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1 Introduction

The study of fixed points of mappings satisfying certain contractive conditions
has been at the center of rigorous research activity [1-3]. Mustafa and Sims [4]
generalized the concept of a metric space. Based on the notion of generalized
metric spaces, Mustafa et al. [5—7] obtained some fixed point theorems for map-
pings satisfying different contractive conditions. Abbas and Rhoades [8] initiated
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the study of common fixed point theory in generalized metric spaces (see also
[9, 10]). While Gaji¢ and Crvenkovié¢ [11l [12] initiated the study of fixed point
results for mappings with contractive iterate at a point in G-metric spaces. Re-
cently, many mathematicians have considered fixed point and common fixed point
problem in generalized metric spaces (see, e.g., [13-17]). The existence of fixed
points in partially ordered metric spaces has been investigated in 2004 by Ran and
Reurings [I8], and then further results in this direction were proved (see [1, 19, 20]).
Results on weak contractive mappings on such spaces, together with applications
to differential equations, were obtained by Harjani and Sadarangani in [21].

Bhashkar and Lakshmikantham in [22] introduced the concept of a coupled
fixed point of a mapping F' : X x X — X and investigated some coupled fixed
point theorems in partially ordered complete metric spaces. They also discussed
applications of their result by investigating the existence and uniqueness of solu-
tion for a periodic boundary value problem. Afterwards, Lakshmikantham and
Ciri¢ [2] proved coupled coincidence and coupled common fixed point theorems
for nonlinear mappings F' : X x X — X and g : X — X in partially ordered
complete metric spaces. Then, later [23] and [24] obtained interesting results in
this direction. Abbas et al. [25] have proved coupled coincidence and coupled
common fixed point results in cone metric spaces for w— compatible mappings.

Very recently, Cho et al [26] obtained some coupled fixed point results in
generalized metric spaces (see also, [17, 27-32] and references therein). Recently,
Harjani et al. [33] obtained some fixed point theorems for weakly C'—contractive
mappings in ordered metric spaces.

The aim of this paper is to prove some common coupled coincidence and cou-
pled fixed points results for C—contractive mappings defined on a partial ordered
set equipped with a generalized metric. Our results extend and unify various
comparable results.

Consistent with Mustafa and Sims [4], the following definitions and results will
be needed in the sequel.

Definition 1.1. Let X be a nonempty set. Suppose that a mapping G : X x X x
X — RT satisfies:

(a) G(z,y,2) =0if z =y = z;
(

)
b) 0 < G(z,y,2) for all z,y € X, with © # y;
(¢) G(z,z,y) < G(z,y,2) for all z,y,z € X, with y # z;
(d) G(z,y,2) =Gz, z,y) = Gy, z,x) = -+ -, (symmetry in all three variables);
and

(e) G(z,y,2) < G(z,a,a) + Gla,y, z) for all z,y,z,a € X.
Then G is called a G—metric on X and (X, G) is called a G— metric space.

Definition 1.2. A sequence {z,} in a G—metric space X is:
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(i) a G—Cauchy sequence if, for any ¢ > 0, there is an ng € N ( the set of
natural numbers ) such that for all n,m,l > ng, G(n, Tm,x;) < &,

(ii) a G—-convergent sequence if, for any € > 0, there is an z € X and an ng € N,
such that for all n,m > ng, G(z, zn, ) < €.

A G—metric space on X is said to be G—complete if every G—Cauchy sequence
in X is G—convergent in X. It is known that {z,,} G—converges to z € X if and
only if G(zy,, zn,x) — 0 as n,m — oo [4].

Proposition 1.3 ([]). Let X be a G—metric space. Then the following are
equivalent:

1. {zn} is G—convergent to x.

2. G(zpn,Zn,x) = 0 as n — oo.

3. G(zp,x,2) = 0 as n — .

4. G(xp,Tm,z) = 0 asn, m — co.

Proposition 1.4. A G—metric on X is said to be symmetric if G(z,y,y) =
G(y,z,z) for all z,y € X.

Proposition 1.5. Every G—metric on X will define a metric dg on X by
de(z,y) = G(z,y,y) + Gy, z,z), Va,y € X. (1.1)
For a symmetric G—metric
de(z,y) = 2G(z,y,y), ¥V x,y € X. (1.2)

However, if G is non-symmetric, then the following inequality holds:
3
5G(@,y,y) S dg(z,y) < 3G(z,y,y), Vo,y € X. (1.3)

Recall that if (X, <) is a partially ordered set and f : X — X is such that for
z,y € X,z < yimplies f(x) < f(y), then a mapping f is said to be nondecreasing.
Similarly, a nonincreasing mapping is defined.

Definition 1.6 ([22]). An element (x,y) € X x X is called a coupled fized point
of mapping F': X x X — X if ¢ = F(x,y) and y = F(y, x).

Definition 1.7 ([I3]). An element (z,y) € X x X is called:

(c1) a coupled coincidence point of mappings F': X x X - X and g: X —» X
if g(z) = F(z,y) and g(y) = F(y,x), and (gz, gy) is called coupled point of
coincidence.

(c2) a common coupled fized point of mappings F: X x X - X andg: X —» X
if # =g(z) = F(z,y) and y = g(y) = F(y, ).
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Definition 1.8 ([2]). Let (X, <) be a partially ordered set. Amap F': X xX — X
is said to has a g-mized monotone property where g : X — X if for x1,x2,y1,y2 €
X

gr1 < gxo implies F(z1,y) < F(x2,y) for all y € X

and
g1 < gyo implies F(x,ys) < F(x,y1) for all x € X.

If we take g = Iy (an identity mapping on X), then F is said to has the mized
monotone property ([22]).

2 Main Results

We obtain common coupled coincidence and coupled fixed points results for
C-contractive mappings defined on a partial ordered set equipped with generalized
metric space. We also extend some recent results of Choudhury and Maity [34] for
two maps in generalized metric space.

We start with following result.

Theorem 2.1. Let (X, <) be a partially ordered set such that there exists a
complete G- metric on X. Let F : X x X — X and g : X — X be con-
tinuous mappings such that F has the mixed g-monotone property, g commutes
with F and F(X x X) C g(X). Suppose that there exist a continuous function
¢ :]0,00) x [0,00) = [0,00) with ¢(t,s) =0 if and only if t = s = 0 such that

G(F(x,y), F(u,v), F(w,2)) < max{G(gz, gu, gw), G(gy, gv, g2) } (2.1)
- ¢(G(gz, gu, gw), G(gy, gv, gz))

for all x,y,u,v,w,z € X with gw < gu < gx and gy < gv < gz. If there exist
Zo,Yo € X such that gy < F(zo,y0) and F(yo,x0) < gyo, then F and g have a
coupled coincidence point.

Proof. Let xg,y0 € X be such that gzo < F(xo,y0) and F(yo,zo) < gyo. Since
F(X x X) C g(X), we can choose z1,y1 € X such that gz1 = F(x,y0) and
gy1 = F(yo,20). Similarly we can choose x2,y2 € X such that gza = F(z1,11)
and gys = F(y1,21). Since F has the mixed g-monotone property, we have gzo <
gr1 < grs and gys < gy1 < gyo. Continuing this process, we can construct two
sequences {z,} and {y,} in X such that

gTn = F(xnflaynfl) < gTpy1 = F(xnayn)
and
9Yn+1 = F(ymxn) < gyn = F(yn—lvxn—l)'

If for some integer k, we have (gzr+1, 9yr+1) = (9Tk, gyx), then F(xp, yr) = gak
and F(yg, ) = gy, therefore (zy,yx) is a coincidence point of F and g. So, we



Common Coupled Coincidence and Coupled Fixed Point ... 341

assume that (9241, 9Yn+t1) # (9Zn, gyn) for all n € N, that is, either gz, 1 # ga,
O gYn+1 7 gyn. For n € N, we have

G(ganrlaganrlagmn) = G(F(xnayn)a F(xnayn)a F(xnfla ynfl))
< max{G(9&n, 9%n, 9Tn-1), G(9Yn, 9Yn> 9Yn—1)}
— 0(G(92n, 9Tn, 9Tn—1), G(9Yn, 9Yns 9Yn—1))
< max{G(9rn, 9Tn, 9Tn-1), G(9Yn, gYn: 9Yn-1)}.  (2.2)

On other hand,

G(gynagyn+179yn+1) = G(F(yn—lvxn—l)a F(ynwn)a F(ym Tn))
< max{G(9Yn—1, 9Yn, 9Yn), G(9Tn—1, gTn, 9n)}
— O(G(9Yn—1,9Yn, 9Yyn), G(9Tn-1, gTn, gn))
< max{G(9Tn—1,9%n, gTn), G(9Yn—1,9Yn, 9Yn)}-  (2.3)

By (2.2) and (2.3), we have

max{G(92n+1,9Tn+1,9%n), G(9Yn, 9Yn+1, 9Yn+1)}
< max{G(9Tn, 9%n, 9Tn-1), G(9Yn, 9Yn, gyn—1)}
— min{¢(G(92n, 9n, 9n—1), G(9Yn; 9Yn, gYn—1);
O(G(9Yn—1,9Yns 9Yn); G(gTn—1,9Tn, gTn))}
< max{G(9&n, 9Zn, 9%n—1), G(gYns 9Yn, GYn-1)} (2.4)

Thus {max{G(9Tn-1,9Tn, 9%n), G(gYn—1, 9Yn, 9yn)}} is a nonnegative decreasing
sequence. Hence there exists r > 0 such that

lim max{G(92n—1,9%n, 9%n), G(9Yn—1, 9Yn, 9yn)} = 1.
n—oo
On taking limit as n — oo in (2.4), we get

r<r-— min{nlgr;o A(G(grn, 9Tn, 9Tn—1), G(GYns 9Yn> 9Yn—1)),
lim ¢(G(92n—1,9%n, 9%n), G(9Yn—1,9Yn, 9Yn))}

n—oo

<r.

Hence
lim ¢(G(92n, 92, 9%n-1), G(9Yn: 9Yn, gyn—1)) = 0.

n—oo

By using the properties of ¢, we have

lim G(gxnagmnagmnfl) =0

n—oo

and
lim G(gYn—1,9Yn, gyn) = 0.
n—oo
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Therefore, »r = 0 and hence

lim max{G(gzn—1,9%n, 97n), G(9Yn—1, 9Yn, gyn)} = 0. (2.5)

n—

Now we shill show that {gx,} and {gy,} are G-Cauchy sequences.
Assume on Contrary that {gx,} or {gy,} is not a G-Cauchy sequence, that is

n,m—oo

or

lim  G(9Ym, 9Yn, gyn) # 0.

n,M—00

This means that there exists € > 0 for which we can find subsequences of integers
my and ng with ng > my > k such that

max{G(9Zn,, 9%n,, 9Tny)s G(9Ymy+ 9Ynys GYny. )} > €. (2.6)

Further, corresponding to mj we can choose ny in such a way that it is the smallest
integer with ny > my, which satisfy (2.6). Then

max{G(9Tm,, 9Tn. -1, 9Tny-1)> G(GYny.> GYnp—1, GYni—1)} < €. (2.7)

By using the proper (e) of generalized metric and (2.7), we have

G(9%ny s 9Tny 9Tny,)
< G(9Tm, 9T, —1, 9T, —1) + G(9Tn,—1, 9n,,, 92n,,)
< G(9Tmy s 9Tmy—1, 9Tmy—1) + G(9Tmy—1, 9Ty —1, GTni—1)
+ G(9Tmy—1,9Tny, 9Tny)
< 2G(gxmkagxmkagxmk—l) + G(gxmk—lvgxnk—lvgxnk—l)
+ G(9Tni—1, 9Tny s GTny,)
<2G(9m,, 9Tmy 9Tmy—1) + € + G(9Tn,—1, 9Tny s 9Tn, ), (2.8)

and

G(9Ymis 9Yny> Iny,)
< G(GYmy> GYni—1>9Yni—1) + G(GYn—1, GYni> GYni)
< G(9Ymy> 9Ymi—15 9Ymi—1) T G(9Ymi—15 9Ynp—1, 9Yny—1)
+ G(9Yni—1, 9Ynis 9Yny.)
< 2G(9Ymi s 9Ymis 9Ymi—1) + G(9Ymy—15 9Yni—15 9Yny—1)
+ G(9Yny—1, 9Yny.> 9Yns.)
< 2G(9Ymy» GYmis 9Ymi—1) + € + G(9Yni—1, GYny.> GYny,)- (2.9)
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By (2.6)-(2.9), we have

e < max{G(9Tmy, 9Tny s 9Tny,)s G(9Ymy, GYny> GYni)
< 2max{G(9Tmy s 9Tmy> 9Tmy—1)s G(9Ymis 9Ymy GYmy—1)}
+ max{G(gTm;—1, 9%n; 1, 9Tn,—1), G(GYmy—15 GYni—15 GYny—1)}
+ max{G(gTn, 1, 9%n,, 9Ty, ), G(9Yny—1, 9Ynis 9Yn,)
< 2max{G(9Tm,, 9Tmy» 9Tmy—1)s G(GYmy s 9Ymy.> GYmu—1)} + €
+ max{G(9Tn, -1, 9Tny > 9Tny,)s G(GYn,—1, GYny> GYny) }-

Letting k — oo in above inequalities and using (2.5), we obtain
i max{ G (g2 m,; §Tns 9ni)s G(9Yms 9Ynis 9y )}
= Jim max{G(gzm,—1,9%n—1, 9% nr—1), G(gYmi—15 9Yn—1, 9Yni—1)}
=e. (2.10)

Since gan,—1 > gTn,—1 2> 9Tmy—1 A0d GYn, 1 < GYny—1 < GYm,—1, by (2.1) we
have
G(9Tny,, 9Tny,, 9Tm,,)
=G(F(zn,—1,Ynp—1), F(@np -1, Yne—1), F(Tmy—1, Ymy—1))
< max{G(9Tn, —1, 9%n, —1, 9%my 1) G(GYny—1> 9Yny—1> 9Ymu—1)}
= A(G(9Tn 1, 9Ty —15 9Tmy—1), G(9Yny—15 GYni—15 GYmy—1))  (2.11)
and
G(9Ymy> GYni> 9Yns)
= G(F(ymk—l’Imk_1)7F(ynk—15$nk_1)7F(ynk—17xnk_1))
< max{G(9Ym;,—1,9Yni—1> 9Ynr—1), G(9Tmy—1, 9Tn; 1, GTn,—1)}
= O(G(9Yms—15 9Yni—15 9Yni—1)s G(9Tmy—1, 9Ty —1, 9Ty —1)).  (2.12)
By (2.11) and (2.12), we get
max{ G (9Tmy, 9Tny, 9Tny.)s G(9Ymi s GYns> GYni ) }
< max{G(9Tmy—1; 9Tny—15 9Tni—1)s G(9Ymy—1, 9Yni—1, GYns—1)}
— min{A(G(9Tmi—1, 9% —15 9Tni—1), G(9Ymi—15 GYni—15 9Yni—1))5
H(G(9Ymi—15 9Yny—1, 9Yni—1)s G(9Tmy —15 9Tny—1, 9Tni 1)) }
< max{G(9Tmy, 9Tny, 9Tny.)s G(9Ymis 9Yni> 9Yny ) }-

On taking limit as k — oo in the above inequalities and using (2.10), we have
g S g — mm{klggo (,b(G(gzmkfl; 9GTn;—1, gznkfl)a G(gy’mk*h 9Yny—1, gynkq)),
M O(G(gymi—15 9Yni—15 9Yn—1), G(gmy—15 §ny—1, 9T, 1)) }

<e.
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Hence

M O(G(92m—1, 9%ni—15 9. —1), G(gYmi—15 9Yni—15 9Ynr—1)) = 0
or

klingo ¢(G(gymk—17 9Yny—1, gynk—l); G(gImk_l, 9Tn, —1, gmnk—l)) =0.

It now follows that

11m G(gxmkflﬂgxnkflﬂgxnkfl) - 0

k—o0
By (2.10), we obtain that ¢ = 0, a contradiction. Therefore {gx,} and {gy,} are
both G-Cauchy sequences in X. Since (X, G) is G-complete, there are x,y € X
such that {gz,} and {gy,} are G-convergent to x and y respectively, that is,

nl;rrgo G(9xn, gxn,x) = Jim G(gxn,xz,x) =0 (2.13)
and
lim G(gyn, gyn,y) = lim G(gyn.y,y) = 0. (2.14)
n— 00 n—r00
Using (2.13), (2.14) and the continuity of g, we have
Jim G(g(gzn), 9(g2n), g2) = lim G(g(gzn), gz, 97) =0 (2.15)
and
Jim G(g(9yn); 9(9yn), gy) = lim G(g(gyn), 9y, 9y) = 0. (2.16)

Therefore {g(g9z,)} is G-convergent to gz and {g(gyn)} is G-convergent to gy.
Since F' and g commute, we get

g(ganrl) = g(F(Znayn)) = F(gxnagyn) (217)

and
9(gyn+1) = 9(F (Yn, 2n)) = F(gyn, gn)- (2.18)
As F' is continuous, so taking limit as n — oo in (2.17) and (2.18) implies that

gr = F(z,y) and gy = F(y, ). That is, (g, gy) is a coupled coincidence point of
F and g. o

If we take v = w and v = z in Theorem 2.1, then we obtain the following
corollary.

Corollary 2.2. Let (X, <) be a partially ordered set such that there exists a com-
plete G-metric space on X. Let ' : X x X — X and g : X — X be con-
tinuous mappings such that F has the mized g-monotone property, g commutes
with F and F(X x X) C g(X).. Suppose that there exist a continuous function
¢ :[0,00) X [0,00) = [0, 00) with ¢(t,s) =0 if and only if t = s = 0 such that

G(F(z,y), F(u,v), F(u,v)) < max{G(gz, gu, gu), G(gy, gv, gv)} (2.19)
— ¢(G(gz, gu, gu), G(gy, gv, gv))
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forall x,y,u,v € X with gw < gu and gy < gv. If there exist xg,yo € X such that
gxo < F(zo,y0) and F(yo,x0) < gyo, then F and g have a coupled coincidence
point.

If we take g = Ix (the identity mapping) in Theorem 2.1, we obtain the
following coupled fixed point result.

Corollary 2.3. Let (X, <) be a partially ordered set such that there exists a com-
plete G-metric space on X. Let F: X x X — X be a continuous mapping satisfy-
ing the mized monotone property. Suppose that there exist a continuous function
¢ :[0,00) x [0,00) = [0, 00) with ¢(t,s) =0 if and only if t = s =0 such that

G (F(z,y), F(u,v), F(w, z)) < max{G(z,u,w),G(y, v, 2)} (2.20)
- ¢ (G(:L’, U, U}), G(ya v, Z))

for all z,y,u,v,w,z € X withw <u <z andy <v<z. Ifthere exist xg,yo € X
such that zg < F(zg,y0) and F(yo,x0) < yo, then F has a coupled fized point.

Corollary 2.4. Let (X, <) be a partially ordered set such that there exists a com-
plete G-metric space on X. Let F': X x X — X be a continuous mapping satisfy-
ing the mized monotone property. Suppose that there exist a continuous function
¢ :[0,00) x [0,00) = [0,00) with ¢(t,s) =0 if and only if t = s =0 such that

G (F(x,y), F(u,v), F(w, 2)) < =(G(z,u,w) + G(y, v, 2)) (2.21)

- ¢ (G(ma u, w)? G(yv v, Z))

N =

for all z,y,u,v,w,z € X withw <u<zandy <v <z If there exist xg,yo € X
such that zog < F(zg,y0) and F(yo,x0) < yo, then F has a coupled fized point.

Proof. Follows from Corollary 23] by noting that

1

5 (G(l‘, U, w) + G(ya v, Z)) < max{G(:c, U, w)a G(ya U, Z)} (222)
O

In our next result, we drop the continuity of F.

Theorem 2.5. Let (X, <) be a partially ordered set and (X,G) such that there
erists a complete G-metric space on X. Suppose that there exist a continuous
function ¢ : [0,00) x [0,00) — [0,00) with ¢(t,s) = 0 if and only if t = s =0 such
that
G(F(z,y), F(u,v), F(w, 2)) < max{G(gz, gu, gw), G(gy, gv, 92)} (2.23)
— ¢(G(gz, gu, gw), G(gy, gv, 9z))

for all x,y,u,v,w,z € X with gw < gu < gz and gy < gv < gz. Assume that X
satisfies:
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1. if a non-decreasing sequence {x,} is such that x,, — x, then x, < x for all
n’
2. if a non-increasing sequence {y,} is such that y, — y, then y < y, for all

n.

Suppose also that (9(X),G) is G-complete, F' has the mized g-monotone property
and F(X x X) C g(X). If there exist xo,yo € X such that gz < F(xo,y0) and
F(yo,20) < gyo, then F and g have a coupled coincidence point.

Proof. Following the proof of Theorem 2.1, we construct two G-Cauchy sequences
{gzn} and {gy,} in g(X) with

9Tn < gTpy1 and gy, > gYny1

for all n € N. Since (g(X),G) is G-complete, then there are z,y € X such that
gxn, — gr and gy, — gy as n — oco. By the properties of X, we have gz, < gz
and gy < gy, for all n € N. Now

G(F(z,9), 9ns1, 92nt1) = G(F(2,y), F(2n, yn), F(92n, gyn))
< max{G(9z, 9n, 9Tn), G(9Y, 9Yn, 9yn)}
— ¢(G(g9, 92n, 92n), G(9Y: GYn+1, 9Yn))-
On taking limit as n — oo in the above inequality and using the continuity of ¢,
we obtain G(F(z,y),gx,gx) = 0, which implies that F(z,y) = gz. Similarly, one

can show that F(y,z) = gy. Thus (x,y) is a coupled coincidence point of F' and
g O

If we take u = w and v = z in Theorem 2.5, we obtain the following corollary.

Corollary 2.6. Let (X,<) be a partially ordered set such that there exists a
complete G-metric space on X. Suppose that there exist a continuous function
¢ :[0,00) x [0,00) = [0,00) with ¢(t,s) =0 if and only if t = s = 0 such that
G(F(z,y), F(u,v), F(w,z)) < max{G(gz, gu, gw), G(gy. gv, g2)} (2.24)
- ¢(Ggz, gu, gw), G(gy, gv, 92))
for all x,y,u,v,w,z € X with gw < gu < gz and gy < gv < gz. Assume that X
satisfies:
1. if a non-decreasing sequence {x,} is such that x, — x, then x, < x for all
n’
2. if a non-increasing sequence {y,} is such that y, — y, then y < y, for all

n.

Suppose also that (9(X),G) is G-complete, F' has the mized g-monotone property
and F(X x X) C g(X). If there exist xo,yo € X such that grg < F(xo,y0) and
F(yo,20) < gyo, then F and g have a coupled coincidence point.
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If we take g = Ix (identity map) in Theorem 2.5, we obtain the following
result.

Corollary 2.7. Let (X,<) be a partially ordered set such that there exists a
complete G-metric space on X. Suppose that there exist a continuous function
¢ :[0,00) x [0,00) = [0,00) with ¢(t,s) =0 if and only if t = s =0 such that
G(F(x,y), F(u,v), F(w, z)) < max{G(x,u,w),G(y,v,2)} (2.25)
- (b(G(xv u, ’LU), G(ya U, Z))

forall x,y,u,v,w,z € X withw <u <z andy <v < z. Assume that X satisfies:

1. if a non-decreasing sequence {x,} is such that x, — x, then x, < x for all
n7

2. if a non-increasing sequence {y,} is such that y, — y, then y < y, for all
n.

Suppose F' has the mixed monotone property. If there exist xg,y9 € X such that
o < F(x0,y0) and F(yo,xo) < yo, then F has a coupled fized point.

Corollary 2.8. Let (X,<) be a partially ordered set such that there exists a
complete G-metric space on X. Suppose that there exist a continuous function
¢ :[0,00) x [0,00) = [0,00) with ¢(t,s) =0 if and only if t = s =0 such that

G(F(x,y), F(u,v), F(w,2)) <

N | —

(G(z,u,w) + G(y,v,2)) (2.26)
- ¢(G(x7 u, ’UJ), G(ya v, Z))
forall x,y,u,v,w,z € X withw <u <z andy <v < z. Assume that X satisfies:

1. if a non-decreasing sequence {x,} is such that x,, — x, then x,, < x for all
n7

2. if a non-increasing sequence {y,} is such that y, — y, then y < y, for all
n.

Suppose F' has the mixed monotone property. If there exist xg,y9 € X such that
o < F(xo,y0) and F(yo,zo) < yo, then F has a coupled fized point.

Proof. Since

1

5 (G(l‘, u, w) + G(ya v, Z)) < max{G(:c, u, w)a G(ya v, Z)} (227)
So that the result follows from Corollary 2.7. O
Remark 2.9.

1) [34, Theorem 3.1] is a special case of Corollary 2.4 (by taking ¢(t,s) =
(3 = H)(s+1).
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2) [34, Theorem 3.2] is a special case of Corollary 2.8 (by taking ¢(t,s) =

(35— (s +1).

Example 2.10. Let X =

of real numbers and

[0, 1] be partially ordered set with the natural ordering

G(x,y,2) = max{|z —y[, |y — 2|, |z — 2}

be a complete G—metric on X. Let F: X x X — X and g : X — X be defined

by

x27y2 ) 3

-7 >
F(z,y) = T T2y ) = 22

and ¢ : [0,00) x [0,00) —

0, ifzx<y, 4

[0, 00) be given by

o(s,t) = 11—0(5 +1t), for s,t € [0, 00).

Notice that F(X x X) is contained in the set g(X).
Now for g(z) < g(u) and g(y) > g(v),

G(F(z,y), F(u,v), F(u,v))

1
21‘(55 -y
_Lyi2
f4‘(:£ u

3 012
Slo[}z -

%) = (w? =%
2) — (42 —?)|
w?| + [y* =]

2?2 — 2|+ |y? — 02 1 /3 3
Z[} |2} |]1_O<Z|x2u2‘+z‘y2v2|>

IN

max {6
¢<

3 3 3 3
mx{Z ot 2] 2 |y2—v2|} —qb(z‘xQ—uQ 3 |y2—v2|)

2

3,3 5,3, 3,3,3,
P2 2,22 G242 2022

4x74u,4u), (4y74U)4U
323232 323232
(4 UL A VEAVLEVL

= max{G(gz, gu, gu), G(gy, gv, gv) } — ¢(G(gz, gu, gu), G(gy, gv, gv)).

Thus mappings F, g an
(0,0) is a coupled coinc
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