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Abstract : In this paper, we prove a fixed point theorem for a class of maps
depending on another map on S-metric spaces. As applications, we get the fixed
point theorems in [I] and [2]. Also, examples are given to analyze the results.
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1 Introduction and Preliminaries

n [2], Sedghi et al. have introduced a new structure of generalized metric
spaces as follows.

Definition 1.1 ([2, Definition 2.1]). Let X be a nonempty set. An S-metric on
X is a function S : X3 — [0,00) that satisfies the following conditions for all
z,y,z,a € X.

1. S(z,y,z) =0if and only if x =y = z.
2' S(:C’ y7 Z) S S(:C’ Z’ a)+S(y7y’ a)+S(z7 Z? a)'

The pair (X, S) is called an S-metric space.
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The following is the intuitive geometric example for S-metric spaces.

Example 1.2 ([2, Example 2.4]). Let X = R? and d be the ordinary metric on
X. Put
S(w,y,2) = d(w,y) +d(x, 2) +d(y, 2)

for all z,y, z € X, that is, S is the perimeter of the triangle given by x,y, z. Then
S is an S-metric on X.

An interesting work relating to this notion is to state fixed point theorems for
maps on S-metric spaces. In this line, some results have been proved in [2—4].
Recently, Karapinar et al. have proved a fixed point theorem for a class of maps
on metric spaces that satisfy the Ciri¢’s quasi-contraction depending on another
map in [I]. This result gives rise to stating an analogue for maps on S-metric
spaces.

In this paper, we prove a fixed point theorem for a class of maps depending on
another map on S-metric spaces. As applications, we get the fixed point theorems
in [I 2]. Also, examples are given to analyze the results.

We recall some notions, lemmas and examples which will be useful later.
Lemma 1.3 ([2 Lemma 2.5)). Let (X,S) be an S-metric space. Then
S(z,z,y) = S(y,y,z)
forall x,y € X.

Lemma 1.4. Let (X,S) be an S-metric space. Then
S(z,z,2) <28z, z,y) + S(y,y, 2)
and
S(x,z,2) <25z, z,y) + S(z,2,9)
forall x,y,z € X.

Proof. It is a direct consequence of Definition [[LT] and Lemma O

Definition 1.5 ([2]). Let (X,S) be an S-metric space.

1. A sequence {z,} C X is said to converge to x € X if S(xy,,z,,x) — 0 as
n — oo. That is, for each € > 0, there exists ng € N such that for all n > nyg
we have S(zp,, Zn, z) < e. We write x,, — x for brevity.

2. A sequence {z,} C X is said to be Cauchy if S(z,,zpn,Tm) — 0 as n,m —
oco. That is, for each € > 0, there exists ng € N such that for all n,m > ng
we have S (T, T, Tm) < €.

3. The S-metric space (X, .S) is said to be complete if every Cauchy sequence
is a convergent sequence.
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From [2] Examples in page 260] we have the following example.

Example 1.6.
1. Let R be the real line. Then

S(I,y,Z): |$—Z|+|y—2|

for all z,y,z € R is an S-metric on R. This S-metric is called the usual
S-metric on R. Furthermore, the usual S-metric space R is complete.

2. Let Y be a nonempty subset of R. Then
S(I,y,Z) = |$—Z| + |y—Z|

for all z,y,z € Y is an S-metric on Y. If Y is a closed subset of the usual
metric space R, then the S-metric space Y is complete.

Lemma 1.7 ([2] Lemma 2.10]). Let (X,S) be an S-metric space. If x,, — x in
X then the limit point x is unique.

Lemma 1.8 (|2l Lemma 2.12]). Let (X,S) be an S-metric space. If x, — = and
Yn — Y then S(xpn, Tn, yn) = Sz, 2,y).

Definition 1.9 ([2]). Let (X, S) be an S-metric space. For r > 0 and =z € X, we
define the open ball Bg(x,r) with center x and radius r as follows.

Bs(z,r)={ye X : S(y,y,x) <r}.

The topology induced by the S-metric or the S-metric topology is the topology
generated by the base of all open balls in X.

Lemma 1.10. Let {z,} be a sequence in X. Then x, — x in the S-metric space
(X,S) if and only if x,, — = in the S-metric topological space X .

Proof. 1t is a direct consequence of Definition [[B|({]) and Definition O

Lemma 1.11 ([4, Corollary 2.4]). Let f : X — Y be a map from an S-metric
space X to an S-metric space Y. Then f is continuous at x € X if and only if
f(xn) = f(x) whenever x, — x.

The following lemma states the relation between a metric and an S-metric.

Lemma 1.12. Let (X,d) be a metric space. Then we have
1. Si(z,y,z) =d(x,z) + d(y, z) for all z,y,z € X is an S-metric on X.
2. xp = xin (X,d) if and only if x, — x in (X, Sq).
3. {xn} is Cauchy in (X,d) if and only if {x,} is Cauchy in (X, Sq).
4. (X,d) is complete if and only if (X, Sq) is complete.
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Proof. (@) See [2l Example (3), page 260].
@) z, — « in (X,d) if and only if d(z,,x) — 0, if and only if

Sa(Tn, Tn,x) = 2d(xp,x) =0

that is, z, — x in (X, Sy).

@) {zn} is Cauchy in (X, d) if and only if d(xy, Tm) — 0 as n,m — oo, if and
only if
Sa(Tny Ty Tm) = 2d(Xn, Tm) — 0

as in n,m — oo, that is, {z,} is Cauchy in (X, Sy).

@) It is a direct consequence of () and (3B]). O

The following example shows that there exists an S-metric S satisfying S # Sy
for all metrics d.

Example 1.13. Let X = Rand S(z,y,2) = |[y+2—2x|+|y—z| for all z,y, z € X.
By [2, Example (1), page 260], (X, S) is an S-metric space. We shall prove that
there does not exist any metric d such that S = S;. Indeed, suppose to the
contrary that there exists a metric d with S(z,y,2) = d(z,2) + d(y, z) for all
z,y,z € X. Then d(z, z) = %S(:c,:c,z) = |z —z| and d(z,y) = S(z,y,y) = 2|z —y|
for all z,y,2z € X. It is a contradiction.

2 Main Results

In the line of notations and definitions in [5} [6] we have the following definitions.

Definition 2.1. Let (X,S) be an S-metric space, T, F : X — X be two maps
and Y C X, x € X. Then we denote

oY) =sup{S(z,z,y) :z,y € Y}

. Orp(z,n) ={Tz,TFx,TF?z, ..., TF"z};

. Orp(z,00) ={Tx, TFx, TF%x,...};

- Op(x,n) = Or,p(x,n) and Op(z,00) = O p(x,00) if T is the identify.

Definition 2.2. Let (X, S) be an S-metric space and T : X — X be a map. T
is said to be sequentially convergent if every sequence {y,,} is convergent provided
that each sequence {T'y,} is convergent.

The main result of the paper is as follows.

Theorem 2.3. Let (X, S) be an S-metric space and T, F : X — X be two maps
such that

1. T is one-to-one, continuous and sequentially convergent;
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2. Every Cauchy sequence of the form {TF™x} is convergent in X for all x €
X;

3. There exists g € [0,1) satisfying
S(TFz,TFz,TFy) < gmax {S(Tx, Tz, Ty),S(Tx, Tz, TFx), (2.1)
S(Ty, Ty, TFy), S(Tx,Ta, TFy), S(Ty, Ty, TFx) }
forall x,y € X.
Then we have
1. S(TFx, TF'z, TFiz) < ¢§[Or r(x,n)] for alli,j <n,neN and x € X;
2. 0[Op,p(z,00)] < 1%qS(T:E,T:c,TF:c) forallx € X;
3. F has a unique fized point b;
4. limy_oo TF"z = Th.
Proof. ([Il) For each z € X and all 1 <i,5 <n, n €N, we have
TE ‘e, TF'2, TF~ 2, TF'x € Or p(x,n)
where F'z = z. It follows from (2I)) that
S(TF'z, TF'z,TF'z) = S(TF(F'"'z),TF(F'" 'z), TF(F/~'2))
< gmax {S(TFi_lz, TF™ e, TFI '),
S(TF* ‘2, TF" ', TF'z), S(TF ', TF' 2, TFz),
S(TF~tz, TF~lz, TFig), S(TFi~lz, Tijlx,TFiz)}
< ¢d[Or,p(x,n)].
That is S(TFix, TF'z, TF'z) < q.0[O7 F(z,n)].

@) We have
5[OT7F(I,’I’L)] < 5[OT7F($,TL + 1)]

for all n € N. Then
0[Or,r(z,00)] = sup{d[Or,r(x,n)] : n € N}.

So we only need to prove that §[Or p(z,n)] < qu(T:E, Tx,TFx) for all n € N.
For all 1 <i,5 <n, it follows from the conclusion (1) that

S(TF'z, TF'z, TF'z) < ¢6[Or r(z,n))]
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and the fact O p(z,n) is finite, there exists k& < n such that
S(Tx, Tz, TF*zx) = 6O p(x,n)].
Applying Lemma [[.4] and the conclusion () we get

S(Tz, Tz, TF*x) < 28(Tx, Tz, TFz) + S(TFx, TFx, TF*z)
< 28Tz, Tz, TFz)+ q.6[Or F(z,n)]
=28(Tx, Tz, TFz)+ q.S(Tz, Tz, TF*z).
Then 6[Or, (z,n)] = S(Tx, Tz, TFFz) < l%qS(Tx, Tz, TFz).

@) For each zy € X, we define two iterative sequences {z,} and {y,} as
follows
Tnt+1 = Fz, = FnJrle, Yn = Tx, = TFnZ'O

for all n € N. We will prove that {y,} is a Cauchy sequence. For all n < m, by
using the conclusion () we have

S(yna Yn,s ym) = S(TFnlﬂo, TF"x, TFm:cO)
= S(TFF" ‘2, TFF" 'ag, TF™ " T " 1a)
< qb[Orp(F" g, m —n+1)].

Note that there exists 1 <1 < m — n + 1 satisfying
8[Or p(F" Yzg,m —n +1)] = S(TF" ao, TF" oo, TF'F" '2y).
On the other hand we have

S(TF" Yao, TF" Yoy, TF'F" o) = S(TFF" 220, TFF" 220, TF' T " 22)
< ¢0[0r,# (F" 22,1+ 1)].

Therefore,

S(ynaynaym) = S(TFnl’o,TFnIEo,TFm:L'O)
< qb[0rp(F" 2o, m —n+1)]
< q25[OT,F(Fn_2$0, m—n+ 2)]

< ¢"'6[0r,p(Fxo, m)]
< qn(s[OT,F(fEO, m)] (2'2)

Using the conclusion (2]) we have

2
5[0T,F(x07 m)] § 5[OT,F(£L'0, OO)] S ES(TLL‘(), T:L'o, TFLL‘()). (23)
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By combining (Z2) and (23) we get

n

9 S(Tw, Two, TFxo).
—q

S(ynvyna ym) < 1

Taking the limit as n,m — oo we obtain lim, ;m—oo S(Yn;Yn, Yym) = 0, that is,
{yn} is a Cauchy sequence. By the assumption (2]), there exists a € X such
that limy, o TF™"zg = a. By the assumption (), there exists b € X such that
lim,, oo F™2z¢ = b. Since T is continuous, by Lemma [[.T1] we have

lim TF"xy = Tb. (2.4)

n—oo

It follows from Lemma [[.7] that Tb = a.
Next we shall prove that F'b = b. By using Lemma [[.3] Lemma [[4] and (2.1
we have
S(Th, Tb, TFb) < 2S(Tb, Tb, TF"x) + S(TF" g, TF" 29, TFb)
2S(Tb, Tb, TF"2g) + S(TFF"wy, TFF"x, TFb)
25(Tb, Th, TF" )
+ gmax {S(TF”:UO, TF"z,Tb), (T F"xo, TF o, TFFxy),

S(Tb, Tb, TFb), S(TFzo, TF"xo, TFb), S(Tb, Tb, TFF”acO)}
< 28(Tb, Th, TF"™1z0) + g max {S(TF”zo, TF"z,Tb),

S(TF"zo, TF o, TFF"xy), S(Tb, Tb, TFb),

2S(T Fzg, TF 2, Th) + S(Tb, Tb, TFb), S(Tb, Th, TFF"x, )}

< 25(Tb, Tb, TF" ) + q(S(TF”xO, TEF"zo, TF™ )
+ S(Tb, Tb, TF" 1 ag) + 2S(T F"xg, TF 20, Th)
+ S(Tb, T, TFb)).

Therefore,

1
S(Tb, Tb, TFb) < T (2+q)S(Tb, Th, TF™ () (2.5)
—q

4 gS(TF o, TF w0, TF™ 20) + 2¢S(T F"ao, T F Tb)} .
By using Lemma [[L8 ([Z4) and taking the limit as n — oo in (Z1]) we get
S(Tb, Th, TFb) = 0.

That is, TFb = Tb. Since T is one-to-one, we get F'b = b.
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Now we prove that b is the unique fixed point of F'. Let b and b’ be two fixed
points of F. Then Fb = b and FV' = b'. By using (Z.I)) and Lemma [[.3] we have

S(Tb,Tb, TV) = S(TFb, TFb, TFV)
< gmax {S(Tb, Tb, TV, S(Th, Th, TFb),
S(TV, TV, TFV), S(Tb, Th, TFV), S(TV, TV, TFb)}
— ¢S(Tb, Th, TV).
Since 0 < ¢ < 1, we get S(Tb,Tb,TV) = 0, that is, Th = TV. Note that T is
one-to-one, then b = ¥'.

@) It is straightforward from (2. O

We get the following corollary which is similar to [I, Theorem 2.1] except for
the conclusion ().

Corollary 2.4. Let (X,d) be a metric space and T,F : X — X be two maps
such that

1. T is one-to-one, continuous and sequentially convergent;
2. Every Cauchy sequence of the form {TF™z} is convergent in X for all x €
X .

)

3. There exists q € [0,1) satisfying
d(TFz, TFy) < gmax {d(Tx, Ty),d(Tz, TFz), (2.6)
A(Ty, TFy),d(Tw,TFy),d(Ty, TFx)}

forall x,y € X.
Then we have
1. d(TF'x, TFix) < q.0[Or r(x,n)] for alli,j <n,n €N and v € X;
2. 0[Op,p(z,00)] < 1%qd(T:E,TF:E) forallz € X;
3. F has a unique fized point b;
4. limy,_yoo TF"2 = Tb.

Proof. By using Lemma, and Theorem (2.3 where S; plays the role of S we
get the conclusion. O

By using Theorem where T is the identity we get the following corollary
which is a generalization of [0, Theorem 1] into the structure of S-metric.

Corollary 2.5. Let (X,S) be an S-metric space and F : X — X be a map
such that
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1. Every Cauchy sequence of the form {F"x} is convergent in X for allx € X;
2. There exists q € [0,1) satisfying

S(Fz, Fx, Fy) Sqmax{S(x,x,y),S(ac,ac,Fx), (2.7)
S(y,y, F'y), S(z,z, Fy), S(y,y,Fx)}

for allz,y € X.
Then we have
1. S(Fiz, Fiz, Fiz) < q.0]0p(x,n)] for alli,j <n,n €N and z € X;
2. 0[0F(z,00)] < l%qS(x,x,Fac) forallz e X;
3. F has a unique fized point b;
4. lim, o F"x =b.

The following corollary is a generalization of the main result of [7] into the
structure of S-metric.

Corollary 2.6. Let (X,S) be an S-metric space and T, F : X — X be two maps
such that

1. T is one-to-one, continuous and sequentially convergent;
2. Ewery Cauchy sequence of the form {TF"x} is convergent in X for all x €
X .

)

3. There exist a; > 0,1 =1,...,5, satisfying Z?zl a; <1 and

S(TFz,TFz,TFy) < a15(Txz,Tx,Ty) + a2S(Tx, Tz, TFx) (2.8)
+a3S(Ty, Ty, TFy)+ asS(Tx, Tx, TFy)
+asS(Ty, Ty, TFx)

forall x,y € X.
Then we have
1. F has a unique fized point b;
2. limy, oo TF"x =Tb.

Proof. Since (2] is a consequence of ([2:8]), we get the corollary. O

Remark 2.7. By choosing T is the identity and as = a3 = a4 = a5 = 0 in
Corollary 2.8 we get [2, Theorem 3.1].

The following example shows that Corollary is a proper generalization of
[2, Theorem 3.1].
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Example 2.8. Let X =[0,1] and S(z,y,2) = |z — 2|+ |y — 2| for all z,y,z € X.
Then (X, 5) is a complete S-metric space by Example Put

ifxel0,1)
Fax=

if x =1.

= =N =

We have S(F'3, F3,F1) = 1 and S(3,3,1) = 1. This proves that [2, Theorem 3.1]
is not applicable to F'. By choosing Tx = z for all x € X we have

1
S(TFx,TFz,TF1)= S(Fx,Fz,F1) = 3

3
S(T1,T1,TF1)=S(1,1,F1) = 5.

Then for a1 = as = a4 = a5 = 0 and a3 = % we see that the condition (Z38) in
Corollary is satisfied. Also, the other conditions in Corollary are. Then
Corollary 2.8 is applicable to F' and T, and z = % is the unique fixed point of F.

By adapting [T, Example 2.3] we have the following example that proves The-
orem [2.3]is a proper generalization of Corollary 2.5

Example 2.9. Let X =[0,00) and S(z,y,2) = |t — 2|+ |y — z|. Then (X, S5) is a
complete S-metric space by Example Put Fx = z””—fl for all x € X. Then we
have

22%(2x + 3)
2z
S Fz) =
(20,20, F(22)) = —
(:L'a I’, (x))72x+1
22—z
S(x,x,F(Qx)):2 o1
2
2
S (22, 22, F) = 27 ilx
T

S(x,z,2z) = 2.
Therefore, if x is large enough we have
max {S(:c, x,2x),S(z,z, Fx), S(2z, 2z, F(2x)), S(z, z, F(22)), S(2z,2x, F:c)}

2 + 2z

=2 .
z+1
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This implies that the condition (Z7)) is equivalent to

_2Qe+3) (2.9)
2z 4+ 1)(z+2)
Taking the limit as © — oo in (Z9) we get ¢ > 1. It is a contradiction. Then
Corollary is not applicable to F'.
By choosing Tx = e* — 1 for all x € X and q = %
one-to-one, continuous and sequentially convergent on X and

Then we have T is

22 y2
ez+l — eyl

S(TFz,TFz,TFy)=2

S(Tz, Tz, Ty) = 2|e* — eY|.
Now we will show that
1
S(TFz, TFz,TFy) < §S(Tx,Tac,Ty) (2.10)

for all z,y € X. The case of x = y is trivial. We may assume that x > y.
Then (ZI0) is equivalent to

52 2 1
ewtl —eufT| < —|e” —eY
-2
that is
22 e’ 42 ey
e+l — — < evtl — —,
2 — 2

t2 t

This is true because the function ¢(t) = e*1 — & is decreasing on X. Therefore,

@I0) and then (6] holds.

By the above, Theorem [2.3] is applicable to F' and T, and 2 = 0 is the unique
fixed point of F.
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