, . . . , TFnx};

3. OT,F (x,∞) = {Tx, TFx, TF 2x, . . .};

4. OF (x, n) = OT,F (x, n) and OF (x,∞) = OT,F (x,∞) if T is the identify.

Definition 2.2. Let (X,S) be an S-metric space and T : X −→ X be a map. T
is said to be sequentially convergent if every sequence {yn} is convergent provided
that each sequence {Tyn} is convergent.

The main result of the paper is as follows.

Theorem 2.3. Let (X,S) be an S-metric space and T, F : X −→ X be two maps
such that

1. T is one-to-one, continuous and sequentially convergent;



A Generalization of Ćirić Quasi-Contractions for Maps on S-Metric Spaces 373

2. Every Cauchy sequence of the form {TFnx} is convergent in X for all x ∈
X;

3. There exists q ∈ [0, 1) satisfying

S(TFx, TFx, TFy) ≤ qmax
{

S(Tx, Tx, T y), S(Tx, Tx, TFx), (2.1)

S(Ty, T y, TFy), S(Tx, Tx, TFy), S(Ty, Ty, TFx)
}

for all x, y ∈ X.

Then we have

1. S(TF ix, TF ix, TF jx) ≤ qδ[OT,F (x, n)] for all i, j ≤ n, n ∈ N and x ∈ X;

2. δ[OT,F (x,∞)] ≤
2

1− q
S(Tx, Tx, TFx) for all x ∈ X;

3. F has a unique fixed point b;

4. limn→∞ TFnx = Tb.

Proof. (1) For each x ∈ X and all 1 ≤ i, j ≤ n, n ∈ N, we have

TF i−1x, TF ix, TF j−1x, TF jx ∈ OT,F (x, n)

where F 0x = x. It follows from (2.1) that

S(TF ix, TF ix, TF jx) = S
(

TF (F i−1x), TF (F i−1x), TF (F j−1x)
)

≤ qmax
{

S(TF i−1x, TF i−1x, TF j−1x),

S(TF i−1x, TF i−1x, TF ix), S(TF j−1x, TF j−1x, TF jx),

S(TF i−1x, TF i−1x, TF jx), S(TF j−1x, TF j−1x, TF ix)
}

≤ qδ[OT,F (x, n)].

That is S(TF ix, TF ix, TF jx) ≤ q.δ[OT,F (x, n)].

(2) We have

δ[OT,F (x, n)] ≤ δ[OT,F (x, n+ 1)]

for all n ∈ N. Then

δ[OT,F (x,∞)] = sup{δ[OT,F (x, n)] : n ∈ N}.

So we only need to prove that δ[OT,F (x, n)] ≤
1

1−q
S(Tx, Tx, TFx) for all n ∈ N.

For all 1 ≤ i, j ≤ n, it follows from the conclusion (1) that

S(TF ix, TF ix, TF jx) ≤ qδ[OT,F (x, n)]
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and the fact OT,F (x, n) is finite, there exists k ≤ n such that

S(Tx, Tx, TF kx) = δ[OT,F (x, n)].

Applying Lemma 1.4 and the conclusion (1) we get

S(Tx, Tx, TF kx) ≤ 2S(Tx, Tx, TFx) + S(TFx, TFx, TF kx)

≤ 2S(Tx, Tx, TFx) + q.δ[OT,F (x, n)]

= 2S(Tx, Tx, TFx) + q.S(Tx, Tx, TF kx).

Then δ[OT,F (x, n)] = S(Tx, Tx, TF kx) ≤ 2

1−q
S(Tx, Tx, TFx).

(3) For each x0 ∈ X , we define two iterative sequences {xn} and {yn} as
follows

xn+1 = Fxn = Fn+1x0, yn = Txn = TFnx0

for all n ∈ N. We will prove that {yn} is a Cauchy sequence. For all n < m, by
using the conclusion (1) we have

S(yn, yn, ym) = S(TFnx0, TF
nx0, TF

mx0)

= S(TFFn−1x0, TFFn−1x0, TF
m−n+1Fn−1x0)

≤ qδ[OT,F (F
n−1x0,m− n+ 1)].

Note that there exists 1 ≤ l ≤ m− n+ 1 satisfying

δ[OT,F (F
n−1x0,m− n+ 1)] = S(TFn−1x0, TF

n−1x0, TF
lFn−1x0).

On the other hand we have

S(TFn−1x0, TF
n−1x0, TF

lFn−1x0) = S(TFFn−2x0, TFFn−2x0, TF
l+1Fn−2x0)

≤ qδ[OT,F (F
n−2x0, l + 1)].

Therefore,

S(yn, yn, ym) = S(TFnx0, TF
nx0, TF

mx0)

≤ qδ[OT,F (F
n−1x0,m− n+ 1)]

≤ q2δ[OT,F (F
n−2x0,m− n+ 2)]

...

≤ qn−1δ[OT,F (Fx0,m)]

≤ qnδ[OT,F (x0,m)]. (2.2)

Using the conclusion (2) we have

δ[OT,F (x0,m)] ≤ δ[OT,F (x0,∞)] ≤
2

1− q
S(Tx0, T x0, TFx0). (2.3)
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By combining (2.2) and (2.3) we get

S(yn, yn, ym) ≤
2qn

1− q
S(Tx0, T x0, TFx0).

Taking the limit as n,m → ∞ we obtain limn,m→∞ S(yn, yn, ym) = 0, that is,
{yn} is a Cauchy sequence. By the assumption (2), there exists a ∈ X such
that limn→∞ TFnx0 = a. By the assumption (1), there exists b ∈ X such that
limn→∞ Fnx0 = b. Since T is continuous, by Lemma 1.11 we have

lim
n→∞

TFnx0 = Tb. (2.4)

It follows from Lemma 1.7 that Tb = a.
Next we shall prove that Fb = b. By using Lemma 1.3, Lemma 1.4 and (2.1)

we have

S(Tb, T b, TFb)≤ 2S(Tb, T b, TFn+1x0) + S(TFn+1x0, TF
n+1x0, TFb)

= 2S(Tb, T b, TFn+1x0) + S(TFFnx0, TFFnx0, TFb)

≤ 2S(Tb, T b, TFn+1x0)

+ qmax
{

S(TFnx0, TF
nx0, T b), S(TF

nx0, TF
nx0, TFFnx0),

S(Tb, T b, TFb), S(TFnx0, TF
nx0, TFb), S(Tb, T b, TFFnx0)

}

≤ 2S(Tb, T b, TFn+1x0) + qmax
{

S(TFnx0, TF
nx0, T b),

S(TFnx0, TF
nx0, TFFnx0), S(Tb, T b, TFb),

2S(TFnx0, TF
nx0, T b) + S(Tb, T b, TFb), S(Tb, T b, TFFnx0)

}

≤ 2S(Tb, T b, TFn+1x0) + q
(

S(TFnx0, TF
nx0, TF

n+1x0)

+ S(Tb, T b, TFn+1x0) + 2S(TFnx0, TF
nx0, T b)

+ S(Tb, T b, TFb)
)

.

Therefore,

S(Tb, T b, TFb)≤
1

1− q

[

(2 + q)S(Tb, T b, TFn+1x0) (2.5)

+ qS(TFnx0, TF
nx0, TF

n+1x0) + 2qS(TFnx0, TF
nx0, T b)

]

.

By using Lemma 1.8, (2.4) and taking the limit as n → ∞ in (2.5) we get

S(Tb, T b, TFb) = 0.

That is, TFb = Tb. Since T is one-to-one, we get Fb = b.
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Now we prove that b is the unique fixed point of F . Let b and b′ be two fixed
points of F . Then Fb = b and Fb′ = b′. By using (2.1) and Lemma 1.3 we have

S(Tb, T b, T b′) = S(TFb, TFb, TFb′)

≤ qmax
{

S(Tb, T b, T b′), S(Tb, T b, TFb),

S(Tb′, T b′, TFb′), S(Tb, T b, TFb′), S(Tb′, T b′, TFb)
}

= qS(Tb, T b, T b′).

Since 0 ≤ q < 1, we get S(Tb, T b, T b′) = 0, that is, Tb = Tb′. Note that T is
one-to-one, then b = b′.

(4) It is straightforward from (2.4).

We get the following corollary which is similar to [1, Theorem 2.1] except for
the conclusion (2).

Corollary 2.4. Let (X, d) be a metric space and T, F : X −→ X be two maps
such that

1. T is one-to-one, continuous and sequentially convergent;

2. Every Cauchy sequence of the form {TFnx} is convergent in X for all x ∈
X;

3. There exists q ∈ [0, 1) satisfying

d(TFx, TFy) ≤ qmax
{

d(Tx, T y), d(Tx, TFx), (2.6)

d(Ty, TFy), d(Tx, TFy), d(Ty, TFx)
}

for all x, y ∈ X.

Then we have

1. d(TF ix, TF jx) ≤ q.δ[OT,F (x, n)] for all i, j ≤ n, n ∈ N and x ∈ X;

2. δ[OT,F (x,∞)] ≤ 2

1−q
d(Tx, TFx) for all x ∈ X;

3. F has a unique fixed point b;

4. limn→∞ TFnx = Tb.

Proof. By using Lemma 1.12 and Theorem 2.3 where Sd plays the role of S we
get the conclusion.

By using Theorem 2.3 where T is the identity we get the following corollary
which is a generalization of [6, Theorem 1] into the structure of S-metric.

Corollary 2.5. Let (X,S) be an S-metric space and F : X −→ X be a map
such that
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1. Every Cauchy sequence of the form {Fnx} is convergent in X for all x ∈ X;

2. There exists q ∈ [0, 1) satisfying

S(Fx, Fx, Fy) ≤ qmax
{

S(x, x, y), S(x, x, Fx), (2.7)

S(y, y, Fy), S(x, x, Fy), S(y, y, Fx)
}

for all x, y ∈ X.

Then we have

1. S(F ix, F ix, F jx) ≤ q.δ[OF (x, n)] for all i, j ≤ n, n ∈ N and x ∈ X;

2. δ[OF (x,∞)] ≤ 2

1−q
S(x, x, Fx) for all x ∈ X;

3. F has a unique fixed point b;

4. limn→∞ Fnx = b.

The following corollary is a generalization of the main result of [7] into the
structure of S-metric.

Corollary 2.6. Let (X,S) be an S-metric space and T, F : X −→ X be two maps
such that

1. T is one-to-one, continuous and sequentially convergent;

2. Every Cauchy sequence of the form {TFnx} is convergent in X for all x ∈
X;

3. There exist ai ≥ 0, i = 1, . . . , 5, satisfying
∑n

i=1
ai < 1 and

S(TFx, TFx, TFy) ≤ a1S(Tx, Tx, T y) + a2S(Tx, Tx, TFx) (2.8)

+ a3S(Ty, T y, TFy) + a4S(Tx, Tx, TFy)

+ a5S(Ty, T y, TFx)

for all x, y ∈ X.

Then we have

1. F has a unique fixed point b;

2. limn→∞ TFnx = Tb.

Proof. Since (2.1) is a consequence of (2.8), we get the corollary.

Remark 2.7. By choosing T is the identity and a2 = a3 = a4 = a5 = 0 in
Corollary 2.6 we get [2, Theorem 3.1].

The following example shows that Corollary 2.6 is a proper generalization of
[2, Theorem 3.1].
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Example 2.8. Let X = [0, 1] and S(x, y, z) = |x− z|+ |y − z| for all x, y, z ∈ X .
Then (X,S) is a complete S-metric space by Example 1.6. Put

Fx =











1

2
if x ∈ [0, 1)

1

4
if x = 1.

We have S(F 3

4
, F 3

4
, F1) = 1

2
and S(3

4
, 3
4
, 1) = 1

2
. This proves that [2, Theorem 3.1]

is not applicable to F . By choosing Tx = x for all x ∈ X we have

S(TFx, TFx, TF1) = S(Fx, Fx, F1) =
1

2

S(T 1, T 1, TF1) = S(1, 1, F1) =
3

2
.

Then for a1 = a2 = a4 = a5 = 0 and a3 = 1

2
we see that the condition (2.8) in

Corollary 2.6 is satisfied. Also, the other conditions in Corollary 2.6 are. Then
Corollary 2.6 is applicable to F and T , and x = 1

2
is the unique fixed point of F .

By adapting [1, Example 2.3] we have the following example that proves The-
orem 2.3 is a proper generalization of Corollary 2.5.

Example 2.9. Let X = [0,∞) and S(x, y, z) = |x− z|+ |y− z|. Then (X,S) is a

complete S-metric space by Example 1.6. Put Fx = x2

x+1
for all x ∈ X . Then we

have

S
(

Fx, Fx, F (2x)
)

=
2x2(2x+ 3)

(2x+ 1)(x+ 1)

S(x, x, Fx) =
2x

x+ 1

S
(

2x, 2x, F (2x)
)

=
4x

2x+ 1

S
(

x, x, F (2x)
)

= 2

∣

∣

∣

∣

∣

2x2 − x

2x+ 1

∣

∣

∣

∣

∣

S(2x, 2x, Fx) = 2
x2 + 2x

x+ 1

S(x, x, 2x) = 2x.

Therefore, if x is large enough we have

max
{

S(x, x, 2x), S(x, x, Fx), S(2x, 2x, F (2x)), S(x, x, F (2x)), S(2x,2x, Fx)
}

= 2
x2 + 2x

x+ 1
.
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This implies that the condition (2.7) is equivalent to

x(2x+ 3)

(2x+ 1)(x+ 2)
≤ q. (2.9)

Taking the limit as x → ∞ in (2.9) we get q ≥ 1. It is a contradiction. Then
Corollary 2.5 is not applicable to F .

By choosing Tx = ex − 1 for all x ∈ X and q = 1

2
. Then we have T is

one-to-one, continuous and sequentially convergent on X and

S(TFx, TFx, TFy) = 2

∣

∣

∣

∣

e
x2

x+1 − e
y2

y+1

∣

∣

∣

∣

S(Tx, Tx, T y) = 2|ex − ey|.

Now we will show that

S(TFx, TFx, TFy) ≤
1

2
S(Tx, Tx, T y) (2.10)

for all x, y ∈ X . The case of x = y is trivial. We may assume that x > y.
Then (2.10) is equivalent to

∣

∣

∣

∣

e
x2

x+1 − e
y2

y+1

∣

∣

∣

∣

≤
1

2
|ex − ey|

that is

e
x2

x+1 −
ex

2
≤ e

y2

y+1 −
ey

2
.

This is true because the function ϕ(t) = e
t2

t+1 − e
t

2
is decreasing on X . Therefore,

(2.10) and then (2.6) holds.
By the above, Theorem 2.3 is applicable to F and T , and x = 0 is the unique

fixed point of F .
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