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Abstract : In this paper, we study the nonlinear equation of the form

2

@u(x,ﬁ) + A (=) u(x, t) = f(z,t,u(x, 1)),

with the initial conditions
u(z,0) = f(x) 0 u(z,0) = g(z)
) - ) at

where u(z,t) € R" x (0,00), R" is the n— dimensional Euclidean space and {* is
the Diamond operator iterated k times and is defined by (1.1). By e approximation
we also obtain the asymptotic solution for such equations. Moreover, if we put
n=1p=0,g=1and k = 1 we obtain the asymptotic solution of the nonlinear
beam equation.
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1 Introduction

In 1996, A. Kananthai [I] first introduced the operator {* and is named Dia-
mond operator and is defined by

k

P40\ 2 pHe a2 2
0 0
E _ = _ -
ot = ( 3I2> Z Ox? ’ (1.1)
i=1 "7 j=p+1 7

The operator {F can be written as the product of the operators in the form
OF = AFDF = OFAF, (1.2)

where AF is the Laplacian operator iterated k— times and is defined by

02 o2 82 \"*
Ab= (T 1.
<8xf + 0z2 Foee ax%) ’ (13)

and OF is the ultra-hyperbolic operator iterated k— times and is defined by

& 0? 0? 0? 0? 0? 0? *
It is well known that for the 1-dimensional wave equation
2 82
@u(x,t) = CQ@U(JJ,Q, (1.5)

we obtain u(x,t) = f(z+ct) + g(xz — ct) as a solution of the equation where f and
g are continuous.
Also for the n-dimensional wave equation

2

@u(x,t) + (= A)u(z,t) =0, (1.6)

with the initial condition u(x,0) = f(z) and %u(z,O) = g(z) where A is
defined by ([[3) with £ = 1, f and g are given continuous functions. By solving
the Cauchy problem for such an equation, the Fourier transform has been applied

and the solution is given by

(e, t) = f(€)cos (2m|é]) t + g(g)%ﬁlﬂ)t’

where €2 = €2 + €2+ .-+ &2 [see [2], p177]. By using the inverse Fourier
transform, we obtain u(z,t) in the convolution form, that is

u(x,t) = f(x) = Uy(2) + g(x) * () (1.7)
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~ in (2 t
where ®; is an inverse Fourier transform of ®;(§) = % and ¥, is an
7r
inverse Fourier transform of W, (&) = cos (27|¢|) t = E(/I\)(Q
In this paper, we study the equation
> k
u(a,t) + ¢ (=0) ulz, t) = f(z,t,u(z,1)), (1.8)

o2
with

u(e,0) = f(x) and S u(z,0) = gla)

where the operator {* is defined by (1)), ¢ is a positive constant, k is a non-
negative integer, f and g are continuous functions and absolutely integrable. The
equation ([C8)) is motivated by replacing the A by ¢ in (L) and extend it to the
nonlinear form. We consider (L) with the following conditions on u and f as
follows:

(1) u(x,t) € CHR)(R™) for any ¢t > 0 where C**)(R™) is the space of continuous
function with 4k-derivatives.

(2) f satisfies the Lipchitz condition,
|f (@, t,u) = f(z,t, w)] < AJu —wl
where A is constant with 0 < A < 1.
(3) /00/ |f(z,t,u(z, )] dedt < oo for & = (x1,22,...,2,) ER™, 0 <t < 00
gnd 57(.% t) is continuous function on R™ x (0, 00) .

By e— approximation and under such conditions of f and u, we obtain asymptotic
solution of (L) in the convolution form

u(z,t) = O(e" 27 ) x f(x,t,u(x,t)) (1.9)

Moreover, if we put k=1, n=1, p=0and ¢ =1 in (L) then (LJ)) reduces
to the nonlinear beam equation

82 9 84
wu(m,t) +c @U(I,t) = f(z,t,u(z,t)), (1.10)
and also we obtain )
u(z,t) = O(e™2) * f(a,t,u(x,t)) (1.11)

is the asymptotic solution of (II0). We also study the boundness of E(zx,t) where
E(z,t) is defined by ([2I0) in the Sobelev space. That is in (I.§)) by setting the
conditions f(z) € Hy(R™) and g(x) € Hs_1(R") then E(z,t) € Hs(R™ x (0,00))
where H (R™) is the Sobelev space of order s and is defined by

Hy, = H,(R") = {f € L*(R") : 0°f € L*(R")}
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where k is a nonnegative integer and norm
913 = [ 1HOPQ+I)rde <o

L?(R") is space of the square integrable in R® o = (aj,a9,...,qy), o; is a
nonnegative integer and

aa1+a2+...+an

« « «
0z 0x5” ... 0xn™

O°f = f(@).

Before going to that point, the following definitions and some concepts are needed.

2 Preliminaries
We shall need the following definitions

Definition 2.1. Let f € L;(R")-the space of integrable function in R™. The
Fourier transform of f(z) is defined by

F&) = Gy [ €€ @y (21)

where f = (51;527 cee agn)a T = (xlaan cee axn) € Rna (gax) = Elxl +£21‘2 + -+
&nxy is the inner product in R™ and dx = dzidxs . . . dx,.
Also, the inverse of Fourier transform is defined by

1 . ~
_ i(§z)
f§) = R /}R P f(a)d. (2.2)
If f is a distribution with compact support by Eq(2.1) can be written as [4]
. 1 _
— —i(¢,2)

Definition 2.2. Let ¢t > 0 and p is a real number
f(t) =0(tP) ast = 0 < tP|f(t)| is bounded as t — 0
and f(t) =o(t?) ast - 0< ¢t P|f(t)) = 0ast—0

Definition 2.3. Let Hy, = Hj(R"™) be the space of the Sobelev space of order k
on R™ and is defined by

Hy, = H,(R") = {f € L*(R") : 9°f € L*(R")}

where k is a nonnegative integer and norm

912 = [ 1HOPO+I)rde <o
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L?(R™) is space of the square integrable in R® o = (aj,ag,...,q,), a; is a
nonnegative integer and

aa1+az+---+an

0= oo oa @

Lemma 2.4. Given the function

P 2 p+aq
f(@)=exp | - (Zwﬁ) X

Jj=p+1

4 r+q
where (x1,%2,...,2n) ER™, p4+qg=n, fo< Z ac?
i=1 Jj=p+1

We consider four cases

Case 1 : p odd and q even(n odd).

Case 2: p even and q odd(n odd).

Case 3 : p and q are both (n even), and n # 4k, k=1,2,3,.......
For case (1)-(3), we obtain

n V4 4—n
[ f@)de) < QPSQq.%)F(g r(45m)
]Rn

Case 4 : p and q are both even(n even), we obtain

2,0, T(ETEI)
| o F@ < = (g

where T' denotes the Gamma function. That is [g, f(z)dx is bounded.

Proof.

P 2 ptaq
- (ac)dacz/n exp |— |— <Zx$> + Z x? dx
i=1

Jj=p+1

Let us transform to bipolar coordinates defined by
T =Twi, T2 =TwW2,..., Tp =TWp

dry = rdwy, dxg =rdws,..., dr,=rdw,

and
Tp4l = SWpt1, Tpt2 = SWp42,..., Tpiq = SWptq
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drpi1 = sdwpt1, dTpyo = sdwpya, ..., dTpiq = Sdwpyq,

where wi +wi +... +w2=Tland w2, +w2 o +...+wi, =1

Thus
fla)de = / exp [—\/54 - rﬂ P10 L dsdQ,d9,
R‘n. n

where dz = rP~1s7 1 drdsdQ,dQ,, dS, and dS, are the elements of surface area
on the unit sphere in RP and R? respectively,

| - f(@)da| < /]R _exp [— s4—r4} P st drdsd(,dQ,.

By computing directly, we obtain

f(z)dx = Qp,Q / / exp 77’4] P15 drds,
RW
2P/ 2ra/2
where ), = % and {}; = % Thus
| f(x)dx| < Q0 / / exp —7“4} rP~ s drds.
RTL

Put 72 = s?sinf, 2rdr = s>cosfdf and 0 <0 < g

DQq [T [ _ o ee p=
| flo)dz| < % / / eT Vst sin? 002 (gipy 9)725‘”1 cos 0dfds
Rn o Jo

Q Q & s 2 p—2
= %/ / e~ cos0pTa=1(sin9) "z cosfdfds. (2.4)

Put y = s?cosd, ds = into (Z4]), we obtain

2scosf

0,9, [™? nez p> d
/ / “T (sinf) "7 cos 0d9—L
cos

cos 9

[oe) /2 ne2 2-n p—2
_ —”4q/ / e~Vy*5 (cos ) (sin 0) *7* dydf
0

= %F( )/0 cos@ 2" (sinf) "2 * do
)5

| [ fz)da]

R

IN

n
2
n
2

R i

IN

(2.5)
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We consider the boundness of (2.5) in four cases :
Case 1: p odd and g even( n odd). If ¢ =4 then

4
== = =0 (2.6)
I(44) r'(0)
Thus (Z3) is bounded.
Case 2 : p even and ¢ odd(n odd).
In this case (4-n)
F =2
1
1) 4o (2.7)
L(+5%)
Thus (23] is bounded.
Case 3 : p and ¢ are both odd(n even and n # 4k)
For n # 4k, k =1,2,3,... Therefore
L)
RN (2.8)
P9
Thus (23] is bounded.
Case 4 : p and ¢ are both even(n even). In this case using the formula
I(z) (-1)"T'(—z+m+1)
= =1,2,3,...
T(z —m) T(1-2) » MELS
We have
e ree o)
L(*5) P(*3)
_ W)
(=)0 (=(359) +m +1)
INE!
= (4q) (2.9)
(=)L (F +m)
Putting ([29)) into ([24]), we obtain
INEAINEANEA
[ fagan < tota TGN
(—1)" (% +m)

where I' denotes the Gamma function. By (2.6)-(2.9) we conclude [, f(z)dz is
bounded. O

Lemma 2.5. (The Fourier transform of {*4)

—1)2k k
FOks = ((27T1)ZL/Q [(5% F G4 4 = (e + o+ gﬁﬂﬂ
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where F is the Fourier transform defined by (21]) and if the norm of £ is given by
1/2

€l = (2 +&+...+62)"? then

M

ks <
FOks < TERE

eI

Since M is constant thus FOF6 is bounded and continuous on the space S’ of the
tempered distribution. Moreover, by Eq.(22)

Ok‘sfl((%l)f/z [(E+e+...+8) - (En +€§+2+...+§§+q)2r
Proof. By Eq. (2.3)
FOM = g (046,076
= W(&, Oremw)
= W(é,m’mke*i&@
= W G (D" ( G+ & +...+&)ake%m)
_ W (BN @+ 4 E) (D (G + &y~ —€y,) )
= WFU%(&%---H@’“X(§%+...+gz—§§+1_..._g;+q)k
= W ((§3+...+€§)2 — (€, - ..._g§+q)2)k
Thus,
| FOFs| = W}(§f+£§+...+§§)2_ ( §+1+€§+2+...+€§+q)2}k
< gymldordli@ e
< GyElél™,

where M is constant and ||£]| = (£ + &5 + ...+£,21)1/2, &Gi=1,2,...,n) € R

Hence we obtain F<>§ which is bounded and continuous on the space S’ of the
tempered distribution. Since F is 1 — 1 transformation from the space S’ of the
tempered distribution to the real space R, then by (2.2))

1 k
o= F s [ g ) - G+ Gt )]

That completes the proof. O
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Lemma 2.6. Given the operator
R (=), (2.10)
ot?
where OF s the diamond operator and is defined by (I1). Then we obtain
E(x,t) = O(e™3F) (2.11)
an elementary asymptotic solution for the operator defined by (210).

Proof. Let
LE(z,t) = d(x,t),

where E(z,t) is the elementary solution of the operator L and 0 is the Dirac-delta
distribution. Thus

2
ot

Take applying the Fourier transform defined by (21 to both sides of (212,
we obtain

BE(z,t) + 2 (—0)" E(x,t) = 6(x)8(t). (2.12)

52 p+q 2\ ¥ N 1
2 Be (z 52) (S a) | Ben = gho
Jj=p+1
The solution of the above equation is
E(&,1) = H(tw (&, 1), (2.13)

where H(t) is the Heaviside function and w(¢,t) is a solution of homogeneous
equation.

Now, we are solving the solution of homogeneous equation. Given the homo-
geneous equation

82 2 ptq 2\ * R

E(&,t) (Zs ) + > ¢ E(1) =0 (2.14)

J=p+1

Let w(&,t) be the solution of ([ZI4), we have
2 2\ *

92 p+q
(&) (Zs ) + Y. ¢ w(&t) =0 (2.15)

J=p+1

with the initial condition
0

w(x, 0) - f(m)a —w(m, 0) - g(l‘) (216)

ot
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Now, we put r? = &7 + & +...+ & and s> = &2, | + &2, + ... + &2, we obtain

g_;@(f,t)JrCQ (s4fr4)k@(§,t):0
@(E,t)ZA(g)cos( 54—T4>kct+B(€)sin( 34—r4>kct.

By ([ZI6), ©(£,0) = A(€) = f(€)

aaéi,t) - ¢ ( 4 _ r4>k A(€) sin ( 54— r4>k ct+c (m)kB(g)COS ( st — T4>k ct.
PO _ g4 o (var =) Be) = (0
B(€) = 9(&) _

@(f,t):f(f)cos< s4r4)kct+%sin( 54—r4)kct. (2.17)

By applying the inverse Fourier transform (2.I7)), we obtain the solution w(z,t) in
the convolution form Then (2] has a solution in the convolution form

w(z,t) = f(z) *e(x) + g(x) * ¢e ().

Now we need to show the existence of ®;(x) and ¥y(z).
Let us consider the Fourier transform

— k
() = and U.(z) = cos ( st — 7"4) ct.

They are all tempered distributions but they are not L;(R™) the space of
integrable function. So we cannot compute the inverse Fourier transform ®(x)
and W;(z) directly. Thus we compute the inverse ®;(x) and ¥.(z) by using the
method of e—approximation.

Let us define
k

ct
for > 0. (2.18)

(&) = e‘“(m)k@@) _ ee(VE=r)" sin (v/s* — %) :
c ( st — 7"4)

We see that ¢f(z) € Ly (R™) and ¢f(x) — ¢¢(x) uniformly as e — 0. So that
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¢¢(x) will be the limit in the topology of tempered distribution of ¢§(z). Now

1
€ _ (&,2) Fe
Qt(z) - 27‘(’)"/2 /]Rne @ E
k
_ 1 /2/ piE.2) p—eo(v/F= o=l sin( 54—7°4)kctd5
(2m)n/2 Jgn ¢ (Vs =79

@5 (2)]

IN

/ —ec Vst—rt k
dE
k
— 7n4
By changing to bipolar coordinates. Now, put

& =rwi, & = TW2, ..., §p = TW)p

and Ept1 = SWpy1,Ept2 = SWpy2, ..., &p = SWptq, PFq="n

Wherew%—l—w%—i—---—i—wz:landwzﬂ—i—wf,w—i— w2, =1,

p+q

——T\k
105 (2)] < / ) 1P~ 59 drd sdS), dS)
t = (27T)n/2 " c( o 77"4)k p®iiq,

where d§ = r”_lsq_ldrdsdequ, dQ), and d), are the elements of surface area

. . . (2m)P/? (2m)a/?
of the unit sphere in R” and R? respectively, where €2, = , = ,
T®/2) " T(e/2)
765 5477“4 k
o5 (z P57 rds,
/2 Tk
" 0 ¢f Vst —rd)
putting 72 = s2siné, 2rdr = s?cosfdf and 0 < 0 < 5
765 54 —s4 sin? 9) *
()] < sin §) “z- 5P+ cos 0dhds,
¢ 2 /2 2
7T ’I’l

— s%sin? 9)

/2 —ec s cosé)
= 2 /2/ / Pt l(sing) T * cos 0dfds.
c n

(s2 cos 9
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2k

Rl A — ds — 59U thus

k
Put y = ec (s?cosf)" = ecs
! ( ) cecosk @’ 2ky

|3 ()]

IN

w/2
0) 9 d df
4C 27‘( ”/2 / /0 y/ Sln 2 CcOS y

w/2
- wnl, |

/2 e yyn/Qk 2 ' o
- W/ / /2K fpen/2k— 1(Sm9) 2 (0089) dyd9

Q Q r (2k ]‘) /2 —2
- 4(2’/T)n/2 kezr—1en/2k /O (Sln 9) COs 9) d9

—Y n/2k b
- c cosk 9> (sin 9)T2 cos Odydb
€

(
0,0 n
- 86”/2k(277)n/2k6n/2k—lr (ﬁ - 1) B (
Q0 F(5-)T(H)r ()
—~ .

|<I>t($)| < 8cn/2k(2ﬁ)n/2k€n/2k—1 I‘(4

V@) = o [ O

and

Wi ()]

IN

7"/2/11@ eV g

o ps .
771/2/ / efec(s/ssf'rS) Tp_lsq_ld’f’ds,
0 0

put 2 = s%sinf, 2rdr = s?cosfdf and 0<6 < g

Wi ()]

W / / emels" 020)" (sin 0) "5 574971 cos fuds
7T

m/ / 76(2(5 cosG) Sp-i—q 1(S1n9) 4 COSHdeS
7T n
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dy

ty = ec(s* cosf)*, ds = s——
put y = ec(s* cosh)*, ds S4ky’

€ /2 e -y Y n/2k
|‘Ilt($)| S m/ / m) (51n9) 2 COS@dyd@

/2 e yyn/Qk 1 o
B 4k(2m ”/2/ / “on/2ken/2k (sinf) = (COSG) * dydo

- Qqu n 7\'/2 . p—2
B 4(2ﬂ)”/2kcn/2k€n/2kr<%)/ (sinf) 2 (coso) = 40

‘ 2,2, NCINCIN G
i) < 8(2m)/2ken 2k en 2k T (49)
Set
W (1) = £(2) % W5 (@) + g(a) * B (x). (2.19)

By e—approximation of w(z,t) in (ZI5) for e — 0, w®(z,t) — w(x,t) uniformly.
Now
wat) = [ Wi+ [ gr@ie - rdr
]R'n. n
Thus

jw (z, 1)

IN

W (z =) A [ (r)ldr + | @ (x

(

- 2,0, T (3) T (
> 8(27T)n/2k,cn/2k€n/2k r (%q
2,9, r (% _ 1)
8(2ﬂ)n/2kcn/2k€n/2k71 T (4%)

2w (a, 1)]

_ 90, TEITEr(E
= 8(2m)n/2kcn/2k r(2

4
Q,2¢ F(-Hr (G ()
8(27T)n/2kcn/2k T (44_q) N, (220)

where M = fRn r)|dr and N = fRn (r)|dr, since f and g are absolutely inte-
grable. We consider the boundness of (IZ?]]) in four cases :
Case 1: p odd and ¢ even( n odd). If ¢ = 8 then

= =0. (2.21)

Putting (222) into (Z21)), we obtain

" ?F|we (2, )] < K (K is constant)
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. Case 2 : p even and ¢ odd(n odd).
In this case

=
3

—

(
(4

)
)

J;‘

# 00 (2.22)

—
|
1)

}b‘

Thus
"2k |uc(x,t)| < K(K is constant)

Case 3 : p and ¢ are both odd(n even and n # 4k)
For n # 8k, k =1,2,3,... Therefore

N

—
3

e

S

# 00 (2.23)

—
N

Thus
€n/2k|9‘16(=’ﬂﬂf)| < K(K is constant).

Case 4 : p and ¢ are both even(n even). In this case using the formula

I'(2) (-D)"T(—z+m+1)
= =1,2,3,...
I'(z—m) INGES , m=1,23,
We have
r(in) (g
L(*5) (%)
_ L1 - (*5)
(—D)mD(=(51) +m + 1)
@ (2.24)
DT +m)
Putting (2I8)) into ([2I6]), we obtain
0,0 D(£)T(5)D(9)
n/2k | ()| < piiq 2k 1 s
€ |’LL (I) )| — 8(271‘)”/2/60"/% (71)mr (% +m) +
8(2m)n/2ken/2k (=1)mT (4 +m ’ .
By (2.3)-(2.26) we conclude (2:21]) is bounded.
By (2I6) we have
0,0, D)) ()
n/2k), e < pilq 2k 4 )z
€ |W ($,t)| = 8(27T)n/2kcn/2k T (ﬂ) +

4
Q,804¢ r (% — 1) r
8(27T)n/2k.cn/2k T (4T)
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and

. 00, T(E)TE)T (A
n/2k|, € P4 2 -
lg%e |w (x, t)l < 8(27T)n/2kcn/2k T (4*‘1)

By definition (2.2) we obtain the asymptotic solution of (ZI%) in the form
w(a,t) =0 (e*n/%) (2.26)

forn#k ase— 0.
Thus we obtain an asymptotic elementary solution of the operator by (ZI0)

E(xz,t) = H(t)O(e 2F)
= O(2) , t>0 (2.27)
O
3 Main Results
Theorem 3.1. Given the equation Given the nonlinear equation
2
@U’(xﬂf) +C2(—<>)ku($,t) = f(I,t,’U,(.ﬁ,t)) (31)

for (z,t) € R™ x (0,00), k is a positive number and with the following conditions
on u and f as follows

(1) u(z,t) is the space of continuous function on R™ x (0, 00).
(2) f satisfies the Lipschitz condition,
|f($,t, u) - f($, t,’LU)| S A|U’ - U}|

where A is constant with 0 < A < 1.

(3) /OO/ |f(x,t,u(z,t))|dxdt < co for x = (z1,22,...,2,) ER™, 0 <t < 00
gnd Szﬁc,t) is continuous function on R™ x (0, 00).
Then we obtain the convolution
u(z,t) = E(x,t) * f(x,t,u(x,t)) (3.2)

as a unique solution of (Z21)) for x € Q where Q is a compact subset of R™ and
0 <t <T withT as constant and E(x,t) as an elementary solution defined by
(Z38) and also u(x,t) is bounded for any fivzed t > 0. In particular, if we put
n=1p=0,g=1and k =1 in (1), then (Z1|) reduces to the nonlinear beam

equation
2 4

@u(x,t) + C2%u($, t) = f(x,t,u(x,t)) (3.3)

and we obtain u(x,t) = €2 * f(x,t,u(z,t)) as an asymptotic solution of (33).
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Proof.  Convolving both sides of (B1)) with E(z,t), that is

2

E(z,t) * [%u(x,t) + 02(—0)]%(30,1?)] = E(x,t) = f(z,t,u(z,t))

or 5
| ) + (=01 Bla.0)] wulert) = Elavt)x flo.tu(e.),
(5(1‘,t) * u(:c,t) = E(CL’,t) * f(xata U(:L',t)).
Thus

u(z,t) = E(x,t) * f(x,t,u(x,t))
/ E(r,s)f(x —rt —s,u(z —r,t—s))drds,

where E(r, s) is given by definition (??). We next show that u(z,t) is bounded on
R™ x (0,00). We have

xt|</ / E(r,9)||f(x —r,t — s,u(x — r,t — s))|drds
< |E(r,s)|N

o)
where N = / / |f(x —rt — s,u(z — r,t — s))|drds. By condition (3) in

o0
Theorem 3.1 and (Z27]) we obtain u(z,t) is bounded on R™ x (0, 00).
To show that u(z,t) is unique. Suppose there is another solution w(z,t) of
@B1). We next to show that w(z,t) is unique. Let w(z,t) be another solution of

@J). Let the operator be
2

0
L—@—FC( <>)k

then ([B.J)) can be written in the form

Lu(z,t) = f(z,t,u(x,t))

Thus
Lu(z,t) — Lw(x,t) = f(x,t,u(z,t) — fa,t,w(z,t)).

By the condition (2) of the theorem 3.1,
|Lu(z,t) — Lw(z, t)] < Alu(z,t) — w(z,t)|. (3.4)

Let Qg x (0, 7] the compact subset of R™ x [0,00) and L : C**)(Qq) — C“¥)(Qy)
for0<t<T
Now (C#F)(Q), ||..]]) is a Banach space where u(z,t) € C4*) (Qq) for 0 <t <
Tand ||..|| is given by
[uz, )| = sup |u(z,?)].

€N
0<t<T
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Then, from (2) with 0 < A < 1, the operator L is a contraction mapping on
C@R) Q). Since (C™*) (Qy), ||..||) 1 a Banach space and L : C4*) (Qg) — C4*) (Q)
is a contraction mapping on C'*¥) (), by Contraction Theorem [3], we obtain the
operator L which has a fixed point and has uniqueness property. Thus u(z,t) =
w(z,t).

In particular, if we put n =1,p =0,¢ = 1 and k = 1 then ([B.J]) reduces to the
nonlinear beam equation

0? 9%
O e ) + A (e 1) = f(,tula, 1), (3.5)
Thus we obtain u(z,t) = O(e~'/*) % f(x,t,u(z,t)) is an asymptotic solution
of (3X). That complete the proof. O

Theorem 3.2. A boundness of the elementary solution in Sobelev space.

Let the condition (1.8) of f and g be f € Hs(R™) and g € Hs—1(R™) then
E(z,t) € Hs(R™ x (0,00)) where Hs(R™) is a Sobelev space of order s defined by
definition 2.3.

Proof. By the Plancherel theorem, f € Hg(R™) if and only if (1++v/s* — r4)sf(§) S

L2(R™). Now(0af)(€) = (i€)° F(€) where

aytazt...tan
0

(o7 (e} Ol
0x{'0x5” ... Oz

0 =

for o] = ax+ag+. ..+, < sand s is a nonnegative integer. We have (z‘g)af(g) €
L?(R™) or equivalent (14 v/s% —1r%)%f(¢) € L2(R™). We now show that E(z,t) €
H(R™ x (0,00))) with the Sobelev norm

|\E<x7t>|\i=/ (€ D2(1 + /5T —ri)Fde < o

for any given t € (0, 00). Now consider (928 E)(¢,t) where E(,t) is an elementary
solution is given by (28],

a1tazt...tan
0

= (0% (03 (0%
0x{"'0xy” ... 0xy"

[e3

and 0J atj , jisa nonnegative integer. We have
(020 E)(&,t) = (Z«E) E(& 1) for |o|+j<s

; T
= (z‘g)ag_t <f(§)C’os(c (\/@)k - ,g\(g)Sm(c( s ) t))

J

= i (e (Vi A)") mgte (Vi) 0
(i€)" <c ( st r4)k>j1 trig (c ( st 7’4)k t> (3.6)
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where trig denotes one of the function £Co0s or £5in. By the Plancherel theorem,
if f € Hy(R" and g € Hs—1(R") then on the right hand side of (13) we have

(i€ (VsT— P () € LR and (i€)* (c(VaT— ") 5(6) € L2@®).

Thus (0207u)(€,t) € L2(R™ x (0,00)) and it follows that 8287 E(x,t) € L2(R™ x
(0,00)) with the Sobelev norm

1/2
B0l = ([ 186 0Pa+ VT )

bounded independent of ¢ for || + j < s. It follows that E(z,t) € Hs(R™ x
(0,0)). O

Acknowledgements : The author would like to thank The Thailand Research
Fund, The Office of the Higher Education Commission, Maejo University, Chi-
ang Mai, Thailand for financial support and also Professor Amnuay Kananthai
Department of Mathematics Chiang Mai University for the helpful of discussion.

References

[1] A. Kananthai, On the solution of the n-dimensional diamond operator, Ap-
plied Mathematics and Computational (1997) 27-37.

[2] G.B. Folland, Introduction to Partial Differential Equation, Princeton Uni-
versity Press, Princeton, New Jersey, (1995).

[3] E. Kreyzig, Introductory Functional Analysis with Applications, John Willey
and Sons Inc., (1978).

[4] A.H. Zemanian, Distribution Theory and Transform Analysis, McGraw-Hill,
New York, 1965.

(Received 17 May 2013)
(Accepted 13 March 2015)

THAI J. MATH. Online @ http://thaijmath.in.cmu.ac.th


http://thaijmath.in.cmu.ac.th

	Introduction
	Preliminaries
	Main Results

