Common Coupled Coincidence and Coupled Fixed Point of C-Contractive Mappings in Generalized Metric Spaces

Mujahid Abbas ${ }^{\dagger}$, Wasfi Shatanawi ${ }^{\ddagger} \uparrow \sqrt[1]{ }$, and Talat Nazir ${ }^{\dagger}$
${ }^{\dagger}$ Department of Mathematics, Lahore University of Management Sciences Lahore 54792, Pakistan
e-mail : mujahid@lums.edu.pk (M. Abbas)
talat@lums.edu.pk (T. Nazir)
\ddagger Department of Mathematics, The Hashemite University
Zarqa 13115, Jordan
e-mail : wshatanawi@yahoo.com (W. Shatanawi)

Abstract

In this paper, study of necessary conditions for existence of common coupled coincidence and coupled fixed point results for C-contractive type mappings in the context of generalized metric space equipped with a partial order is initiated. These results generalize comparable results from the current literature. We also provide illustrative example in support of our new results.

Keywords : generalized metric spaces; coupled fixed point; ordered metric spaces. 2010 Mathematics Subject Classification : 47H10.

1 Introduction

The study of fixed points of mappings satisfying certain contractive conditions has been at the center of rigorous research activity [1-3]. Mustafa and Sims [4] generalized the concept of a metric space. Based on the notion of generalized metric spaces, Mustafa et al. [5-7] obtained some fixed point theorems for mappings satisfying different contractive conditions. Abbas and Rhoades [8 initiated

[^0]the study of common fixed point theory in generalized metric spaces (see also [9, 10]). While Gajić and Crvenković [11, 12] initiated the study of fixed point results for mappings with contractive iterate at a point in G-metric spaces. Recently, many mathematicians have considered fixed point and common fixed point problem in generalized metric spaces (see, e.g., [13-17]). The existence of fixed points in partially ordered metric spaces has been investigated in 2004 by Ran and Reurings [18], and then further results in this direction were proved (see [1, 19, 20]). Results on weak contractive mappings on such spaces, together with applications to differential equations, were obtained by Harjani and Sadarangani in [21].

Bhashkar and Lakshmikantham in 22] introduced the concept of a coupled fixed point of a mapping $F: X \times X \rightarrow X$ and investigated some coupled fixed point theorems in partially ordered complete metric spaces. They also discussed applications of their result by investigating the existence and uniqueness of solution for a periodic boundary value problem. Afterwards, Lakshmikantham and Ćirić [2] proved coupled coincidence and coupled common fixed point theorems for nonlinear mappings $F: X \times X \rightarrow X$ and $g: X \rightarrow X$ in partially ordered complete metric spaces. Then, later [23] and [24] obtained interesting results in this direction. Abbas et al. [25] have proved coupled coincidence and coupled common fixed point results in cone metric spaces for w - compatible mappings.

Very recently, Cho et al [26] obtained some coupled fixed point results in generalized metric spaces (see also, [17, 27-32] and references therein). Recently, Harjani et al. [33] obtained some fixed point theorems for weakly C-contractive mappings in ordered metric spaces.

The aim of this paper is to prove some common coupled coincidence and coupled fixed points results for C-contractive mappings defined on a partial ordered set equipped with a generalized metric. Our results extend and unify various comparable results.

Consistent with Mustafa and Sims 4, the following definitions and results will be needed in the sequel.

Definition 1.1. Let X be a nonempty set. Suppose that a mapping $G: X \times X \times$ $X \rightarrow R^{+}$satisfies:
(a) $G(x, y, z)=0$ if $x=y=z$;
(b) $0<G(x, y, z)$ for all $x, y \in X$, with $x \neq y$;
(c) $G(x, x, y) \leq G(x, y, z)$ for all $x, y, z \in X$, with $y \neq z$;
(d) $G(x, y, z)=G(x, z, y)=G(y, z, x)=\cdots$, (symmetry in all three variables); and
(e) $G(x, y, z) \leq G(x, a, a)+G(a, y, z)$ for all $x, y, z, a \in X$.

Then G is called a G-metric on X and (X, G) is called a G - metric space.
Definition 1.2. A sequence $\left\{x_{n}\right\}$ in a G-metric space X is:
(i) a G-Cauchy sequence if, for any $\varepsilon>0$, there is an $n_{0} \in N$ (the set of natural numbers) such that for all $n, m, l \geq n_{0}, G\left(x_{n}, x_{m}, x_{l}\right)<\varepsilon$,
(ii) a G-convergent sequence if, for any $\varepsilon>0$, there is an $x \in X$ and an $n_{0} \in N$, such that for all $n, m \geq n_{0}, G\left(x, x_{n}, x_{m}\right)<\varepsilon$.

A G-metric space on X is said to be G-complete if every G-Cauchy sequence in X is G-convergent in X. It is known that $\left\{x_{n}\right\} G$-converges to $x \in X$ if and only if $G\left(x_{m}, x_{n}, x\right) \rightarrow 0$ as $n, m \rightarrow \infty$ 4.

Proposition 1.3 (4]). Let X be a G-metric space. Then the following are equivalent:

1. $\left\{x_{n}\right\}$ is G-convergent to x.
2. $G\left(x_{n}, x_{n}, x\right) \rightarrow 0$ as $n \rightarrow \infty$.
3. $G\left(x_{n}, x, x\right) \rightarrow 0$ as $n \rightarrow \infty$.
4. $G\left(x_{n}, x_{m}, x\right) \rightarrow 0$ as $n, m \rightarrow \infty$.

Proposition 1.4. $A G$-metric on X is said to be symmetric if $G(x, y, y)=$ $G(y, x, x)$ for all $x, y \in X$.

Proposition 1.5. Every G-metric on X will define a metric d_{G} on X by

$$
\begin{equation*}
d_{G}(x, y)=G(x, y, y)+G(y, x, x), \forall x, y \in X \tag{1.1}
\end{equation*}
$$

For a symmetric $G-$ metric

$$
\begin{equation*}
d_{G}(x, y)=2 G(x, y, y), \forall x, y \in X \tag{1.2}
\end{equation*}
$$

However, if G is non-symmetric, then the following inequality holds:

$$
\begin{equation*}
\frac{3}{2} G(x, y, y) \leq d_{G}(x, y) \leq 3 G(x, y, y), \forall x, y \in X \tag{1.3}
\end{equation*}
$$

Recall that if (X, \leq) is a partially ordered set and $f: X \rightarrow X$ is such that for $x, y \in X, x \leq y$ implies $f(x) \leq f(y)$, then a mapping f is said to be nondecreasing. Similarly, a nonincreasing mapping is defined.

Definition 1.6 ([22]). An element $(x, y) \in X \times X$ is called a coupled fixed point of mapping $F: X \times X \rightarrow X$ if $x=F(x, y)$ and $y=F(y, x)$.

Definition 1.7 ([13]). An element $(x, y) \in X \times X$ is called:
$\left(\mathrm{c}_{1}\right)$ a coupled coincidence point of mappings $F: X \times X \rightarrow X$ and $g: X \rightarrow X$ if $g(x)=F(x, y)$ and $g(y)=F(y, x)$, and $(g x, g y)$ is called coupled point of coincidence.
$\left(\mathrm{c}_{2}\right)$ a common coupled fixed point of mappings $F: X \times X \rightarrow X$ and $g: X \rightarrow X$ if $x=g(x)=F(x, y)$ and $y=g(y)=F(y, x)$.

Definition $1.8([2])$. Let (X, \leq) be a partially ordered set. A map $F: X \times X \rightarrow X$ is said to has a g-mixed monotone property where $g: X \rightarrow X$ if for $x_{1}, x_{2}, y_{1}, y_{2} \in$ X

$$
g x_{1} \leq g x_{2} \text { implies } F\left(x_{1}, y\right) \leq F\left(x_{2}, y\right) \text { for all } y \in X
$$

and

$$
g y_{1} \leq g y_{2} \text { implies } F\left(x, y_{2}\right) \leq F\left(x, y_{1}\right) \text { for all } x \in X
$$

If we take $g=I_{X}$ (an identity mapping on X), then F is said to has the mixed monotone property ([22]).

2 Main Results

We obtain common coupled coincidence and coupled fixed points results for C-contractive mappings defined on a partial ordered set equipped with generalized metric space. We also extend some recent results of Choudhury and Maity 34 for two maps in generalized metric space.

We start with following result.
Theorem 2.1. Let (X, \leq) be a partially ordered set such that there exists a complete G - metric on X. Let $F: X \times X \rightarrow X$ and $g: X \rightarrow X$ be continuous mappings such that F has the mixed g-monotone property, g commutes with F and $F(X \times X) \subseteq g(X)$. Suppose that there exist a continuous function $\phi:[0, \infty) \times[0, \infty) \rightarrow[0, \infty)$ with $\phi(t, s)=0$ if and only if $t=s=0$ such that

$$
\begin{align*}
G(F(x, y), F(u, v), F(w, z)) \leq & \max \{G(g x, g u, g w), G(g y, g v, g z)\} \tag{2.1}\\
& -\phi(G(g x, g u, g w), G(g y, g v, g z))
\end{align*}
$$

for all $x, y, u, v, w, z \in X$ with $g w \leq g u \leq g x$ and $g y \leq g v \leq g z$. If there exist $x_{0}, y_{0} \in X$ such that $g x_{0} \leq F\left(x_{0}, y_{0}\right)$ and $F\left(y_{0}, x_{0}\right) \leq g y_{0}$, then F and g have a coupled coincidence point.

Proof. Let $x_{0}, y_{0} \in X$ be such that $g x_{0} \leq F\left(x_{0}, y_{0}\right)$ and $F\left(y_{0}, x_{0}\right) \leq g y_{0}$. Since $F(X \times X) \subseteq g(X)$, we can choose $x_{1}, y_{1} \in X$ such that $g x_{1}=F\left(x_{0}, y_{0}\right)$ and $g y_{1}=F\left(y_{0}, x_{0}\right)$. Similarly we can choose $x_{2}, y_{2} \in X$ such that $g x_{2}=F\left(x_{1}, y_{1}\right)$ and $g y_{2}=F\left(y_{1}, x_{1}\right)$. Since F has the mixed g-monotone property, we have $g x_{0} \leq$ $g x_{1} \leq g x_{2}$ and $g y_{2} \leq g y_{1} \leq g y_{0}$. Continuing this process, we can construct two sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ in X such that

$$
g x_{n}=F\left(x_{n-1}, y_{n-1}\right) \leq g x_{n+1}=F\left(x_{n}, y_{n}\right)
$$

and

$$
g y_{n+1}=F\left(y_{n}, x_{n}\right) \leq g y_{n}=F\left(y_{n-1}, x_{n-1}\right)
$$

If for some integer k, we have $\left(g x_{k+1}, g y_{k+1}\right)=\left(g x_{k}, g y_{k}\right)$, then $F\left(x_{k}, y_{k}\right)=g x_{k}$ and $F\left(y_{k}, x_{k}\right)=g y_{k}$, therefore $\left(x_{k}, y_{k}\right)$ is a coincidence point of F and g. So, we
assume that $\left(g x_{n+1}, g y_{n+1}\right) \neq\left(g x_{n}, g y_{n}\right)$ for all $n \in \mathbb{N}$, that is, either $g x_{n+1} \neq g x_{n}$ or $g y_{n+1} \neq g y_{n}$. For $n \in \mathbb{N}$, we have

$$
\begin{align*}
G\left(g x_{n+1}, g x_{n+1}, g x_{n}\right)= & G\left(F\left(x_{n}, y_{n}\right), F\left(x_{n}, y_{n}\right), F\left(x_{n-1}, y_{n-1}\right)\right) \\
\leq & \max \left\{G\left(g x_{n}, g x_{n}, g x_{n-1}\right), G\left(g y_{n}, g y_{n}, g y_{n-1}\right)\right\} \\
& -\phi\left(G\left(g x_{n}, g x_{n}, g x_{n-1}\right), G\left(g y_{n}, g y_{n}, g y_{n-1}\right)\right) \\
\leq & \max \left\{G\left(g x_{n}, g x_{n}, g x_{n-1}\right), G\left(g y_{n}, g y_{n}, g y_{n-1}\right)\right\} \tag{2.2}
\end{align*}
$$

On other hand,

$$
\begin{align*}
G\left(g y_{n}, g y_{n+1}, g y_{n+1}\right)= & G\left(F\left(y_{n-1}, x_{n-1}\right), F\left(y_{n} \cdot x_{n}\right), F\left(y_{n}, x_{n}\right)\right) \\
\leq & \max \left\{G\left(g y_{n-1}, g y_{n}, g y_{n}\right), G\left(g x_{n-1}, g x_{n}, g x_{n}\right)\right\} \\
& -\phi\left(G\left(g y_{n-1}, g y_{n}, g y_{n}\right), G\left(g x_{n-1}, g x_{n}, g x_{n}\right)\right) \\
\leq & \max \left\{G\left(g x_{n-1}, g x_{n}, g x_{n}\right), G\left(g y_{n-1}, g y_{n}, g y_{n}\right)\right\} . \tag{2.3}
\end{align*}
$$

By (2.2) and (2.3), we have

$$
\begin{align*}
& \max \left\{G \left(g x_{n+1},\right.\right.\left.\left.g x_{n+1}, g x_{n}\right), G\left(g y_{n}, g y_{n+1}, g y_{n+1}\right)\right\} \\
& \leq \max \left\{G\left(g x_{n}, g x_{n}, g x_{n-1}\right), G\left(g y_{n}, g y_{n}, g y_{n-1}\right)\right\} \\
&-\min \left\{\phi \left(G\left(g x_{n}, g x_{n}, g x_{n-1}\right), G\left(g y_{n}, g y_{n}, g y_{n-1}\right),\right.\right. \\
&\left.\quad \phi\left(G\left(g y_{n-1}, g y_{n}, g y_{n}\right), G\left(g x_{n-1}, g x_{n}, g x_{n}\right)\right)\right\} \\
& \leq \max \left\{G\left(g x_{n}, g x_{n}, g x_{n-1}\right), G\left(g y_{n}, g y_{n}, g y_{n-1}\right)\right\} \tag{2.4}
\end{align*}
$$

Thus $\left\{\max \left\{G\left(g x_{n-1}, g x_{n}, g x_{n}\right), G\left(g y_{n-1}, g y_{n}, g y_{n}\right)\right\}\right\}$ is a nonnegative decreasing sequence. Hence there exists $r \geq 0$ such that

$$
\lim _{n \rightarrow \infty} \max \left\{G\left(g x_{n-1}, g x_{n}, g x_{n}\right), G\left(g y_{n-1}, g y_{n}, g y_{n}\right)\right\}=r .
$$

On taking limit as $n \rightarrow \infty$ in (2.4), we get

$$
\begin{aligned}
& r \leq r-\min \left\{\lim _{n \rightarrow \infty} \phi\left(G\left(g x_{n}, g x_{n}, g x_{n-1}\right), G\left(g y_{n}, g y_{n}, g y_{n-1}\right)\right)\right. \\
&\left.\lim _{n \rightarrow \infty} \phi\left(G\left(g x_{n-1}, g x_{n}, g x_{n}\right), G\left(g y_{n-1}, g y_{n}, g y_{n}\right)\right)\right\} \\
& \leq r .
\end{aligned}
$$

Hence

$$
\lim _{n \rightarrow \infty} \phi\left(G\left(g x_{n}, g x_{n}, g x_{n-1}\right), G\left(g y_{n}, g y_{n}, g y_{n-1}\right)\right)=0
$$

By using the properties of ϕ, we have

$$
\lim _{n \rightarrow \infty} G\left(g x_{n}, g x_{n}, g x_{n-1}\right)=0
$$

and

$$
\lim _{n \rightarrow \infty} G\left(g y_{n-1}, g y_{n}, g y_{n}\right)=0
$$

Therefore, $r=0$ and hence

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \max \left\{G\left(g x_{n-1}, g x_{n}, g x_{n}\right), G\left(g y_{n-1}, g y_{n}, g y_{n}\right)\right\}=0 \tag{2.5}
\end{equation*}
$$

Now we shill show that $\left\{g x_{n}\right\}$ and $\left\{g y_{n}\right\}$ are G-Cauchy sequences.
Assume on Contrary that $\left\{g x_{n}\right\}$ or $\left\{g y_{n}\right\}$ is not a G-Cauchy sequence, that is

$$
\lim _{n, m \rightarrow \infty} G\left(g x_{m}, g x_{n}, g x_{n}\right) \neq 0
$$

or

$$
\lim _{n, m \rightarrow \infty} G\left(g y_{m}, g y_{n}, g y_{n}\right) \neq 0
$$

This means that there exists $\varepsilon>0$ for which we can find subsequences of integers m_{k} and n_{k} with $n_{k}>m_{k}>k$ such that

$$
\begin{equation*}
\max \left\{G\left(g x_{n_{k}}, g x_{n_{k}}, g x_{n_{k}}\right), G\left(g y_{m_{k}}, g y_{n_{k}}, g y_{n_{k}}\right)\right\} \geq \varepsilon . \tag{2.6}
\end{equation*}
$$

Further, corresponding to m_{k} we can choose n_{k} in such a way that it is the smallest integer with $n_{k}>m_{k}$ which satisfy (2.6). Then

$$
\begin{equation*}
\max \left\{G\left(g x_{m_{k}}, g x_{n_{k}-1}, g x_{n_{k}-1}\right), G\left(g y_{n_{k}}, g y_{n_{k}-1}, g y_{n_{k}-1}\right)\right\}<\varepsilon \tag{2.7}
\end{equation*}
$$

By using the proper (e) of generalized metric and (2.7), we have

$$
\begin{align*}
& G\left(g x_{n_{k}}, g x_{n_{k}}, g x_{n_{k}}\right) \\
& \leq G\left(g x_{m_{k}}, g x_{n_{k}-1}, g x_{n_{k}-1}\right)+G\left(g x_{n_{k}-1}, g x_{n_{k}}, g x_{n_{k}}\right) \\
& \leq G\left(g x_{m_{k}}, g x_{m_{k}-1}, g x_{m_{k}-1}\right)+G\left(g x_{m_{k}-1}, g x_{n_{k}-1}, g x_{n_{k}-1}\right) \\
& \quad+G\left(g x_{m_{k}-1}, g x_{n_{k}}, g x_{n_{k}}\right) \\
& \leq 2 G\left(g x_{m_{k}}, g x_{m_{k}}, g x_{m_{k}-1}\right)+G\left(g x_{m_{k}-1}, g x_{n_{k}-1}, g x_{n_{k}-1}\right) \\
& \quad \quad+G\left(g x_{n_{k}-1}, g x_{n_{k}}, g x_{n_{k}}\right) \\
&< 2 G\left(g x_{m_{k}}, g x_{m_{k}}, g x_{m_{k}-1}\right)+\varepsilon+G\left(g x_{n_{k}-1}, g x_{n_{k}}, g x_{n_{k}}\right) \tag{2.8}
\end{align*}
$$

and

$$
\begin{align*}
& G\left(g y_{m_{k}}, g y_{n_{k}}, g_{n_{k}}\right) \\
& \leq G\left(g y_{m_{k}}, g y_{n_{k}-1}, g y_{n_{k}-1}\right)+G\left(g y_{n_{k}-1}, g y_{n_{k}}, g y_{n_{k}}\right) \\
& \leq G\left(g y_{m_{k}}, g y_{m_{k}-1}, g y_{m_{k}-1}\right)+G\left(g y_{m_{k}-1}, g y_{n_{k}-1}, g y_{n_{k}-1}\right) \\
& \quad+G\left(g y_{n_{k}-1}, g y_{n_{k}}, g y_{n_{k}}\right) \\
& \leq 2 G\left(g y_{m_{k}}, g y_{m_{k}}, g y_{m_{k}-1}\right)+G\left(g y_{m_{k}-1}, g y_{n_{k}-1}, g y_{n_{k}-1}\right) \\
& \quad \quad+G\left(g y_{n_{k}-1}, g y_{n_{k}}, g y_{n_{k}}\right) \\
&< 2 G\left(g y_{m_{k}}, g y_{m_{k}}, g y_{m_{k}-1}\right)+\varepsilon+G\left(g y_{n_{k}-1}, g y_{n_{k}}, g y_{n_{k}}\right) \tag{2.9}
\end{align*}
$$

By (2.6)-(2.9), we have

$$
\begin{aligned}
\varepsilon \leq & \max \left\{G\left(g x_{m_{k}}, g x_{n_{k}}, g x_{n_{k}}\right), G\left(g y_{m_{k}}, g y_{n_{k}}, g y_{n_{k}}\right)\right\} \\
\leq & 2 \max \left\{G\left(g x_{m_{k}}, g x_{m_{k}}, g x_{m_{k}-1}\right), G\left(g y_{m_{k}}, g y_{m_{k}}, g y_{m_{k}-1}\right)\right\} \\
& +\max \left\{G\left(g x_{m_{k}-1}, g x_{n_{k}-1}, g x_{n_{k}-1}\right), G\left(g y_{m_{k}-1}, g y_{n_{k}-1}, g y_{n_{k}-1}\right)\right\} \\
& +\max \left\{G\left(g x_{n_{k}-1}, g x_{n_{k}}, g x_{n_{k}}\right), G\left(g y_{n_{k}-1}, g y_{n_{k}}, g y_{n_{k}}\right)\right\} \\
\leq & 2 \max \left\{G\left(g x_{m_{k}}, g x_{m_{k}}, g x_{m_{k}-1}\right), G\left(g y_{m_{k}}, g y_{m_{k}}, g y_{m_{k}-1}\right)\right\}+\varepsilon \\
& +\max \left\{G\left(g x_{n_{k}-1}, g x_{n_{k}}, g x_{n_{k}}\right), G\left(g y_{n_{k}-1}, g y_{n_{k}}, g y_{n_{k}}\right)\right\} .
\end{aligned}
$$

Letting $k \rightarrow \infty$ in above inequalities and using (2.5), we obtain

$$
\begin{align*}
\lim _{k \rightarrow \infty} & \max \left\{G\left(g x_{m_{k}}, g x_{n_{k}}, g x_{n_{k}}\right), G\left(g y_{m_{k}}, g y_{n_{k}}, g y_{n_{k}}\right)\right\} \\
& =\lim _{k \rightarrow \infty} \max \left\{G\left(g x_{m_{k}-1}, g x_{n_{k}-1}, g x_{n_{k}-1}\right), G\left(g y_{m_{k}-1}, g y_{n_{k}-1}, g y_{n_{k}-1}\right)\right\} \\
& =\varepsilon \tag{2.10}
\end{align*}
$$

Since $g x_{n_{k}-1} \geq g x_{n_{k}-1} \geq g x_{m_{k}-1}$ and $g y_{n_{k}-1} \leq g y_{n_{k}-1} \leq g y_{m_{k}-1}$, by (2.1) we have

$$
\begin{align*}
& G\left(g x_{n_{k}}, g x_{n_{k}}, g x_{m_{k}}\right) \\
& \quad=G\left(F\left(x_{n_{k}-1}, y_{n_{k}-1}\right), F\left(x_{n_{k}-1}, y_{n_{k}-1}\right), F\left(x_{m_{k}-1}, y_{m_{k}-1}\right)\right) \\
& \quad \leq \max \left\{G\left(g x_{n_{k}-1}, g x_{n_{k}-1}, g x_{m_{k}-1}\right), G\left(g y_{n_{k}-1}, g y_{n_{k}-1}, g y_{m_{k}-1}\right)\right\} \\
& \quad \quad-\phi\left(G\left(g x_{n_{k}-1}, g x_{n_{k}-1}, g x_{m_{k}-1}\right), G\left(g y_{n_{k}-1}, g y_{n_{k}-1}, g y_{m_{k}-1}\right)\right) \tag{2.11}
\end{align*}
$$

and

$$
\begin{align*}
& G\left(g y_{m_{k}}, g y_{n_{k}}, g y_{n_{k}}\right) \\
& =G\left(F\left(y_{m_{k}-1}, x_{m_{k}-1}\right), F\left(y_{n_{k}-1}, x_{n_{k}-1}\right), F\left(y_{n_{k}-1}, x_{n_{k}-1}\right)\right) \\
& \leq \max \left\{G\left(g y_{m_{k}-1}, g y_{n_{k}-1}, g y_{n_{k}-1}\right), G\left(g x_{m_{k}-1}, g x_{n_{k}-1}, g x_{n_{k}-1}\right)\right\} \\
& \quad \quad-\phi\left(G\left(g y_{m_{k}-1}, g y_{n_{k}-1}, g y_{n_{k}-1}\right), G\left(g x_{m_{k}-1}, g x_{n_{k}-1}, g x_{n_{k}-1}\right)\right) . \tag{2.12}
\end{align*}
$$

By (2.11) and (2.12), we get

$$
\begin{aligned}
& \max \{ \left.G\left(g x_{m_{k}}, g x_{n_{k}}, g x_{n_{k}}\right), G\left(g y_{m_{k}}, g y_{n_{k}}, g y_{n_{k}}\right)\right\} \\
& \leq \max \left\{G\left(g x_{m_{k}-1}, g x_{n_{k}-1}, g x_{n_{k}-1}\right), G\left(g y_{m_{k}-1}, g y_{n_{k}-1}, g y_{n_{k}-1}\right)\right\} \\
& \quad \quad \min \left\{\phi\left(G\left(g x_{m_{k}-1}, g x_{n_{k}-1}, g x_{n_{k}-1}\right), G\left(g y_{m_{k}-1}, g y_{n_{k}-1}, g y_{n_{k}-1}\right)\right),\right. \\
&\left.\quad \phi\left(G\left(g y_{m_{k}-1}, g y_{n_{k}-1}, g y_{n_{k}-1}\right), G\left(g x_{m_{k}-1}, g x_{n_{k}-1}, g x_{n_{k}-1}\right)\right)\right\} \\
& \leq \max \left\{G\left(g x_{m_{k}}, g x_{n_{k}}, g x_{n_{k}}\right), G\left(g y_{m_{k}}, g y_{n_{k}}, g y_{n_{k}}\right)\right\} .
\end{aligned}
$$

On taking limit as $k \rightarrow \infty$ in the above inequalities and using (2.10), we have

$$
\begin{gathered}
\varepsilon \leq \varepsilon-\min \left\{\lim _{k \rightarrow \infty} \phi\left(G\left(g x_{m_{k}-1}, g x_{n_{k}-1}, g x_{n_{k}-1}\right), G\left(g y_{m_{k}-1}, g y_{n_{k}-1}, g y_{n_{k}-1}\right)\right),\right. \\
\left.\lim _{k \rightarrow \infty} \phi\left(G\left(g y_{m_{k}-1}, g y_{n_{k}-1}, g y_{n_{k}-1}\right), G\left(g x_{m_{k}-1}, g x_{n_{k}-1}, g x_{n_{k}-1}\right)\right)\right\}
\end{gathered}
$$

$$
\leq \varepsilon
$$

Hence

$$
\lim _{k \rightarrow \infty} \phi\left(G\left(g x_{m_{k}-1}, g x_{n_{k}-1}, g x_{n_{k}-1}\right), G\left(g y_{m_{k}-1}, g y_{n_{k}-1}, g y_{n_{k}-1}\right)\right)=0
$$

or

$$
\lim _{k \rightarrow \infty} \phi\left(G\left(g y_{m_{k}-1}, g y_{n_{k}-1}, g y_{n_{k}-1}\right), G\left(g x_{m_{k}-1}, g x_{n_{k}-1}, g x_{n_{k}-1}\right)\right)=0 .
$$

It now follows that

$$
\lim _{k \rightarrow \infty} G\left(g x_{m_{k}-1}, g x_{n_{k}-1}, g x_{n_{k}-1}\right)=0
$$

By (2.10), we obtain that $\varepsilon=0$, a contradiction. Therefore $\left\{g x_{n}\right\}$ and $\left\{g y_{n}\right\}$ are both G-Cauchy sequences in X. Since (X, G) is G-complete, there are $x, y \in X$ such that $\left\{g x_{n}\right\}$ and $\left\{g y_{n}\right\}$ are G-convergent to x and y respectively, that is,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} G\left(g x_{n}, g x_{n}, x\right)=\lim _{n \rightarrow \infty} G\left(g x_{n}, x, x\right)=0 \tag{2.13}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} G\left(g y_{n}, g y_{n}, y\right)=\lim _{n \rightarrow \infty} G\left(g y_{n}, y, y\right)=0 \tag{2.14}
\end{equation*}
$$

Using (2.13), (2.14) and the continuity of g, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} G\left(g\left(g x_{n}\right), g\left(g x_{n}\right), g x\right)=\lim _{n \rightarrow \infty} G\left(g\left(g x_{n}\right), g x, g x\right)=0 \tag{2.15}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} G\left(g\left(g y_{n}\right), g\left(g y_{n}\right), g y\right)=\lim _{n \rightarrow \infty} G\left(g\left(g y_{n}\right), g y, g y\right)=0 \tag{2.16}
\end{equation*}
$$

Therefore $\left\{g\left(g x_{n}\right)\right\}$ is G-convergent to $g x$ and $\left\{g\left(g y_{n}\right)\right\}$ is G-convergent to $g y$. Since F and g commute, we get

$$
\begin{equation*}
g\left(g x_{n+1}\right)=g\left(F\left(x_{n}, y_{n}\right)\right)=F\left(g x_{n}, g y_{n}\right) \tag{2.17}
\end{equation*}
$$

and

$$
\begin{equation*}
g\left(g y_{n+1}\right)=g\left(F\left(y_{n}, x_{n}\right)\right)=F\left(g y_{n}, g x_{n}\right) \tag{2.18}
\end{equation*}
$$

As F is continuous, so taking limit as $n \rightarrow \infty$ in (2.17) and (2.18) implies that $g x=F(x, y)$ and $g y=F(y, x)$. That is, $(g x, g y)$ is a coupled coincidence point of F and g.

If we take $u=w$ and $v=z$ in Theorem 2.1, then we obtain the following corollary.
Corollary 2.2. Let (X, \leq) be a partially ordered set such that there exists a complete G-metric space on X. Let $F: X \times X \rightarrow X$ and $g: X \rightarrow X$ be continuous mappings such that F has the mixed g-monotone property, g commutes with F and $F(X \times X) \subseteq g(X)$.. Suppose that there exist a continuous function $\phi:[0, \infty) \times[0, \infty) \rightarrow[0, \infty)$ with $\phi(t, s)=0$ if and only if $t=s=0$ such that

$$
\begin{align*}
G(F(x, y), F(u, v), F(u, v)) \leq & \max \{G(g x, g u, g u), G(g y, g v, g v)\} \tag{2.19}\\
& -\phi(G(g x, g u, g u), G(g y, g v, g v))
\end{align*}
$$

for all $x, y, u, v \in X$ with $g w \leq g u$ and $g y \leq g v$. If there exist $x_{0}, y_{0} \in X$ such that $g x_{0} \leq F\left(x_{0}, y_{0}\right)$ and $F\left(y_{0}, x_{0}\right) \leq g y_{0}$, then F and g have a coupled coincidence point.

If we take $g=I_{X}$ (the identity mapping) in Theorem 2.1, we obtain the following coupled fixed point result.

Corollary 2.3. Let (X, \leq) be a partially ordered set such that there exists a complete G-metric space on X. Let $F: X \times X \rightarrow X$ be a continuous mapping satisfying the mixed monotone property. Suppose that there exist a continuous function $\phi:[0, \infty) \times[0, \infty) \rightarrow[0, \infty)$ with $\phi(t, s)=0$ if and only if $t=s=0$ such that

$$
\begin{align*}
G(F(x, y), F(u, v), F(w, z)) \leq & \max \{G(x, u, w), G(y, v, z)\} \tag{2.20}\\
& -\phi(G(x, u, w), G(y, v, z))
\end{align*}
$$

for all $x, y, u, v, w, z \in X$ with $w \leq u \leq x$ and $y \leq v \leq z$. If there exist $x_{0}, y_{0} \in X$ such that $x_{0} \leq F\left(x_{0}, y_{0}\right)$ and $F\left(y_{0}, x_{0}\right) \leq y_{0}$, then F has a coupled fixed point.

Corollary 2.4. Let (X, \leq) be a partially ordered set such that there exists a complete G-metric space on X. Let $F: X \times X \rightarrow X$ be a continuous mapping satisfying the mixed monotone property. Suppose that there exist a continuous function $\phi:[0, \infty) \times[0, \infty) \rightarrow[0, \infty)$ with $\phi(t, s)=0$ if and only if $t=s=0$ such that

$$
\begin{align*}
& G(F(x, y), F(u, v), F(w, z)) \leq \frac{1}{2} \tag{2.21}\\
&(G(x, u, w)+G(y, v, z)) \\
&-\phi(G(x, u, w), G(y, v, z))
\end{align*}
$$

for all $x, y, u, v, w, z \in X$ with $w \leq u \leq x$ and $y \leq v \leq z$. If there exist $x_{0}, y_{0} \in X$ such that $x_{0} \leq F\left(x_{0}, y_{0}\right)$ and $F\left(y_{0}, x_{0}\right) \leq y_{0}$, then F has a coupled fixed point.

Proof. Follows from Corollary 2.3 by noting that

$$
\begin{equation*}
\frac{1}{2}(G(x, u, w)+G(y, v, z)) \leq \max \{G(x, u, w), G(y, v, z)\} \tag{2.22}
\end{equation*}
$$

In our next result, we drop the continuity of F.
Theorem 2.5. Let (X, \leq) be a partially ordered set and (X, G) such that there exists a complete G-metric space on X. Suppose that there exist a continuous function $\phi:[0, \infty) \times[0, \infty) \rightarrow[0, \infty)$ with $\phi(t, s)=0$ if and only if $t=s=0$ such that

$$
\begin{align*}
G(F(x, y), F(u, v), F(w, z)) \leq & \max \{G(g x, g u, g w), G(g y, g v, g z)\} \tag{2.23}\\
& -\phi(G(g x, g u, g w), G(g y, g v, g z))
\end{align*}
$$

for all $x, y, u, v, w, z \in X$ with $g w \leq g u \leq g x$ and $g y \leq g v \leq g z$. Assume that X satisfies:

1. if a non-decreasing sequence $\left\{x_{n}\right\}$ is such that $x_{n} \rightarrow x$, then $x_{n} \leq x$ for all n,
2. if a non-increasing sequence $\left\{y_{n}\right\}$ is such that $y_{n} \rightarrow y$, then $y \leq y_{n}$ for all n.

Suppose also that $(g(X), G)$ is G-complete, F has the mixed g-monotone property and $F(X \times X) \subseteq g(X)$. If there exist $x_{0}, y_{0} \in X$ such that $g x_{0} \leq F\left(x_{0}, y_{0}\right)$ and $F\left(y_{0}, x_{0}\right) \leq g y_{0}$, then F and g have a coupled coincidence point.

Proof. Following the proof of Theorem 2.1, we construct two G-Cauchy sequences $\left\{g x_{n}\right\}$ and $\left\{g y_{n}\right\}$ in $g(X)$ with

$$
g x_{n} \leq g x_{n+1} \text { and } g y_{n} \geq g y_{n+1}
$$

for all $n \in \mathbb{N}$. Since $(g(X), G)$ is G-complete, then there are $x, y \in X$ such that $g x_{n} \rightarrow g x$ and $g y_{n} \rightarrow g y$ as $n \rightarrow \infty$. By the properties of X, we have $g x_{n} \leq g x$ and $g y \leq g y_{n}$ for all $n \in \mathbb{N}$. Now

$$
\begin{aligned}
G\left(F(x, y), g x_{n+1}, g x_{n+1}\right)= & G\left(F(x, y), F\left(x_{n}, y_{n}\right), F\left(g x_{n}, g y_{n}\right)\right) \\
\leq & \max \left\{G\left(g x, g x_{n}, g x_{n}\right), G\left(g y, g y_{n}, g y_{n}\right)\right\} \\
& -\phi\left(G\left(g x, g x_{n}, g x_{n}\right), G\left(g y, g y_{n+1}, g y_{n}\right)\right) .
\end{aligned}
$$

On taking limit as $n \rightarrow \infty$ in the above inequality and using the continuity of ϕ, we obtain $G(F(x, y), g x, g x)=0$, which implies that $F(x, y)=g x$. Similarly, one can show that $F(y, x)=g y$. Thus (x, y) is a coupled coincidence point of F and g.

If we take $u=w$ and $v=z$ in Theorem 2.5, we obtain the following corollary.
Corollary 2.6. Let (X, \leq) be a partially ordered set such that there exists a complete G-metric space on X. Suppose that there exist a continuous function $\phi:[0, \infty) \times[0, \infty) \rightarrow[0, \infty)$ with $\phi(t, s)=0$ if and only if $t=s=0$ such that

$$
\begin{align*}
G(F(x, y), F(u, v), F(w, z)) \leq & \max \{G(g x, g u, g w), G(g y, g v, g z)\} \tag{2.24}\\
& -\phi(G(g x, g u, g w), G(g y, g v, g z))
\end{align*}
$$

for all $x, y, u, v, w, z \in X$ with $g w \leq g u \leq g x$ and $g y \leq g v \leq g z$. Assume that X satisfies:

1. if a non-decreasing sequence $\left\{x_{n}\right\}$ is such that $x_{n} \rightarrow x$, then $x_{n} \leq x$ for all n,
2. if a non-increasing sequence $\left\{y_{n}\right\}$ is such that $y_{n} \rightarrow y$, then $y \leq y_{n}$ for all n.

Suppose also that $(g(X), G)$ is G-complete, F has the mixed g-monotone property and $F(X \times X) \subseteq g(X)$. If there exist $x_{0}, y_{0} \in X$ such that $g x_{0} \leq F\left(x_{0}, y_{0}\right)$ and $F\left(y_{0}, x_{0}\right) \leq g y_{0}$, then F and g have a coupled coincidence point.

If we take $g=I_{X}$ (identity map) in Theorem 2.5, we obtain the following result.

Corollary 2.7. Let (X, \leq) be a partially ordered set such that there exists a complete G-metric space on X. Suppose that there exist a continuous function $\phi:[0, \infty) \times[0, \infty) \rightarrow[0, \infty)$ with $\phi(t, s)=0$ if and only if $t=s=0$ such that

$$
\begin{array}{r}
G(F(x, y), F(u, v), F(w, z)) \leq \max \{G(x, u, w), G(y, v, z)\} \tag{2.25}\\
-\phi(G(x, u, w), G(y, v, z))
\end{array}
$$

for all $x, y, u, v, w, z \in X$ with $w \leq u \leq x$ and $y \leq v \leq z$. Assume that X satisfies:

1. if a non-decreasing sequence $\left\{x_{n}\right\}$ is such that $x_{n} \rightarrow x$, then $x_{n} \leq x$ for all n,
2. if a non-increasing sequence $\left\{y_{n}\right\}$ is such that $y_{n} \rightarrow y$, then $y \leq y_{n}$ for all n.

Suppose F has the mixed monotone property. If there exist $x_{0}, y_{0} \in X$ such that $x_{0} \leq F\left(x_{0}, y_{0}\right)$ and $F\left(y_{0}, x_{0}\right) \leq y_{0}$, then F has a coupled fixed point.

Corollary 2.8. Let (X, \leq) be a partially ordered set such that there exists a complete G-metric space on X. Suppose that there exist a continuous function $\phi:[0, \infty) \times[0, \infty) \rightarrow[0, \infty)$ with $\phi(t, s)=0$ if and only if $t=s=0$ such that

$$
\begin{align*}
G(F(x, y), F(u, v), F(w, z)) \leq \frac{1}{2}(& G(x, u, w)+G(y, v, z)) \tag{2.26}\\
& -\phi(G(x, u, w), G(y, v, z))
\end{align*}
$$

for all $x, y, u, v, w, z \in X$ with $w \leq u \leq x$ and $y \leq v \leq z$. Assume that X satisfies:

1. if a non-decreasing sequence $\left\{x_{n}\right\}$ is such that $x_{n} \rightarrow x$, then $x_{n} \leq x$ for all n,
2. if a non-increasing sequence $\left\{y_{n}\right\}$ is such that $y_{n} \rightarrow y$, then $y \leq y_{n}$ for all n.

Suppose F has the mixed monotone property. If there exist $x_{0}, y_{0} \in X$ such that $x_{0} \leq F\left(x_{0}, y_{0}\right)$ and $F\left(y_{0}, x_{0}\right) \leq y_{0}$, then F has a coupled fixed point.

Proof. Since

$$
\begin{equation*}
\frac{1}{2}(G(x, u, w)+G(y, v, z)) \leq \max \{G(x, u, w), G(y, v, z)\} . \tag{2.27}
\end{equation*}
$$

So that the result follows from Corollary 2.7.

Remark 2.9.

1) [34, Theorem 3.1] is a special case of Corollary 2.4 (by taking $\phi(t, s)=$ $\left(\frac{1}{2}-\frac{1}{k}\right)(s+t)$.
2) 34, Theorem 3.2] is a special case of Corollary 2.8 (by taking $\phi(t, s)=$ $\left(\frac{1}{2}-\frac{1}{k}\right)(s+t)$.

Example 2.10. Let $X=[0,1]$ be partially ordered set with the natural ordering of real numbers and

$$
G(x, y, z)=\max \{|x-y|,|y-z|,|z-x|\}
$$

be a complete G-metric on X. Let $F: X \times X \rightarrow X$ and $g: X \rightarrow X$ be defined by

$$
F(x, y)=\left\{\begin{array}{c}
\frac{x^{2}-y^{2}}{4}, \text { if } x \geq y, \\
0, \quad \text { if } x<y,
\end{array} \quad g(x)=\frac{3}{4} x^{2}\right.
$$

and $\phi:[0, \infty) \times[0, \infty) \rightarrow[0, \infty)$ be given by

$$
\phi(s, t)=\frac{1}{10}(s+t), \text { for } s, t \in[0, \infty)
$$

Notice that $F(X \times X)$ is contained in the set $g(X)$.
Now for $g(x) \leq g(u)$ and $g(y) \geq g(v)$,

$$
\begin{aligned}
G(F(x, y), & F(u, v), F(u, v)) \\
= & \frac{1}{4}\left|\left(x^{2}-y^{2}\right)-\left(u^{2}-v^{2}\right)\right| \\
= & \frac{1}{4}\left|\left(x^{2}-u^{2}\right)-\left(y^{2}-v^{2}\right)\right| \\
\leq & \frac{3}{10}\left[\left|x^{2}-u^{2}\right|+\left|y^{2}-v^{2}\right|\right] \\
= & \frac{3}{4}\left[\frac{\left|x^{2}-u^{2}\right|+\left|y^{2}-v^{2}\right|}{2}\right]-\frac{1}{10}\left(\frac{3}{4}\left|x^{2}-u^{2}\right|+\frac{3}{4}\left|y^{2}-v^{2}\right|\right) \\
\leq & \max \left\{\frac{3}{4}\left|x^{2}-u^{2}\right|, \frac{3}{4}\left|y^{2}-v^{2}\right|\right\}-\phi\left(\frac{3}{4}\left|x^{2}-u^{2}\right|, \frac{3}{4}\left|y^{2}-v^{2}\right|\right) \\
= & \max \left\{G\left(\frac{3}{4} x^{2}, \frac{3}{4} u^{2}, \frac{3}{4} u^{2}\right), G\left(\frac{3}{4} y^{2}, \frac{3}{4} v^{2}, \frac{3}{4} v^{2}\right)\right\} \\
& -\phi\left(G\left(\frac{3}{4} x^{2}, \frac{3}{4} u^{2}, \frac{3}{4} u^{2}\right), G\left(\frac{3}{4} y^{2}, \frac{3}{4} v^{2}, \frac{3}{4} v^{2}\right)\right) \\
= & \max \{G(g x, g u, g u), G(g y, g v, g v)\}-\phi(G(g x, g u, g u), G(g y, g v, g v)) .
\end{aligned}
$$

Thus mappings F, g and ϕ satisfy all the conditions of Corollary 2.2. Moreover $(0,0)$ is a coupled coincidence point of F and g.

Acknowledgement : The authors thank the editor and the referees for their useful comments and suggestions.

References

[1] R.P. Agarwal, M.A. El-Gebeily, D. O'Regan, Generalized contractions in partially ordered metric spaces, Appl. Anal. 87 (2008) 1-8.
[2] V. Lakshmikantham, Lj. Ćirić, Coupled fixed point theorems for nonlinear contractions in partially ordered metric space, Nonlinear Anal. 70 (2009) 4341-4349.
[3] Z. Mustafa, H. Obiedat, F. Awawdehand, Some fixed point theorem for mapping on complete G-metric spaces, Fixed Point Theory and Applications, Volume 2008 (2008), Article ID 189870, 12 pages.
[4] Z. Mustafa, B. Sims, A new approach to generalized metric spaces, Journal of Nonlinear and Convex Analysis 7 (2) (2006) 289-297.
[5] Z. Mustafa, B. Sims, Some remarks concerning D-metric spaces, Proc. Int. Conf. on Fixed Point Theory Appl., Valencia (Spain), July (2003) 189-198.
[6] Z. Mustafa, B. Sims, Fixed point theorems for contractive mapping in complete G-metric spaces, Fixed Point Theory and Applications, Volume 2009 (2009), Article ID 917175, 10 pages.
[7] Z. Mustafa, F. Awawdeh, W. Shatanawi, Fixed point theorem for expansive mappings in G-metric spaces, Int. J. Contemp. Math. Sciences 5 (2010) 2463-2472.
[8] M. Abbas, B.E. Rhoades, Common fixed point results for non-commuting mappings without continuity in generalized metric spaces, Appl. Math. Comput. 215 (2009) 262-269.
[9] M. Abbas, T. Nazir, S. Radenović, Some periodic point results in generalized metric spaces, Appl. Math. Comput. 217 (2010) 195-202.
[10] M. Abbas, T. Nazir, P. Vetro, Common fixed point results for three maps in G- metric spaces, Filomat 25 (2011) 1-17.
[11] L. Gajić, Z.L. Crvenković, A fixed point result for mappings with contractive iterate at a point in G-metric spaces, Filomat 25 (2011) 53-58.
[12] L. Gajić, Z.L. Crvenković, On mappings with contractive iterate at a point in generalized metric spaces, Fixed Point Theory and Applications, Volume 2010 (2010), Article ID 458086, 16 pages.
[13] M. Abbas, S.H. Khan, T. Nazir, Common fixed points of R-weakly commuting maps in generalized metric space, Fixed Point Theory and Applications 2011, 2011:41.
[14] H. Aydi, W. Shatanawi, C. Vetro, On generalized weakly G-contraction mapping in G-metric spaces, Comp. Math. Appl. 62 (2011) 4222-4229.
[15] R. Saadati, S.M. Vaezpour, P. Vetro, B.E. Rhoades, Fixed point theorems in generalized partially ordered G - metric spaces, Math. Comput. Modell. 52 (2010) 797-801.
[16] L. Gholizadeh, R. Saadati, W. Shatanawi, S.M. Vaezpour, Contractive mapping in generalized ordered metric spaces with application in integral equations, Mathematical Problems in Engineering, Volume 2011 (2011), Article ID 380784, 14 pages.
[17] W. Shatanawi, Some fixed point theorems in ordered G-metric spaces and applications, Abstact and Applied Analysis, Volume 2011 (2011), Article ID 126205, 11 pages.
[18] A.C.M. Ran, M.C.B. Reurings, A fixed point theorem in partially ordered sets and some application to matrix equations, Proc. Amer. Math. Soc. 132 (2004) 1435-1443.
[19] I. Altun, H. Simsek, Some fixed point theorems on ordered metric spaces and application, Fixed Point Theory and Applications, Volume 2010 (2010), Article ID 621469, 17 pages.
[20] S. Radenović, Z. Kadelburg, Generalized weak contractions in partially ordered metric spaces, Comp. Math. Appl. 60 (2010) 1776-1783.
[21] J. Harjani, K. Sadarangani, Fixed point theorems for weakly contractive mappings in partially ordered sets, Nonlinear Anal. 71 (2009) 3403-3410.
[22] T. G. Bhashkar, V. Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Anal. 65 (2006) 1379-1393.
[23] W. Shatanawi, Fixed point theory for contractive mappings satisfying Φ-maps in G-metric spaces, Fixed Point Theory and Applications, Volume 2010 (2010), Article ID 181650, 9 pages.
[24] W. Shatanawi, Partially ordered cone metric spaces and coupled fixed point results, Comput. Math. Appl. 60 (2010) 2508-2515.
[25] M. Abbas, M.A. Khan, S. Radenović, Common coupled fixed point theorem in cone metric space for w-compatible mappings, Appl. Math. Comput. 217 (2010) 195-202.
[26] Y.J. Cho, B.E. Rhoades, R. Saadati, B. Samet, W. Shatanawi, Nonlinear coupled fixed point theorems in ordered generalized metric spaces with integral type, Fixed Point Theory and Applications 2012, 2012:8.
[27] H. Aydi, M. Postolache, W. Shatanawi, Coupled fixed point results for (ψ, ϕ) weakly contractive mappings in ordered G-metric spaces, Comp. Math. Appl. 63 (2012) 298-309.
[28] M. Abbas, A.R. Khan, T. Nazir, Coupled common fixed point results in two generalized metric spaces, Appl. Math. Comput. 217 (2011) 6328-6336.
[29] H. Aydi, B. Damjanović, B. Samet, W. Shatanawi, Coupled fixed point theorems for nonlinear contractions in partially ordered G-metric spaces, Math. Comput. Modell. 54 (2011) 2443-2450.
[30] W. Shatanawi, M. Abbas, T. Nazir, Common Coupled Coincidence and Coupled Fixed Point Results in two Generalized Metric Spaces, Fixed point Theory and Applications 2011, 2011:80.
[31] Z. Mustafa, M. Khandaqji, W. Shatanawi, Fixed point results on complete G-metric spaces, Studia Scientiarum Mathematicarum Hungarica 48 (2011) 304-319.
[32] W. Shatanawi, Coupled fixed point theorems in generalized metric spaces, Hacettepe Journal Math. Stat. 40 (2011) 441-447.
[33] J. Harjani, B. López, K. Sadarangai, Fixed point theorems for weakly Ccontractive mappings in ordered metric spaces, Comp. Math. Appl. 61 (2011) 790-796.
[34] B.S. Choudhury, P. Maity, Coupled fixed point results in generalized metric spaces, Math. Comput. Modell. 54 (2011) 73-79.
(Received 8 May 2012)
(Accepted 30 October 2012)

Thai J. Math. Online @ http://thaijmath.in.cmu.ac.th

[^0]: ${ }^{1}$ Corresponding author.
 Copyright © 2015 by the Mathematical Association of Thailand. All rights reserved.

