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1 Introduction

Ever since the introduction of the concept in 1961 by Doyle and Hocking [1],
many have contributed to the development of invertible spaces. The pioneering
authors themselves continued the investigation of invertibility and came up with
the concept of continuously invertible spaces [2]. Gray [3] has proved that if an
invertible space possesses a nonempty open subspace which is metrizable, then the
space is metrizable. The effect of invertibility on separation axioms, investigated
in [1], has been further explored by Levine [4] obtaining some local properties
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which are necessarily global in invertible spaces. Simultaneously, Wong undertook
a detailed study on invertible spaces and improved certain results by weakening
the conditions and obtained simpler proofs in [5]. In [6], Umen exhibited some
of the properties of orbits in invertible spaces. Naimpally opened a quick glimpse
on the function spaces of invertible spaces in [7]. The concept of generalized
invertible spaces was introduced and studied by Hong in [8] and [9]. Ryeburn
defined invertibility analogously for uniform spaces and showed that the whole
space possesses certain properties holding for subspaces [10]. Hildebrand and Poe
examined separation axioms for invertible spaces in [11]. The concept of semi-
invertible spaces was introduced by Crossley and Hildebrand in [12]. Invertibility
in infinite dimensional spaces was thoroughly investigated by Tseng and Wong
[13].

In [14], Mathew extended the concept of invertibility to fuzzy topological
spaces and examined the basic nature of such spaces. In [15], the authors dis-
cussed some properties of invertible fuzzy topological spaces. Later, we studied
the relationship between invertibility and separation axioms in [16]. In continua-
tion of this, Rao discussed the effect of invertibility on separation axioms of fuzzy
topological spaces in [17]. In [18] we further explored the properties of invertible
as well as completely invertible fuzzy topological spaces. Based on the structure
of inverting pairs, we introduced different types of invertible fuzzy topological
spaces and derived certain characterizing properties in [19]. We also examined the
relationship between homogeneity and invertibility in [20].

A related problem here is to investigate the invertibility of the associated
spaces. In [18] it has been proved that the associated topological space of a com-
pletely invertible fuzzy topological space need not be invertible. Here we prove that
the associated fuzzy topological space of a given topological space is always type
1 invertible. Also the associated fuzzy topological space (X,F ) of a topological
space (X, τ) is type 2 invertible if and only if (X, τ) is not invertible.

In general, the invertibility of a quotient space doesn’t depend on the invert-
ibility of the fuzzy topological space and vice-versa. It is proved that quotient
space of a topologically generated fuzzy topological space is always type 1 invert-
ible. Also the quotient space of a completely invertible fuzzy topological space
need not be invertible. We also obtain some conditions under which the quotient
space of a completely invertible fuzzy topological space is completely invertible.

Finally we investigate the product of a family of invertible fuzzy topological
spaces and prove that the product space is invertible if at least one of the co-
ordinate spaces is invertible. Further, the product space is type 2 completely
invertible if and only if each co-ordinate space is type 2 completely invertible.

2 Preliminaries

In this section we include certain definitions and known results needed for the
subsequent development of the study. Throughout this paper X stands for a non
empty set with at least two elements and I stands for the unit interval [0, 1]. For
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any fuzzy subset g of X , by /C (g) we mean the complement of g in X . A fuzzy
subset with constant degree of membership α is denoted by α. The identity map
on X is denoted by e. A fuzzy subset g of X is said to be proper if g 6= 0, 1.

Definition 2.1. [21] Let X and Y be two sets and let θ : X → Y be a function.
Then for any fuzzy subset g in X , θ(g) is a fuzzy subset in Y defined by

θ(g)(y) =

{

sup{g(x) : x ∈ X, θ(x) = y}; θ−1(y) 6= φ
0; θ−1(y) = φ

For a fuzzy subset h in Y , we define θ−1(h)(x) = h(θ(x)), ∀x ∈ X. Obviously
θ−1(h) is a fuzzy subset in X .

Definition 2.2. [14] An fts (X,F ) is said to be invertible with respect to a proper

open fuzzy subset g if there is a homeomorphism θ of (X,F ) such that θ(/C (g)) ≤ g.
This homeomorphism θ is called an inverting map for g and g is said to be an
inverting fuzzy subset of (X,F ).

If an fts (X,F ) is invertible, then there exists an inverting fuzzy subset g and
an inverting map θ of (X,F ). This g and θ together called an inverting pair of
(X,F ). Clearly there can be different inverting pairs for an invertible fts.

Definition 2.3. [14] An fts (X,F ) is said to be completely invertible if for every
g 6= 0, 1,∈ F , there is a homeomorphism θ of (X,F ) such that θ(/C (g)) ≤ g.

It should be noted that for a completely invertible fts every proper open
fuzzy subset is an inverting fuzzy subset.

Definition 2.4. [22] Let (X,F ) be an fts. A subfamily B of F is a base for F if
each member of F can be expressed as the join of some members of B.

Theorem 2.5. [18] Let (X,F ) be an fts with B as a base. Then (X,F ) is com-

pletely invertible if and only if (X,F ) is invertible with respect to all members of

B.

Definition 2.6. [19] An invertible fts (X,F ) is said to be type 1 if identity is an
inverting map.

Definition 2.7. [19] An invertible fts (X,F ) is said to be type 2 if identity is an
inverting map for all the inverting fuzzy subsets.

Theorem 2.8. [19] Let (X,F ) be an invertible fts. Then (g, e) is an inverting

pair of (X,F ) if and only if 1
2 ≤ g.

Theorem 2.9. [19] An fts (X,F ) is type 2 completely invertible if and only if
1
2 ≤ g for every g 6= 0, 1,∈ F .

Theorem 2.10. [18] Let (X,F ) be an fts invertible with respect to g where X is

finite. Then |X | ≤ 2|supp g|.
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Definition 2.11. [22] The fuzzy subset xλ of X , with x ∈ X and 0 < λ ≤ 1
defined by

xλ(y) =

{

λ; y = x
0; otherwise

is called a fuzzy point in X with support x and value λ.

Definition 2.12 ([26]). A fuzzy point xλ is called weak or strong according as
λ ≤ 1

2 or λ > 1
2 .

Definition 2.13. [25] A fuzzy subset g of X is said to be strong if for any x ∈ X ,
g contains a strong fuzzy point xλ.

Definition 2.14. [27] An fts (X,F ) is called fully stratified space iff α ∈ F, ∀α ∈ I.
An fts (X,F ) is called purely stratified if whenever f ∈ F then f = α for some
α ∈ [0, 1].

Theorem 2.15. [19] Every fully stratified fts is type 1 invertible.

Theorem 2.16. [18] A fully stratified fts cannot be completely invertible.

Theorem 2.17. [19] A purely stratified invertible fts is type 2 invertible.

Notations 2.18. Let (X,F ) be an fts. Then for g ∈ F and λ ∈ I, we define
Sλ(g) = {x ∈ X ; g(x) = λ}.

3 Associated Spaces

Definition 3.1. [24] For a topology τ on X let ω(τ) be the set of all lower semi-
continuous functions from (X, τ) to [0, 1]. Then ω(τ) turns out to be a fuzzy
topology on X called the associated fuzzy topology of (X, τ). A fuzzy topology
of the form ω(τ) is called topologically generated. For a fuzzy topology F on X ,
i(F ) is the topology on X induced by all functions f : X → Ir, where f ∈ F and
Ir = [0, 1] with subspace topology of right ray topology on R.

Theorem 3.2. [23] If (X,F ) is topologically generated, then the group of homeo-

morphisms of (X,F ) and the group of homeomorphisms of (X, i(F )) are the same.

Remark 3.3. [18] The associated topological space of a completely invertible fts

need not be invertible. Conversely, the complete invertibility of the associated

topological space of an fts need not imply the invertibility of the fts.

Theorem 3.4. Any topologically generated fts is type 1 invertible but not com-

pletely invertible.

Proof. Every topologically generated fts is fully stratified. Hence the result follows
from Theorem 2.15 and Theorem 2.16.
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Remark 3.5. From Theorem 3.4 it follows that the associated fts of a given topo-

logical space (X, τ) is always invertible irrespective of the invertibility of (X, τ).
But the following theorem derives that the associated fts is type 2 invertible iff

(X, τ) is not invertible.

Theorem 3.6. The associated fts (X,F ) of a topological space (X, τ) is type 2

invertible iff (X, τ) is not invertible.

Proof. Suppose (X,F ) is type 2 invertible. If possible, assume that (X, τ) is
invertible. Let (A, θ) be an inverting pair of (X, τ), then by Theorem 3.2, θ is a
homeomorphism of (X,F ). Let α ∈ (12 , 1) and consider g ∈ IX defined by

g(x) =

{

α; x ∈ A
1− α; otherwise

Then clearly (g, θ) is an inverting pair of (X,F ). Also here e cannot be an inverting
map for g, so that (X,F ) is not type 2 invertible, a contradiction.
Conversely suppose (X, τ) is not invertible. Since (X,F ) is topologically generated,
it is type 1 invertible. If possible let f be an inverting fuzzy subset of (X,F ) for
which e is not an inverting map. Then by Theorem 2.8, f(y) < 1

2 for some y ∈ X .
Now by Theorem 3.2, any inverting map θ of f is also a homeomorphism of (X, τ).
Let f(y) = α and let A = f−1(α, 1], then A 6= φ,⊂ X . Clearly (A, θ) is an inverting
pair of (X, τ) , a contradiction. Consequently (X,F ) is type 2 invertible.

Remark 3.7. From the above proof it follows that every inverting map of a topo-

logical space (X, τ) is always an inverting map of the associated fts (X,F ). But

conversely an inverting map of (X,F ) need not be an inverting map of (X, τ).
For, e is an inverting map for a type 1 invertible fts, but it cannot be an inverting

map for the associated topological space. But from the converse part of the proof

of the above theorem it is clear that an inverting map other than identity of an fts

(X,F ) is also an inverting map of the associated topological space.

Theorem 3.8. If the associated topological space (X, i(F )), where X is finite, is

completely invertible then for each g ∈ F , there exists some α ∈ I such that g ≤ α

with |Sα(g)| ≥
|X|
2 .

Proof. Suppose the associated topological space (X, i(F )) of an fts (X,F ) is com-
pletely invertible. Let g be an open fuzzy subset of X . If possible assume that for

any α ∈ I, |Sα(g)| <
|X|
2 . Let λ = max

x∈X
g(x) and β = max

x/∈Sλ(g)
g(x). Now consider

A = f−1(β, 1]. Clearly A = Sλ(g) 6= φ,∈ i(F ) and by Theorem 2.10, (X, i(F ))
is not invertible with respect to A, a contradiction. Thus for any g ∈ F there is

an α ∈ I with |Sα(g) ≥
|X|
2 . Choose α0 be the maximum of all such α′s. Now if

possible assume that g � α0. Then there is a γ > α such that γ = g(x) for some
x ∈ X . Now consider g−1(α0, 1] = B. Clearly B 6= φ,∈ i(F ) and (X, i(F )) is not
invertible with respect to B, a contradiction.



282 Thai J. Math. 13 (2015)/ A. Jose and S.C. Mathew

Corollary 3.9. If the associated topological space (X, i(F )), where |X | is odd, is

completely invertible then for each g ∈ F , there exists a unique α ∈ I such that

g ≤ α with |Sα(g)| ≥
|X|
2 .

Proof. Follows from the proof of Theorem 3.8.

Theorem 3.10. If the associated topological space (X, i(F )), where X is infinite,

is completely invertible then for each g ∈ F , there exists some α ∈ I such that

Sα(g) is infinite and g ≤ α.

Proof. Proof is similar to that of Theorem 3.8.

Remark 3.11. Converse of Theorem 3.8 is not true. For, let X = {a, b, c, d}.
Consider g ∈ IX defined by g(a) = 1

2 , g(b) = 2
3 , g(c) = 2

3 , g(d) = 2
3 . Then (X,F )

is an fts where F = {0, 1, g}. Here g ≤ 2
3 and S 2

3

(g) ≥ |X|
2 . Clearly (X, i(F ))

where i(F ) = {X,φ, {b, c, d}} is not invertible.

4 Quotient Spaces

Definition 4.1 ([27]). Let (X,F ) be an fts and R be an equivalence relation on
X . Let X/R be the quotient set and let p : X → X/R be the quotient map. Let G
be the family of fuzzy subsets in X/R defined by G = {g : p−1(g) ∈ F}. Then G
is called the quotient fuzzy topology for X/R and (X/R,G) is called the quotient

fts.

Theorem 4.2. If an fts (X,F ) is type 2 completely invertible then any non-trivial

quotient space of (X,F ) is type 2 completely invertible.

Proof. Let (X,F ) be a type 2 completely invertible fts. Then by Theorem 2.9,
1
2 ≤ f for every f 6= 0, 1,∈ F . Consider any quotient space (X/R,G) of (X,F ).

Then for any g 6= 0,∈ G, g ≥ 1
2 so that (X/R,G) is type 2 completely invertible

again by Theorem 2.9.

Remark 4.3. Converse of the above theorem is not true, in general. For example

let X = [2, 3] and consider f ∈ IX defined by f(x) = 1
x , ∀x. Then (X,F ) is an fts

where F = {0, 1, f, 2
3}. Clearly f is not an inverting fuzzy subset of (X,F ). Let

(X/R,G) be any non-trivial quotient space of (X,F ). Then clearly G = {0, 1, 2
3}

so that (X/R,G) is type 2 completely invertible

Corollary 4.4. Let (X,F ) be an fts in which every f 6= 0,∈ F is a strong fuzzy

subset. Then any non-trivial quotient space of (X,F ) is type 2 completely invert-

ible.

Proof. Since (X,F ) is an fts in which every f 6= 0,∈ F is a strong fuzzy subset, it
is type 2 completely invertible. Hence the result follows from Theorem 4.2.
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Remark 4.5. The quotient space of a completely invertible fts need not be invert-

ible. Let X be the set of all natural numbers and let Y = {2x : x ∈ X}. For each

m ∈ Y , define fm, gm ∈ IX by

fm(x) =

{

1
3 ; 1 ≤ x ≤ m
2
3 ; otherwise

gm(x) =

{

1
3 ; m < x ≤ 2m
2
3 ; otherwise

Let F be the fuzzy topology on X generated by {fm, gm; m ∈ Y }.
Now consider for each m ∈ Y , θm : X → X defined by

θm(x) =







x+m; 1 ≤ x ≤ m
x−m; m < x ≤ 2m
x; otherwise.

Clearly θm is a homeomorphism of (X,F ). Also for each m ∈ Y , (fm, θm) and

(gm, θm) are inverting pairs of (X,F ) so that (X,F ) is completely invertible. Now

consider the equivalence relation R on X such that X/R = {A,B,C} where A =
{1}, B = {2} and C = {x ∈ X : x > 2}. Consider f ∈ IX/R defined by

f(A) = 1
3 , f(B) = 1

3 , f(C) = 2
3 . Then the quotient space (X/R,G) of (X,F ) is

given by G = {0, 1, f} and is not invertible.

The following example shows that the quotient space of an fts may be com-
pletely invertible, even if the fts is not invertible.

Example 4.6. Let X be the set of all non-zero real numbers. For each α ∈ (23 , 1],
define fα, gα ∈ IX by

fα(x) =

{

α; x > o
1− α; otherwise,

gα(x) =

{

1− α; x > o
α; otherwise,

Also consider h ∈ IX defined by

h(x) =







x; 0 < x < 1
0; −1 < x < 0,
1
|x| ; otherwise

Let F be the fuzzy topology on X generated by {h, fα, gα ∈ IX , α ∈ (23 , 1]}.
Clearly the fts (X,F ) is not invertible. Consider the equivalence relation R on
X defined by xRy iff xy > 0. Then the quotient space (X/R,G) is completely
invertible.

Theorem 4.7. An fts with a type 1 invertible quotient space is type 1 invertible.
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Proof. Let (X/R,G) be a quotient fts of (X,F ) and suppose it is type 1 invertible.
Let (g, e) be an inverting pair of (X/R,G). Then by Theorem 2.8, 1

2 ≤ g. Now

consider f ∈ IX defined by f = p−1(g) where p is the quotient map. Then clearly
f ∈ F such that 1

2 ≤ f and (f, e) is an inverting pair of (X,F ). Hence (X,F ) is

type 1 invertible.

Remark 4.8. There are type 1 invertible fts for which no non-trivial quotient space

is invertible. For, let X be the set of all natural numbers. Consider f, g, h ∈ IX

defined by f(x) = x
x+1 , ∀x ∈ X,

g(x) =

{

1
3 ; x is even
1
5 ; x is odd

h(x) =

{

1
5 ; x is even
1
3 ; x is odd

Then (X,F ) is an fts where F = {0, 1, f, g, h, 13 ,
1
5}. Clearly (f, e) is an inverting

pair of (X,F ) so that (X,F ) is type 1 invertible. Let (X/R,G) be any non-

trivial quotient space of (X,F ). Clearly m < 1
2 , ∀m ∈ G so that (X/R,G) is not

invertible.

Theorem 4.9. An fts (X,F ) is invertible with α; α ∈ [ 12 , 1) as an inverting fuzzy

subset iff every quotient space of (X,F ) is type 1 invertible.

Proof. Let (X/R,G) be any quotient space of (X,F ). Consider the fuzzy subset g
of X/R defined by g(D) = α, ∀D ∈ X/R. Clearly g ∈ G and (g, e) is an inverting
pair of (X/R,G).
Conversely suppose every quotient space of (X,F ) is type 1 invertible. Let R be
an equivalence relation on X such that X/R = {X}. Consider the quotient space
(X/R,G). Since it is type 1 invertible, there exists an inverting fuzzy subset f ∈ G
such that f(X) = α for some α ∈ [ 12 , 1). Let g = p−1(f), where p is the quotient
map, then g = α and g ∈ F so that (g, e) is an inverting pair of (X,F ).

Corollary 4.10. Any quotient space of a fully stratified fts is type 1 invertible.

Proof. Let (X,F ) be a fully stratified fts. Then ∀α ∈ [ 12 , 1], α ∈ F . Hence by
Theorem 4.9, every quotient space of (X,F ) is type 1 invertible.

Corollary 4.11. Any quotient space of a topologically generated fts is type 1

invertible.

Proof. A topologically generated fts is fully stratified. Hence the result follows
from Corollary 4.10.

Theorem 4.12. An fts (X,F ) is purely stratified and invertible iff every quotient

space of it is purely stratified and invertible.

Proof. Straightforward.
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Corollary 4.13. Any quotient space of a purely stratified invertible fts is type 2

invertible.

Proof. A purely stratified invertible fts is type 2 invertible. Hence the result follows
from the above theorem.

5 Product Spaces

Definition 5.1 ([27]). Let (Xi, Fi), i ∈ J be a family of fts. Let X be the
cartesian product of {Xi, i ∈ J} and let Pi be the projection of the product X
into the ith coordinate set Xi. An x ∈ X is of the form (xi, i ∈ J) where xi is the
ith component of x. Let Q(J) denote the family of all finite subsets of J . Putting

B = {
⋂

i∈K

P−1
i (Ui) : Ui ∈ Fi,K ∈ Q(J)}, we call the fuzzy topology F which

takes B as a base, the product fuzzy topology for X , and B the defining base for
the product fuzzy topology. The pair (X,F ) is called the product space of the fts
(Xi, Fi), i ∈ J .

Theorem 5.2. The product fuzzy topology (X,F ) of a family of fts (Xi, Fi), i ∈ J
is invertible if (Xj , Fj) is invertible for some j ∈ J .

Proof. Let Pi be the projection of the product X into the ith coordinate set Xi

and B be the defining base for (X,F ). Suppose (Xj , Fj) is invertible for some
j ∈ J . Let (gj , θj) be an inverting pair of (Xj , Fj). Now consider f = P−1

j (gj),
clearly f ∈ B so that f ∈ F . Define θ : X → X by θ(x) = y where y = (yi)
such that yi = xi, i 6= j, yj = θj(xj). Clearly θ is a homeomorphism of (X,F ).
Let x ∈ X and θ−1(x) = z. Then θ(/C (f))(x) = /C (f)(z) = /C (P−1

j (gj))(z) =

/C (gj)(zj) = /C (gj)(θ
−1
j (xj)) = θj(/C (gj))(xj) ≤ gj(xj) = P−1

j (g)(x) = f(x) so that
(f, θ) is an inverting pair of (X,F ).

Corollary 5.3. The product of a family of invertible fuzzy topological spaces is

invertible.

Proof. Follows from Theorem 5.2

Theorem 5.4. The product fuzzy topology (X,F ) of a family of fts (Xi, Fi), i ∈ J
is type 1 invertible if (Xj , Fj) is type 1 invertible for some j ∈ J .

Proof. Let Pi be the projection of the product X into the ith coordinate set Xi

and B be the defining base for (X,F ). Suppose (Xj , Fj) is type 1 invertible for
some j ∈ J . Let (gj , e) be an inverting pair of (Xj , Fj). Then by Theorem 2.8,
gj ≥ 1

2 . Now consider P−1
j (gj) = f , clearly f ∈ F and f ≥ 1

2 so that e is an

inverting map for f . Hence (X,F ) is type 1 invertible.

Corollary 5.5. The product of a family of type 1 invertible fuzzy topological spaces

is type 1 invertible.
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Proof. Follows from Theorem 5.4.

Remark 5.6. Following example shows that the converses of Theorem 5.2 and

Theorem 5.4 are not true. For each α ∈ [0, 12 ), let Xα = {a, b} and fα(a) =
1
2 , fα(b) = α. Then (Xα, Fα) where Fα = {0, 1, fα}, is an fts for each α ∈ [0, 12 ).
Let X be the cartesian product of Xα for α ∈ [0, 12 ). Let F be the product fuzzy

topology on X and Pα be the projection of the product X into the αth coordinate

set Xα. Then gα = P−1
α (fα) ∈ F for each α ∈ [0, 1

2 ) so that
∨

α

gα =
1

2
∈ F . Note

that here 1
2 is the only inverting fuzzy subset. Hence (X,F ) is type 1 invertible.

Also here (X,F ) is type 2 invertible even if none of the co-ordinate spaces are

so. Conversely the type 2 invertibility of all the co-ordinate spaces need not imply

the type 2 invertibility of the product space as shown in the following example.

Example 5.7. Let X1 = {a, b} and X2 = {c, d}. Define g1, g2 ∈ IX2 by g1(c) =
2
3 , g1(d) = 1

4 and g2(c) = 1
4 , g2(d) = 2

3 . Then (X1, F1) and (X2, F2) are fuzzy
topological spaces where F1 = {0, 1, 2

3 ,
1
3} and F2 = {0, 1, g1, g2,

1
4 ,

2
3}. Clearly

(X1, F1) and (X2, F2) are type 2 invertible. Also let (X,F ) be the product fuzzy
topology of (X1, F1) and (X2, F2) and let P1 be the projection of the product X
into the coordinate set X1 and P2 be the projection of the product X into the
coordinate set X2. Consider f ∈ IX defined by f(a, c) = 1

3 , f(a, d) = 2
3 , f(b, c) =

1
3 , f(b, d) = 2

3 . Clearly f = P−1
1 (13 ) ∨ P−1

2 (g2) ∈ F . Now define θ : X → X by

θ(a, c) = (a, d), θ(a, d) = (a, c), θ(b, c) = (b, d), θ(b, d) = (b, c). Clearly θ is a
homeomorphism of (X,F ) and is an inverting map for f . Also identity is not an
inverting map for f . Hence (X,F ) is not type 2 invertible.

Theorem 5.8. If the product fuzzy topology (X,F ) of a family of invertible fts

(Xi, Fi), i ∈ J is type 2 invertible, then each (Xi, Fi) is type 2 invertible.

Proof. Suppose (X,F ) be type 2 invertible. If possible assume that (Xj , Fj) is
not type 2 invertible for some j. Then there exists an inverting fuzzy subset gj
of (Xj , Fj) such that e is not an inverting map for gi. Now define θ : X → X
by θ(x) = y where y = (yi) such that yi = xi, i 6= j, yj = θj(xj). Clearly
θ 6= e is a homeomorphism of (X,F ). Now consider f = P−1

j (gj), clearly (f, θ) is
an inverting pair of (X,F ) and e is not an inverting map for f , a contradiction.
Hence (Xj , Fj) is type 2 invertible.

In [15], it is claimed that the product of two completely invertible fuzzy topo-
logical spaces is completely invertible. But this is not true as shown in the following
example.

Example 5.9. For, let X1 = {a, b, c, d} and X2 = {p, q, r, s}. Consider f1, g1 ∈
IX1 and f2, g2 ∈ IX2 defined by f1(a) = 1, f1(b) = 0, f1(c) = 1, f1(d) = 0,
g1(a) = 0, g1(b) = 1, g1(c) = 0, g1(d) = 1, f2(p) = 1, f2(q) = 1, f2(r) =
0, f2(s) = 0, g2(p) = 0, g2(q) = 0, g2(r) = 1, g2(s) = 1. Then (X1, F1)
and (X2, F2) are fuzzy topological spaces where F1 = {0, 1, f1, g1} and F2 =
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{0, 1, f2, g2}. Let X be the cartesian product of X1 and X2. Let F be the
product fuzzy topology on X and let P1 be the projection of the product X
into the coordinate set X1 and P2 be the projection of the product X into the
coordinate set X2. Now consider f ∈ IX defined by f = P−1

1 (f1) ∧ P−1
2 (f2).

Clearly f 6= 0,∈ F and 2|supp f | < |X |. Then by Theorem 2.10, (X,F ) is not
invertible with respect to f so that it is not completely invertible.

Theorem 5.10. The product fuzzy topology (X,F ) of a family of fts (Xi, Fi),
i ∈ J is type 2 completely invertible if and only if (Xj , Fj) is type 2 completely

invertible for each j ∈ J .

Proof. Let (Xi, Fi), i ∈ J be a family of type 2 completely invertible fts. Let X
be the cartesian product {Xi, i ∈ J} and let Pi be the projection of the product
X into the ith coordinate set Xi. Let B be the defining base for the product fuzzy
topology (X,F ). Let f 6= 0, 1,∈ B, then f =

⋂

i∈K P−1
i (gi); gi ∈ Fi where K is

a finite subset of J . Since gi ≥
1
2 , ∀gi 6= 0,∈ Fi, i ∈ J , we have f ≥ 1

2 so that

(f, e) is an inverting fuzzy pair of (X,F ). Then by Theorem 2.5, (X,F ) is type
2 completely invertible.
Conversely suppose that (X,F ) is type 2 completely invertible. If possible assume
that (Xj , Fj) is not type 2 completely invertible for some j ∈ J . Then by The-
orem 2.9, there exists an fj 6= 0,∈ Fj such that fj(xj) < 1

2 for some xj ∈ Xj.

Now consider f ∈ IX defined by f = P−1
j (fj). Clearly f ∈ F and (f, e) is not

an inverting pair of (X,F ) so that (X,F ) is not type 2 completely invertible, a
contradiction. Hence for each i ∈ J , (Xi, Fi) is type 2 completely invertible.
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