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1 Introduction

In 2011, Byung—Soo Lee [I] defined new family of mappings: infinite family
{T;}2, of unlformly quasi—sup (f,) Lipschitzian mappings and infinite family
{5;}2, of gn—expansive mappings for approximating a common fixed point in
convex metric spaces using a Noor—type iterative. The iterative is defined as
follows: let C' be a nonempty convex subset of (X, d, W), {T;}$2, an infinite family
of uniformly quasi—sup (f,) Lipschitzian mappings and {S;}°; a g,—expansive
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mappings of C. Suppose that {an}, {Bn}, {vn}, {an}, {bn}; {cn}, {dn}; {en}; {ln}
are sequences in [0, 1] for which o, + B+ = an +bn +cn =dp + e, +1, =1
for all n € N. For 27 € X, let {z,,} be a sequence defined by

Tnt+1 = W(Snmey?ymun?an;Bm'Yn)
Yn = W(Snxnangnavn;anabnacn) (1-1)
Zn =W (SnZn, TTn, Wn; dp, en, 1)

where {u,}, {vn}, {wn} are any sequences in X.

In 2013, Phuengrattana and Suantai [2] introduced a new iterative pro-
cess for approximating a common fixed point of a finite family {7;}¥; of gener-
alized asymptotically quasi—nonexpansive mappings in a convex metric space.
The following is the iterative process: let C' be a convex subset of a convex
metric space (X,d, W) and {T;}}, a finite family of generalized asymptotically
quasi—nonexpansive mappings. Suppose that {an)}, for i =1,2,..., N, are se-
quences in [0, 1]. For z1 € C, let {z,} be a sequence defined by

(0)

Yn =Tn
pw) =W s an)
yﬁf) = W(Tgyi oy s n?)
u =Wy s %‘”) (1.2)

N— N— N— N—
i =Wy el )
s = WD 8D, o)
for all n € N.
Motivated by [I] and [2], we define a new n—steps iterative process to ap-

proximate a common fixed point of a finite family {7} }Y ; of uniformly quasi—sup (f,.)
Lipschitzian mappings and a finite family {S;}¥; of g,—expansive mappings in
convex metric spaces. Our new iterative process is explained as follows: let C' be
a nonempty convex subset of a convex metric space (X,d, W). Let {T;}Y, be a
finite family of uniformly quasi—sup (f,,) Lipschitzian mapplngs and {S;}X, a fi-

nite family of g, —expansive mappmgs of C. Suppose that {a } {Bn)} {Vn )} are

sequences in [0, 1] such that ozn)—i—ﬁ ( ) = 1foreachn € Nand i = 1,2,...,N.
For z1 € C, let {x,} be a sequence deﬁned by

y'SzO) = Tn

i WSty Ty uls o, B 480)

i W“”Ei T ol 4 )

Yn (Si?yn yIg Yy un s am B )

i (N) = WSk <lflvhg\i> ; TA(NIZ{;N <2) EN_%)OCS(VN_)U’?ﬁggv_l)ﬁgv_l))
Tntl = Yn =W (S¥yn TRy sam B )

(1.3)
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for all n € N and {uﬁf )} are any bounded sequences in C.

The purpose of this paper is to extend and improve some results of [I] and [2].

2 Preliminaries

In this section, the definition of mapping which will be used in the paper is
presented as follow.

Definition 2.1 ([IL Definition 1.1],[2]). Let C be a nonempty subset of a metric
space (X,d), T a self—mapping on C and f : C — (0,00) a function which is
bounded above. The set of fixed point of T is denote by F(T), i.e., F(T) = {x €
C:Tx=x}.

(1) T is f—expansive if

d(TI, Ty) < sup f(Z) ’ d(I, y)
zeC

for all z,y € C.
(it) T is asymptotically f—expansive if there exists a sequence {z,} in C such
that lim f(x,) =1 satisfying

n—oo

for all z,y € C' and n € N.

(t9t) T is asymptotically quasi—f—expansive if there exists a sequence {x,} in
C such that lim f(z,) = 1 satisfying
n— o0

forallz € C,p € F(T) and n € N.
(iv) T is wuniformly quasi—sup (f) Lipschitzian if

d(T"z,p) < sup f(z) - d(x,p)
zeC

forallz € C,p € F(T) and n € N.
(v) T is wuniformly L—Lipschitzian if there exists contant L > 0 such that

for all z,y € C and n € N.

Some definitions and useful results related to convex structure and convex
metric space are recalled next.
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Definition 2.2 ([I, Definition 1.2]). Let (X, d) be a metric space. A mapping
W : X3 x I? = X is said to be a convex structure on X if for each z,y, z € X and
a, B,y € I with o+ g+~ =1 satisfy

d(W(z,y, 2, 8,7),u) < ad(z,u) + Bd(y, u) +vd(z, u)

for all u € X. Moreover, a metric space (X, d) with a convex structure W is called
a convex metric space which will be denoted by (X,d,W). A nonempty subset
C of a convex metric space (X,d, W) is said to be a conver subset of (X,d) if
W(z,y,2a,8,7) € C for (z,y,2) € C* and (a, B,7) € I’ with a + S+~ = 1.

Definition 2.3 ([2]). Let C be a subset of a metric space (X, d). A finite family
of self mappings {7}, and {S;}}¥, of C are said to have Condition A if there
exists a nondecreasing function f : [0,00) — [0,00) with f(0) = 0 and f(r) >
and function g : [0,00) — [0, 00) with g(0) = 0 and g(r) > 0, respectively for all
r > 0 such that

for some i, 1 < i < N and for all z € C, where d(z, D) = inf {d(x,p) tpeD=

(Nra)A (A s}

Definition 2.4 ([2]). Let C be a subset of a metric space (X, d). A mapping T is
semi—compact if for a sequence {x,} in C with lim d(z,,Tz,) = 0, there exists
n—oo

a subsequence {z,,} of {z,} such that z,, — p € C.
Lemma 2.5 ([3, Lemma 1.1, Remark 1.3], [} Lemma 2]). Let {an} {bn},{cn} be

sequences of nonnegative real numbers such that Z by, < 00 and Z cn < 00 and

n=1 n=1

for allm € N,
Gp41 § (]- + bn)an + cn.
Then,
(1) lim a, ewxists,
n—oo
(i) If hminf an =0 then lim an =0,

(z32) If ezther liminf a,, = O or hm supa, =0 then lim a, = 0.
n—00 n—00 n—00

Definition 2.6 (|2, Definition 2.3]). Let {z,} be a sequence in a metric space

(X,d) and D a subset of X. We say that {z,} is of monotone type I with respect

to D if there exist sequences {r,} and {s,} of nonnegative real numbers such that
(o)

Zrn < oo,an < oo and
n=1 n=1

d($n+1,p) < (1 + rn)d(xn;p) + Sn
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for all n € N and p € D. A sequence {x,} is of monotone type II with respect
to D if for each p € D there exist sequences {r,} and {s,} of nonnegative real
o0

numbers such that Z rn < 00, Z Sp < 00 and

n=1 n=1
d(anrl;p) S (]- + Tn)d(mnap) + Sn
for all n € N.

Lemma 2.7 ([2] Theorem 2.4]). Let (X,d) be a complete metric space, D a subset

of X and {x,} a sequence in X. Then one has the following assertions:

(¢) If {xn} is of monotone type I with respect to D then lim d(x,, D) exists.
n—o0

(#3) If {xn} is of monotone type I with respect to D and liminf d(z,, D) = 0 then

n—oo

X — p for some p € X satisfying d(p, D) = 0. In particular, if D is closed then

peD.

(¢i7)  If {xn} is of monotone type II with respect to D then lim d(z,,p) exists
n—oo

forallp e D.

3 Main Results

In this section, we let C' be a nonempty convex subset of a convex metric space
(X,d,W). Let {T} v, be a finite family of umformly quasi—sup (fy)
Lipschitzian self—mappings of C' and {S;}}¥, a finite family of g,,—expansive
self—mappings of C. Let f,, g, be functions which is bounded above such that

U, = sup fo(z) and E, = sup gn(z). Suppose that U = supU, and E =
zeC neN

sup E,, are finite and {a(z)} {ﬂ(z)} {7(1)} are sequences in [0, 1] such that o) 4+
neN

D+ D =1 for each n € N. Let 65 = ol + 8, 6, = max {60}, v, =
1<i<N

i) (i—-1) —
max (Y and d(up,p) = 12?%{&“" ,0)}. Let A = rnaLx{E7 U}, sequences

{6nA} C [1,00) and {vpd(un,p)} C [0,00) such that Z(énA —1) < oo and

n=1

ifynd (un,p) < 0o. Suppose D = (ﬂ F(T, ) ﬂ ( ﬂ F(S ) is nonempty. Let

n=1

x1 € C and the sequence {z,} be the iteration deﬁned as ([[3). We shall first
begin by constructing the following useful inequalities.

Lemma 3.1. Foreachi=1,2,..., N—1,ne€ N andp € D. The following results
hold.

(i) d,p) < b+ A-dyi™",p) + yud(un, ).

(i) d(ys),p) <O A" d(wa,p) + [ 657 AT yd(un, ).

j=1
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(ii7)  d(@ns1,p) < 8- A d(y 0 p) + > 8571 ATy, d(un, p).

j=1
Proof. (i) We need to show that
d(ys,p) < 0n - A-d(y™Y,p) + ynd(un, p)

for any i = 1,2,...,N — 1, n € N and p € D. By Definition 2] Definition
21X4), (iv), U, = supfn( ), B, = supgn( ), U =supU, and E = sup E,,, we

zeC neN neN
have the following mequahty,
d(yy),p) = dW (SPys ™V, Tyl ul ™Dl B0, 2(), p)

”d(S"y" Yop) + BOAT Y, p) + AP d(ui Y, p)
ol gn (ySi~ 1>)d(yﬁf ),p) + B Und(y“’” )+ dwl =, p)
ald) End(y$™",p) + BV Und(y$ ™", p) + 45 d(uf™"), p)
(an>E+ﬂ§f)U) (Wi, p) + 4 dwl, p).

IN A I/\

Thus by 65 = o) + 8, A = max{E,U}, 6, = max {5 DYy, = IQHEL)%V{’Y )

and d(up,p) = lglia<}§\/'{d( ul~Y p)}, we can rewrite the above inequalities as
d(y),p) < 6 Ad(yl =Y, p) + P d(ul ™Y, p)
< 8uAd(yy ™Y, p) + yud(un, p). (3.1)

(#9) We are going to show that
d(y$),p) < 6, A%d(wn, p) + > 65 AV ynd(un, p)

j=1

for all ¢ = 1,2,..., N — 1, by using mathematical induction. Recall inequality
(3.1), forany i =1,2,...,N — 1, n € N and p € D, we know that

d(yP,p) < 8, Ad(yS™ ) + Ynd(un, p).
For i =1,

Ay, p) < 6, Ad(y", p) + Ynd(un, p)

= 6, Ad(2p, D) + Ynd(tn, p 251 Lt

Assume that for some m,1 <m < N — 2,

d(yr(zm)ap) < 521Amd($nap) + 'Ynd(ump) [Z 5%_1Aj_1]-
Jj=1
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Hence,

d(y$m ), p) < 6, Ad(y(™, p) + Ynd(un, p)

< S, A AT d(wn, p) + Y 65 AT ynd(un, p)] + Ynd(un, p)
j=1
m+1
= Syt AT d (@, p) + [ 607 AT nd(ug, p).
j=1

Therefore, by mathematical induction, we have,

d(y$),p) < 8L A'd(z, p) + > 65 A ynd(un, p)
j=1

foralli=1,2,...,N — 1.
(#i1)  We prove the following inequality, for any i = 1,2,..., N — 1,

d($n+1ap) < 5:1 AT d(yyjlv_ivp) + [Z 5%_1Aj_1]’7nd(ump)-
j=1
Now, for any i = 1,2,...,N—1,ne€ Nand p € D,
d(zni1,p) = AW (SpySN 1, TRyN =D, M =D: 0N, B, 5N, p)
< aéN’d(S}by(N‘” p) + BN A(TRyN Y, p) + v d(uN Y p)
< a(N)Ed(yé ,p) + B8N Ud(yN - ),p) + M AN, p)

< aMAd(yN,p) + BN Ad(yN Y p) + M d(uiN Y, p).
Together with (i), we have
d(zni1,p) <6 Ad(yN Y, p) + AN d(wN Y, p)

< 6, Ad(yN Y, p) + Ynd(un, p)
< 0nALn Ad(ySN ), p) + Ynd (i, )] + Ynd(tin, p)
= 62A%d(y N2, p) + 6nAvnd(tin, p) + Ynd(un, p)
< 67 A6, Ad(ySN =), p) + Ynd(un, p)) + (60 A + 1)ynd(tn, p)
= 03 A%d(ySN ), p) + 6% A2 ynd(un, p) + (0nA + 1)7nd(un, p)
= 03 A%d(ySN =, p) + (57 A% + 60 A+ 1) ynd(un, p)

< 8% ANd( 253 L ATy, d (g, p)

foralli=1,2,...,N — 1. O
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Remark 3.2. Lemma 3.1 generalizes main results of Lemma 3.1 in [Z.

Lemma 3.3. The following results hold.

(1) There exist two sequences {ny} and {on} such that Z Mp, < 00 and

n=1

[ee]
Zon < 00 and

=1
’ A(war1,9) < (14 1)d(0, ) + 7
forallp e D and n € N.
(#4)  lim d(xn,p) exists for all p € D.
n—oo
Proof. (i) Let p € D and n € N. By Lemma [B1Ki7), (iii), we get

d(znt1,p) < 3, Ay =Y, p) + Ynd(un, p)
N—-1

< S ALY AN d (i, p) + [ 637 A ynd(un, p)] + Ynd(un, p)
j=1
N . .
= o3 ANd(wp,p) + [y 657 AT yad(un, p)
j=1
= (14 nn)d(zn,p) + on
N N N
where 7, = Z (j ) (6,A—1)7 and 0, = [Z S37L AT )y d(u, p).
j=1 j=1
Since Z(énA —1) and nynd(un,p) are both finite, it follows that Z M, < 00
n=1 n=1 n=1
and Z o < 00.

n=1

(#75) Let p € D. Then by the above result, there exist two sequences {n,}

and {0, } such that Z Nn < 00 and Z o < 00 satisfying

n=1 n=1
d(anrlap) < (1 + ﬂn)d(fﬂnap) + on
for all n € N. Then, by Lemma [Z5¢), lim d(z,,p) exists for all p € D. O
n—oo

Remark 3.4. Lemma 3.3 generalizes main results of Lemma 3.2 in [2.

Theorem 3.5. The following results hold when D is closed.
(1)  If {xn} converges to a common fized point in D then liminfd(z,, D) =

n—oo
limsup d(z,, D) = 0.
n—oo
(i4)  If either 1irr_1>inf d(zyn, D) =0 orlimsupd(z,, D) = 0 then {x,} converges to
n o0

| . n—oo
a common fized point in D.
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Proof. (i) Suppose that {z, } converges to a common fixed point p in D. Then
for € > 0, there exists N € N such that if n > N then

d(x'mp) <

NN

Taking infimum over p € D, for n > N we have

d(z,,D) < = <e.

NN e

We have lim d(z,, D) =0, i.e., liminf d(x,, D) = limsup d(z,, D) = 0.

n—oo n—oo n—oo

(#3)  Assume that liminfd(z,,D) = 0 or limsupd(z,,D) = 0. Using this

n—oo n—oo

result together with Lemma[3.3)¢) and Lemmal[2ZH(iii) we have lim d(z,, D) = 0.
n—oo
Then, by Lemma[27(¢7), lim x,, exists that is there exists ¢ € X such that z,, — ¢
n—oo

as n — oo. Since D is closed, {z,} converges to a common fixed point in D. O

4 Applications

In this section, we let C' be a nonempty convex subset of a convex metric
space (X,d,W). Let {T;}}Y, be a finite family of uniformly quasi—sup (f,)
Lipschitzian self—mappings of C' and {S;}}¥, a finite family of g,,—expansive
self—mappings of C. Let f,, g, be functions which is bounded above such that

U, = sup fn(z) and E, = sup gn(z). Suppose that U = supU, and E =
zeC neN

sup E,, are finite and {a(z)} {ﬂ(z)} {7(1)} are sequences in [0, 1] such that ol 4
neN

ﬁ(i) + 7, (i) = 1 for each n € N. Let 555) (1) + ﬂ(z) = 1r<nzl)§v{5( )} Vo =

i) (i—-1) —
max (A and d(uy,p) = 121%}%{d(u" ,0)}. Let A = rnaLx{E7 U}, sequences

{6nA} C [1,00) and {vpd(un,p)} C [0,00) such that Z(énA —1) < oo and

n=1

ifynd (tn,p) < co. Suppose D = (ﬂ F(T, )n ( m F(S ) is nonempty and

n=1

closed. Let z1 € C and the sequence {xn} be the 1terat10n defined by ([3). First,
we prove the following lemma.

Lemma 4.1. A sequence {x,} converges to common fized point of the fami-
lies {T;}N., and {S;}Y., if and only if liminfd(z,, D) = 0, where d(z,, D) =
n—oo

inf{d(z,,p) : p € D}.

Proof. The necessity condition is obvious. Thus we will only prove the sufficiency.
Suppose that liminf d(x,, D) = 0. Then by Lemma [B3)¢), there exist two se-
n—oo
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quences {n,} and {0, } such that Z 7 < 00 and Z o, < 00 satisfying

n=1 n=1
d(Zny1,p) < (1 +nn)d(2n,p) + 0y

for all p € D and all n € N. By Definition [Z6] we have {x,} is of monotone type
I with respect to D. By Lemma [Z7(i), we have desired. O

Remark 4.2. Lemma 4.1 generalizes main results of Theorem 3.3 in [J.

The following theorem shows that the sequence {,} converges to common
fixed point of the families {T;}Y; and {9;}¥; with two added properties: Condi-
tion A (Definition 23]) and semi—compact (Definition 2.4)).

Theorem 4.3. Let C' be a closed convexr subset of a complete uniformly convex
metric space (X, d, W) with continuous convex structure. Let {T;}, and {S;}¥,
be finite families of uniformly L— Lipschitzian self—mappings of C. Suppose that
nlLrI;Od(xn,Timn) =0= nler;Od(zn,Simn) for all i = 1,2,...,N. If one of the
following is satisfied:

(i)  {T}Y, and {S;}Y, satisfy Condition A,

(ii) one member of the families {T;}N | and {S;}}., are semi—compact,

then {x,} converges to common fized point of two families {T;}}., and {S;}.

Proof. (i) Suppose that {T;}¥, and {S;}¥, are satisfy Condition A. Then by
Definition we have there exists a nondecreasing functions such that
f:]0,00) = [0,00) with f(0) =0 and f(r) > 0 for all r € (0,00),
g :10,00) = [0,00) with g(0) = 0 and g(r) > 0 for all r € (0, 00)
with d(zy, Tizyn) > f(d(zn, D)) and d(xy,, Sixn) > g(d(zn, D)). Hence,
. Vs T

nhHH;O d(xn, Tizn) > nlgngo fld(zn, D)),

nlgr;o d(xp, Sizy) > nh_{r;O g(d(xn, D)),
for some 1 < i < N. By the assumption we know that lim d(z,,Tiz,) = 0 =

n—oo

lim d(x,,S;x,). It follows that

n—oo

lim d(x,,D) = 0.

n—oo

Then by Lemma 1] the sequence {x,} converges to common fixed point of the
families {T;}Y, and {S;},.

(i) Suppose that {T;}¥, is semi—compact. Then, by Definition 4] there
exists a subsequence {x,;} of {z,} such that x,, — p € C. Hence, for each
1<i<N,

(p7 l’nj ) + d(an ’ Tixnj ) + Ld(xnj 7p)
(14 L)d(p, xn;) + d(zn,, Tizn,)

0.

d
d

L IAIA A
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Thus, we have T;p — p for 1 <i < N.
The proof in case of {S;}¥, being semi—compact is similar to prove the above

N N
case. Thus, p e D = ( ﬂ F(Ti)) ﬂ ( ﬂ F(SZ-)>. By continuity of z — d(z, D),
i=1 i=1

we obtain
lim d(x,;,D) =d(p,D) =0,
j—00
lim d(z,,,D)=d(p,D)=0.
k—o0
It follows by Lemma [B3)(¢) that lim d(x,, D) = 0. Hence, by Lemma [£J] we
n—oo

have {z,,} converges to common fixed point of the family {T;}¥; and {S;,},. O

Remark 4.4. Theorem 4.3 generalizes main results of Theorem 3.7 in [2].
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