Thai Journal of Mathematics Volume 13 (2015) Number 2 : 369–380

http://thaijmath.in.cmu.ac.th ISSN 1686-0209



# A Generalization of Ćirić Quasi-Contractions for Maps on S-Metric Spaces<sup>1</sup>

Nguyen Trung Hieu, Nguyen Thi Thanh Ly, and Nguyen Van  $Dung^2$ 

Department of Mathematics Dong Thap University, Viet Nam e-mail: ngtrunghieu@dthu.edu.vn (N.T. Hieu) nguyenthithanhly@dthu.edu.vn (N.T. Thanh Ly) nvdung@dthu.edu.vn (N.V. Dung)

**Abstract**: In this paper, we prove a fixed point theorem for a class of maps depending on another map on S-metric spaces. As applications, we get the fixed point theorems in [1] and [2]. Also, examples are given to analyze the results.

Keywords : fixed point; S-metric space. 2010 Mathematics Subject Classification : 47H10; 54H25; 54D99; 54E99.

## 1 Introduction and Preliminaries

In [2], Sedghi et al. have introduced a new structure of generalized metric spaces as follows.

**Definition 1.1** ([2, Definition 2.1]). Let X be a nonempty set. An *S*-metric on X is a function  $S: X^3 \longrightarrow [0, \infty)$  that satisfies the following conditions for all  $x, y, z, a \in X$ .

- 1. S(x, y, z) = 0 if and only if x = y = z.
- 2.  $S(x, y, z) \leq S(x, x, a) + S(y, y, a) + S(z, z, a).$

The pair (X, S) is called an *S*-metric space.

Copyright 2015 by the Mathematical Association of Thailand. All rights reserved.

 $<sup>^1{\</sup>rm This}$  work is discussed at The Dong Thap Seminar on Mathematical Analysis.  $^2{\rm Corresponding}$  author.

The following is the intuitive geometric example for S-metric spaces.

**Example 1.2** ([2, Example 2.4]). Let  $X = \mathbb{R}^2$  and d be the ordinary metric on X. Put

$$S(x, y, z) = d(x, y) + d(x, z) + d(y, z)$$

for all  $x, y, z \in X$ , that is, S is the perimeter of the triangle given by x, y, z. Then S is an S-metric on X.

An interesting work relating to this notion is to state fixed point theorems for maps on S-metric spaces. In this line, some results have been proved in [2–4]. Recently, Karapinar et al. have proved a fixed point theorem for a class of maps on metric spaces that satisfy the Ćirić's quasi-contraction depending on another map in [1]. This result gives rise to stating an analogue for maps on S-metric spaces.

In this paper, we prove a fixed point theorem for a class of maps depending on another map on S-metric spaces. As applications, we get the fixed point theorems in [1, 2]. Also, examples are given to analyze the results.

We recall some notions, lemmas and examples which will be useful later.

**Lemma 1.3** ([2, Lemma 2.5]). Let (X, S) be an S-metric space. Then

$$S(x, x, y) = S(y, y, x)$$

for all  $x, y \in X$ .

**Lemma 1.4.** Let (X, S) be an S-metric space. Then

2

$$S(x, x, z) \le 2S(x, x, y) + S(y, y, z)$$

and

$$S(x, x, z) \le 2S(x, x, y) + S(z, z, y)$$

for all  $x, y, z \in X$ .

*Proof.* It is a direct consequence of Definition 1.1 and Lemma 1.3.

**Definition 1.5** ([2]). Let (X, S) be an S-metric space.

- 1. A sequence  $\{x_n\} \subset X$  is said to converge to  $x \in X$  if  $S(x_n, x_n, x) \to 0$  as  $n \to \infty$ . That is, for each  $\varepsilon > 0$ , there exists  $n_0 \in \mathbb{N}$  such that for all  $n \ge n_0$  we have  $S(x_n, x_n, x) < \varepsilon$ . We write  $x_n \to x$  for brevity.
- 2. A sequence  $\{x_n\} \subset X$  is said to be *Cauchy* if  $S(x_n, x_n, x_m) \to 0$  as  $n, m \to \infty$ . That is, for each  $\varepsilon > 0$ , there exists  $n_0 \in \mathbb{N}$  such that for all  $n, m \ge n_0$  we have  $S(x_n, x_n, x_m) < \varepsilon$ .
- 3. The S-metric space (X, S) is said to be *complete* if every Cauchy sequence is a convergent sequence.

370

A Generalization of Ćirić Quasi-Contractions for Maps on S-Metric Spaces

From [2, Examples in page 260] we have the following example.

#### Example 1.6.

1. Let  $\mathbb{R}$  be the real line. Then

$$S(x, y, z) = |x - z| + |y - z|$$

for all  $x, y, z \in \mathbb{R}$  is an S-metric on  $\mathbb{R}$ . This S-metric is called the *usual* S-metric on  $\mathbb{R}$ . Furthermore, the usual S-metric space  $\mathbb{R}$  is complete.

2. Let Y be a nonempty subset of  $\mathbb{R}$ . Then

$$S(x, y, z) = |x - z| + |y - z|$$

for all  $x, y, z \in Y$  is an S-metric on Y. If Y is a closed subset of the usual metric space  $\mathbb{R}$ , then the S-metric space Y is complete.

**Lemma 1.7** ([2, Lemma 2.10]). Let (X, S) be an S-metric space. If  $x_n \to x$  in X then the limit point x is unique.

**Lemma 1.8** ([2, Lemma 2.12]). Let (X, S) be an S-metric space. If  $x_n \to x$  and  $y_n \to y$  then  $S(x_n, x_n, y_n) \to S(x, x, y)$ .

**Definition 1.9** ([2]). Let (X, S) be an S-metric space. For r > 0 and  $x \in X$ , we define the *open ball*  $B_S(x, r)$  with center x and radius r as follows.

$$B_S(x, r) = \{ y \in X : S(y, y, x) < r \}.$$

The topology induced by the S-metric or the S-metric topology is the topology generated by the base of all open balls in X.

**Lemma 1.10.** Let  $\{x_n\}$  be a sequence in X. Then  $x_n \to x$  in the S-metric space (X, S) if and only if  $x_n \to x$  in the S-metric topological space X.

*Proof.* It is a direct consequence of Definition 1.5(1) and Definition 1.9.

**Lemma 1.11** ([4, Corollary 2.4]). Let  $f : X \longrightarrow Y$  be a map from an S-metric space X to an S-metric space Y. Then f is continuous at  $x \in X$  if and only if  $f(x_n) \to f(x)$  whenever  $x_n \to x$ .

The following lemma states the relation between a metric and an S-metric.

**Lemma 1.12.** Let (X, d) be a metric space. Then we have

- 1.  $S_d(x, y, z) = d(x, z) + d(y, z)$  for all  $x, y, z \in X$  is an S-metric on X.
- 2.  $x_n \to x$  in (X, d) if and only if  $x_n \to x$  in  $(X, S_d)$ .
- 3.  $\{x_n\}$  is Cauchy in (X, d) if and only if  $\{x_n\}$  is Cauchy in  $(X, S_d)$ .
- 4. (X,d) is complete if and only if  $(X, S_d)$  is complete.

*Proof.* (1) See [2, Example (3), page 260].

(2)  $x_n \to x$  in (X, d) if and only if  $d(x_n, x) \to 0$ , if and only if

$$S_d(x_n, x_n, x) = 2d(x_n, x) \to 0$$

that is,  $x_n \to x$  in  $(X, S_d)$ .

(3)  $\{x_n\}$  is Cauchy in (X, d) if and only if  $d(x_n, x_m) \to 0$  as  $n, m \to \infty$ , if and only if

$$S_d(x_n, x_n, x_m) = 2d(x_n, x_m) \to 0$$

as in  $n, m \to \infty$ , that is,  $\{x_n\}$  is Cauchy in  $(X, S_d)$ .

(4) It is a direct consequence of (2) and (3).

The following example shows that there exists an S-metric S satisfying  $S \neq S_d$  for all metrics d.

**Example 1.13.** Let  $X = \mathbb{R}$  and S(x, y, z) = |y+z-2x|+|y-z| for all  $x, y, z \in X$ . By [2, Example (1), page 260], (X, S) is an S-metric space. We shall prove that there does not exist any metric d such that  $S = S_d$ . Indeed, suppose to the contrary that there exists a metric d with S(x, y, z) = d(x, z) + d(y, z) for all  $x, y, z \in X$ . Then  $d(x, z) = \frac{1}{2}S(x, x, z) = |x-z|$  and d(x, y) = S(x, y, y) = 2|x-y| for all  $x, y, z \in X$ . It is a contradiction.

### 2 Main Results

In the line of notations and definitions in [5, 6] we have the following definitions.

**Definition 2.1.** Let (X, S) be an S-metric space,  $T, F : X \longrightarrow X$  be two maps and  $Y \subset X, x \in X$ . Then we denote

- 1.  $\delta(Y) = \sup\{S(x, x, y) : x, y \in Y\};$
- 2.  $O_{T,F}(x,n) = \{Tx, TFx, TF^2x, \dots, TF^nx\};$
- 3.  $O_{T,F}(x,\infty) = \{Tx, TFx, TF^2x, \ldots\};$
- 4.  $O_F(x,n) = O_{T,F}(x,n)$  and  $O_F(x,\infty) = O_{T,F}(x,\infty)$  if T is the identify.

**Definition 2.2.** Let (X, S) be an S-metric space and  $T : X \longrightarrow X$  be a map. T is said to be *sequentially convergent* if every sequence  $\{y_n\}$  is convergent provided that each sequence  $\{Ty_n\}$  is convergent.

The main result of the paper is as follows.

**Theorem 2.3.** Let (X, S) be an S-metric space and  $T, F : X \longrightarrow X$  be two maps such that

1. T is one-to-one, continuous and sequentially convergent;

- 2. Every Cauchy sequence of the form  $\{TF^nx\}$  is convergent in X for all  $x \in X$ ;
- 3. There exists  $q \in [0, 1)$  satisfying

$$S(TFx, TFx, TFy) \le q \max \left\{ S(Tx, Tx, Ty), S(Tx, Tx, TFx),$$

$$S(Ty, Ty, TFy), S(Tx, Tx, TFy), S(Ty, Ty, TFx) \right\}$$
(2.1)

for all  $x, y \in X$ .

 $Then \ we \ have$ 

- 1.  $S(TF^{i}x, TF^{i}x, TF^{j}x) \leq q\delta[O_{T,F}(x, n)]$  for all  $i, j \leq n, n \in \mathbb{N}$  and  $x \in X$ ;
- 2.  $\delta[O_{T,F}(x,\infty)] \leq \frac{2}{1-q}S(Tx,Tx,TFx)$  for all  $x \in X$ ;
- 3. F has a unique fixed point b;
- 4.  $\lim_{n\to\infty} TF^n x = Tb$ .

*Proof.* (1) For each  $x \in X$  and all  $1 \le i, j \le n, n \in \mathbb{N}$ , we have

$$TF^{i-1}x, TF^{i}x, TF^{j-1}x, TF^{j}x \in O_{T,F}(x,n)$$

where  $F^0 x = x$ . It follows from (2.1) that

$$\begin{split} S(TF^{i}x, TF^{j}x) &= S\left(TF(F^{i-1}x), TF(F^{i-1}x), TF(F^{j-1}x)\right) \\ &\leq q \max\left\{S(TF^{i-1}x, TF^{i-1}x, TF^{j-1}x), \\ S(TF^{i-1}x, TF^{i-1}x, TF^{i}x), S(TF^{j-1}x, TF^{j-1}x, TF^{j}x), \\ S(TF^{i-1}x, TF^{i-1}x, TF^{j}x), S(TF^{j-1}x, TF^{j-1}x, TF^{j}x), \\ &\leq q\delta[O_{T,F}(x, n)]. \end{split}$$

That is  $S(TF^ix, TF^ix, TF^jx) \le q.\delta[O_{T,F}(x, n)].$ 

(2) We have

$$\delta[O_{T,F}(x,n)] \le \delta[O_{T,F}(x,n+1)]$$

for all  $n \in \mathbb{N}$ . Then

$$\delta[O_{T,F}(x,\infty)] = \sup\{\delta[O_{T,F}(x,n)] : n \in \mathbb{N}\}.$$

So we only need to prove that  $\delta[O_{T,F}(x,n)] \leq \frac{1}{1-q}S(Tx,Tx,TFx)$  for all  $n \in \mathbb{N}$ . For all  $1 \leq i, j \leq n$ , it follows from the conclusion (1) that

$$S(TF^{i}x, TF^{i}x, TF^{j}x) \leq q\delta[O_{T,F}(x, n)]$$

and the fact  $O_{T,F}(x,n)$  is finite, there exists  $k \leq n$  such that

$$S(Tx, Tx, TF^kx) = \delta[O_{T,F}(x, n)].$$

Applying Lemma 1.4 and the conclusion (1) we get

$$S(Tx, Tx, TF^{k}x) \leq 2S(Tx, Tx, TFx) + S(TFx, TFx, TF^{k}x)$$
  
$$\leq 2S(Tx, Tx, TFx) + q.\delta[O_{T,F}(x, n)]$$
  
$$= 2S(Tx, Tx, TFx) + q.S(Tx, Tx, TF^{k}x).$$

Then  $\delta[O_{T,F}(x,n)] = S(Tx,Tx,TF^kx) \le \frac{2}{1-q}S(Tx,Tx,TFx).$ 

(3) For each  $x_0 \in X$ , we define two iterative sequences  $\{x_n\}$  and  $\{y_n\}$  as follows

$$x_{n+1} = Fx_n = F^{n+1}x_0, \quad y_n = Tx_n = TF^n x_0$$

for all  $n \in \mathbb{N}$ . We will prove that  $\{y_n\}$  is a Cauchy sequence. For all n < m, by using the conclusion (1) we have

$$S(y_n, y_n, y_m) = S(TF^n x_0, TF^n x_0, TF^m x_0)$$
  
=  $S(TFF^{n-1} x_0, TFF^{n-1} x_0, TF^{m-n+1}F^{n-1} x_0)$   
 $\leq q\delta[O_{T,F}(F^{n-1} x_0, m-n+1)].$ 

Note that there exists  $1 \leq l \leq m-n+1$  satisfying

$$\delta[O_{T,F}(F^{n-1}x_0, m-n+1)] = S(TF^{n-1}x_0, TF^{n-1}x_0, TF^lF^{n-1}x_0).$$

On the other hand we have

$$S(TF^{n-1}x_0, TF^{n-1}x_0, TF^lF^{n-1}x_0) = S(TFF^{n-2}x_0, TFF^{n-2}x_0, TF^{l+1}F^{n-2}x_0)$$
  
$$\leq q\delta[O_{T,F}(F^{n-2}x_0, l+1)].$$

Therefore,

$$S(y_n, y_n, y_m) = S(TF^n x_0, TF^n x_0, TF^m x_0)$$
  

$$\leq q \delta[O_{T,F}(F^{n-1} x_0, m - n + 1)]$$
  

$$\leq q^2 \delta[O_{T,F}(F^{n-2} x_0, m - n + 2)]$$
  

$$\vdots$$
  

$$\leq q^{n-1} \delta[O_{T,F}(F x_0, m)]$$
  

$$\leq q^n \delta[O_{T,F}(x_0, m)]. \qquad (2.2)$$

Using the conclusion (2) we have

$$\delta[O_{T,F}(x_0,m)] \le \delta[O_{T,F}(x_0,\infty)] \le \frac{2}{1-q} S(Tx_0,Tx_0,TFx_0).$$
(2.3)

By combining (2.2) and (2.3) we get

$$S(y_n, y_n, y_m) \le \frac{2q^n}{1-q} S(Tx_0, Tx_0, TFx_0).$$

Taking the limit as  $n, m \to \infty$  we obtain  $\lim_{n,m\to\infty} S(y_n, y_n, y_m) = 0$ , that is,  $\{y_n\}$  is a Cauchy sequence. By the assumption (2), there exists  $a \in X$  such that  $\lim_{n\to\infty} TF^n x_0 = a$ . By the assumption (1), there exists  $b \in X$  such that  $\lim_{n\to\infty} F^n x_0 = b$ . Since T is continuous, by Lemma 1.11 we have

$$\lim_{n \to \infty} TF^n x_0 = Tb. \tag{2.4}$$

It follows from Lemma 1.7 that Tb = a.

Next we shall prove that Fb = b. By using Lemma 1.3, Lemma 1.4 and (2.1) we have

$$\begin{split} S(Tb, Tb, TFb) &\leq 2S(Tb, Tb, TF^{n+1}x_0) + S(TF^{n+1}x_0, TF^{n+1}x_0, TFb) \\ &= 2S(Tb, Tb, TF^{n+1}x_0) + S(TFF^nx_0, TFF^nx_0, TFb) \\ &\leq 2S(Tb, Tb, TF^{n+1}x_0) \\ &\quad + q \max \left\{ S(TF^nx_0, TF^nx_0, Tb), S(TF^nx_0, TF^nx_0, TFF^nx_0), \\ S(Tb, Tb, TFb), S(TF^nx_0, TF^nx_0, TFb), S(Tb, Tb, TFF^nx_0) \right\} \\ &\leq 2S(Tb, Tb, TF^{n+1}x_0) + q \max \left\{ S(TF^nx_0, TF^nx_0, Tb), \\ S(TF^nx_0, TF^nx_0, TFF^nx_0), S(Tb, Tb, TFb), \\ 2S(TF^nx_0, TF^nx_0, Tb) + S(Tb, Tb, TFb), \\ 2S(TF^nx_0, TF^{n+1}x_0) + q \left( S(TF^nx_0, TF^nx_0, TF^{n+1}x_0) \right) \right\} \\ &\leq 2S(Tb, Tb, TF^{n+1}x_0) + q \left( S(TF^nx_0, TF^nx_0, TF^{n+1}x_0) + S(Tb, Tb, TF^{n+1}x_0) + S(Tb, Tb, TF^{n+1}x_0) \right) \right\} \\ &\leq 2S(Tb, Tb, TF^{n+1}x_0) + 2S(TF^nx_0, TF^{n+1}x_0) + S(Tb, Tb, TF^{n+1}x_0) + S(Tb, Tb, TF^{n+1}x_0) + S(Tb, Tb, TF^{n+1}x_0) + S(Tb, TF^{n+1}$$

Therefore,

$$S(Tb, Tb, TFb) \leq \frac{1}{1-q} \Big[ (2+q)S(Tb, Tb, TF^{n+1}x_0) + qS(TF^nx_0, TF^nx_0, TF^{n+1}x_0) + 2qS(TF^nx_0, TF^nx_0, Tb) \Big].$$
(2.5)

By using Lemma 1.8, (2.4) and taking the limit as  $n \to \infty$  in (2.5) we get

$$S(Tb, Tb, TFb) = 0.$$

That is, TFb = Tb. Since T is one-to-one, we get Fb = b.

Now we prove that b is the unique fixed point of F. Let b and b' be two fixed points of F. Then Fb = b and Fb' = b'. By using (2.1) and Lemma 1.3 we have

$$\begin{split} S(Tb,Tb,Tb') &= S(TFb,TFb,TFb') \\ &\leq q \max\left\{S(Tb,Tb,Tb'),S(Tb,Tb,TFb), \\ &\quad S(Tb',Tb',TFb'),S(Tb,Tb,TFb'),S(Tb',Tb',TFb)\right\} \\ &= qS(Tb,Tb,Tb'). \end{split}$$

Since  $0 \le q < 1$ , we get S(Tb, Tb, Tb') = 0, that is, Tb = Tb'. Note that T is one-to-one, then b = b'.

(4) It is straightforward from (2.4).

We get the following corollary which is similar to [1, Theorem 2.1] except for the conclusion (2).

**Corollary 2.4.** Let (X, d) be a metric space and  $T, F : X \longrightarrow X$  be two maps such that

- 1. T is one-to-one, continuous and sequentially convergent;
- 2. Every Cauchy sequence of the form  $\{TF^nx\}$  is convergent in X for all  $x \in X$ ;
- 3. There exists  $q \in [0, 1)$  satisfying

$$d(TFx, TFy) \le q \max\left\{ d(Tx, Ty), d(Tx, TFx),$$

$$d(Ty, TFy), d(Tx, TFy), d(Ty, TFx) \right\}$$

$$(2.6)$$

for all  $x, y \in X$ .

Then we have

- 1.  $d(TF^{i}x, TF^{j}x) \leq q.\delta[O_{T,F}(x, n)]$  for all  $i, j \leq n, n \in \mathbb{N}$  and  $x \in X$ ;
- 2.  $\delta[O_{T,F}(x,\infty)] \leq \frac{2}{1-q}d(Tx,TFx)$  for all  $x \in X$ ;
- 3. F has a unique fixed point b;
- 4.  $\lim_{n\to\infty} TF^n x = Tb.$

*Proof.* By using Lemma 1.12 and Theorem 2.3 where  $S_d$  plays the role of S we get the conclusion.

By using Theorem 2.3 where T is the identity we get the following corollary which is a generalization of [6, Theorem 1] into the structure of S-metric.

**Corollary 2.5.** Let (X, S) be an S-metric space and  $F : X \longrightarrow X$  be a map such that

- 1. Every Cauchy sequence of the form  $\{F^nx\}$  is convergent in X for all  $x \in X$ ;
- 2. There exists  $q \in [0, 1)$  satisfying

$$S(Fx, Fx, Fy) \le q \max\left\{S(x, x, y), S(x, x, Fx),$$

$$S(y, y, Fy), S(x, x, Fy), S(y, y, Fx)\right\}$$
(2.7)

for all  $x, y \in X$ .

Then we have

- 1.  $S(F^ix, F^jx) \leq q.\delta[O_F(x, n)]$  for all  $i, j \leq n, n \in \mathbb{N}$  and  $x \in X$ ;
- 2.  $\delta[O_F(x,\infty)] \leq \frac{2}{1-q}S(x,x,Fx)$  for all  $x \in X$ ;
- 3. F has a unique fixed point b;
- 4.  $\lim_{n\to\infty} F^n x = b$ .

The following corollary is a generalization of the main result of [7] into the structure of S-metric.

**Corollary 2.6.** Let (X, S) be an S-metric space and  $T, F : X \longrightarrow X$  be two maps such that

- 1. T is one-to-one, continuous and sequentially convergent;
- 2. Every Cauchy sequence of the form  $\{TF^nx\}$  is convergent in X for all  $x \in$ X;
- 3. There exist  $a_i \geq 0$ ,  $i = 1, \ldots, 5$ , satisfying  $\sum_{i=1}^n a_i < 1$  and

$$S(TFx, TFx, TFy) \le a_1 S(Tx, Tx, Ty) + a_2 S(Tx, Tx, TFx)$$

$$+ a_3 S(Ty, Ty, TFy) + a_4 S(Tx, Tx, TFy)$$

$$+ a_5 S(Ty, Ty, TFx)$$

$$(2.8)$$

for all  $x, y \in X$ .

Then we have

- 1. F has a unique fixed point b;
- 2.  $\lim_{n\to\infty} TF^n x = Tb.$

*Proof.* Since (2.1) is a consequence of (2.8), we get the corollary.

**Remark 2.7.** By choosing T is the identity and  $a_2 = a_3 = a_4 = a_5 = 0$  in Corollary 2.6 we get [2, Theorem 3.1].

The following example shows that Corollary 2.6 is a proper generalization of [2, Theorem 3.1].

**Example 2.8.** Let X = [0, 1] and S(x, y, z) = |x - z| + |y - z| for all  $x, y, z \in X$ . Then (X, S) is a complete S-metric space by Example 1.6. Put

$$Fx = \begin{cases} \frac{1}{2} & \text{if } x \in [0, 1) \\ \frac{1}{4} & \text{if } x = 1. \end{cases}$$

We have  $S(F\frac{3}{4}, F\frac{3}{4}, F1) = \frac{1}{2}$  and  $S(\frac{3}{4}, \frac{3}{4}, 1) = \frac{1}{2}$ . This proves that [2, Theorem 3.1] is not applicable to F. By choosing Tx = x for all  $x \in X$  we have

$$S(TFx, TFx, TF1) = S(Fx, Fx, F1) = \frac{1}{2}$$
$$S(T1, T1, TF1) = S(1, 1, F1) = \frac{3}{2}.$$

Then for  $a_1 = a_2 = a_4 = a_5 = 0$  and  $a_3 = \frac{1}{2}$  we see that the condition (2.8) in Corollary 2.6 is satisfied. Also, the other conditions in Corollary 2.6 are. Then Corollary 2.6 is applicable to F and T, and  $x = \frac{1}{2}$  is the unique fixed point of F.

By adapting [1, Example 2.3] we have the following example that proves Theorem 2.3 is a proper generalization of Corollary 2.5.

**Example 2.9.** Let  $X = [0, \infty)$  and S(x, y, z) = |x - z| + |y - z|. Then (X, S) is a complete S-metric space by Example 1.6. Put  $Fx = \frac{x^2}{x+1}$  for all  $x \in X$ . Then we have

$$S(Fx, Fx, F(2x)) = \frac{2x^2(2x+3)}{(2x+1)(x+1)}$$
$$S(x, x, Fx) = \frac{2x}{x+1}$$
$$S(2x, 2x, F(2x)) = \frac{4x}{2x+1}$$
$$S(x, x, F(2x)) = 2\left|\frac{2x^2 - x}{2x+1}\right|$$
$$S(2x, 2x, Fx) = 2\frac{x^2 + 2x}{x+1}$$
$$S(x, x, 2x) = 2x.$$

Therefore, if x is large enough we have

$$\max \left\{ S(x, x, 2x), S(x, x, Fx), S(2x, 2x, F(2x)), S(x, x, F(2x)), S(2x, 2x, Fx) \right\} = 2\frac{x^2 + 2x}{x + 1}.$$

This implies that the condition (2.7) is equivalent to

$$\frac{x(2x+3)}{(2x+1)(x+2)} \le q.$$
(2.9)

Taking the limit as  $x \to \infty$  in (2.9) we get  $q \ge 1$ . It is a contradiction. Then Corollary 2.5 is not applicable to F.

By choosing  $Tx = e^x - 1$  for all  $x \in X$  and  $q = \frac{1}{2}$ . Then we have T is one-to-one, continuous and sequentially convergent on X and

$$S(TFx, TFx, TFy) = 2 \left| e^{\frac{x^2}{x+1}} - e^{\frac{y^2}{y+1}} \right|$$
$$S(Tx, Tx, Ty) = 2 |e^x - e^y|.$$

Now we will show that

$$S(TFx, TFx, TFy) \le \frac{1}{2}S(Tx, Tx, Ty)$$
(2.10)

for all  $x, y \in X$ . The case of x = y is trivial. We may assume that x > y. Then (2.10) is equivalent to

$$\left| e^{\frac{x^2}{x+1}} - e^{\frac{y^2}{y+1}} \right| \le \frac{1}{2} |e^x - e^y|$$

that is

$$e^{\frac{x^2}{x+1}} - \frac{e^x}{2} \le e^{\frac{y^2}{y+1}} - \frac{e^y}{2}.$$

This is true because the function  $\varphi(t) = e^{\frac{t^2}{t+1}} - \frac{e^t}{2}$  is decreasing on X. Therefore, (2.10) and then (2.6) holds.

By the above, Theorem 2.3 is applicable to F and T, and x = 0 is the unique fixed point of F.

**Acknowledgement :** We would like to thank the referees for his/her comments on the manuscript.

### References

- E. Karapinar, K.P. Chi, T.D. Thanh, A generalization of Ciric quasicontractions, Abstr. Appl. Anal. 2012 (2012) 1–9.
- [2] S. Sedghi, N. Shobe, A. Aliouche, A generalization of fixed point theorem in S-metric spaces, Mat. Vesnik 64 (2012) 258–266.
- [3] N.V. Dung, On coupled common fixed points for mixed weakly monotone maps in partially ordered S-metric spaces, Fixed Point Theory Appl. 2013:48 (2013) 1–24.

- [4] S. Sedghi, N.V. Dung, Fixed point theorems on S-metric spaces, Mat. Vesnik 66 (2014) 113–124.
- [5] K.P. Chi, H.T. Thuy, A fixed point theorem in 2-metric spaces for a class of maps that satisfy a contractive condition dependent on an another function, Lobachevskii J. Math. 31 (2010) 338–346.
- [6] L.B. Ćirić, A generalization of Banach's contraction principle, Proc. Amer. Math. Soc. 45 (1974) 267–273.
- [7] G.E. Hardy, T.D. Rogers, A generalization of a fixed point theorem of Reich, Canad. Math. Bull. 16 (1973) 201–206.

(Received 26 August 2012) (Accepted 19 February 2013)

 $\mathbf{T}\mathrm{HAI}\ \mathbf{J.}\ \mathbf{M}\mathrm{ATH}.$  Online @ http://thaijmath.in.cmu.ac.th