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Abstract : We analyze a standard adaptive finite element method (AFEM) for
second order semi-linear elliptic partial differential equations (PDEs) with vanish-
ing boundary over a polyhedral domain in R?, d > 2. Based on a posteriori error
estimates using standard residual technique, we prove the contraction property for
the weighted sum of the energy error and the error estimator between two consecu-
tive iterations, which also leads to the convergence of AFEM. The obtained result
is based on the assumptions that the initial mesh or triangulation is sufficiently
refined and the nonlinear inhomogeneous term f(z, u(x)) is Lipschitz in the second
variable.
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1 Introduction

Let Q C R%(d = 2,3) be a bounded, polyhedral domain. We consider the
second order semi-linear elliptic partial differential equation in gradient form with
vanishing boundary condition,

=V (A(z)Vu(x)) = f(z,u(z)), Yz e, (1.1)
u(z) =0, YV e 09, (1.2)
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where f(xz,u(x)) is Lipschitz in the second argument, i.e., there exists a Lipschitz
constant L such that

|f (@, v(2)) = f(z,w(@))| < Lf [v(z) —w(z)|,  Vrel,

and A(z) is a positive definite matrix for each x € Q with strictly monotonicity
property, i.e., there exists a positive constant 6, such that

Ap—q)-(p—a) > 0lp—qf®, VpgeR™
We analyzed here a standard AFEM having loops of four procedures:
SOLVE — ESTIMATE — MARK — REFINE.

For a given current triangulation and known data (f, A, ), the procedure SOVLE
finds the approximate solution; the procedure ESTIMATE computes error esti-
mates in a suitable norm based on a posteriori error estimations; the procedure
MARK selects elements according to some marking conditions; the procedure RE-
FINE refines the current mesh to obtain a finer triangulation according to the
marked elements. The main purpose is to construct a sequence of triangulations
together with approximate solutions that will eventually reduce error in an efficient
way in term of degree of freedoms.

In studying convergence of AFEM ones usually concern in how to get the
errors to go to zero. For linear elliptic partial differential equations, it started
with Dérfler [I], who introduced a crucial marking, and proved strict energy error
reduction for the Poisson’s equation provided the initial mesh satisfies a fineness
assumption. Morin et al [2] [3] proved convergence of the AFEM without restric-
tions on the initial mesh and introduced the concepts of data oscillation and the
interior node property, which later was extended to general second order elliptic
partial differential equations by Mekchay and Nochetto [4] . Cascon et al [5] ob-
tained quasi-optimal convergence rate for general standard of AFEMs but without
the usages of the local lower bound and interior node property.

For nonlinear elliptic partial differential equations, Dorfler [6] developed a
robust strategy for nonlinear Poisson equation; Veeser [7] proved convergence of
AFEM for the nonlinear Laplacian; Diening and Kreuzer [§] proved that the AFEM
for p-Laplacian is linear convergent; and Garau et al [9] showed that the AFEM
for quasi-linear problems converges for Kacanov iterations.

In this paper we organized as follows. In section 2, the standard finite element
method and AFEM are formulated. In section 3, the crucial Lemmas required for
obtaining the contraction property are given and proved. In the last section the
contraction property and the convergence result are presented.

2 Problem and Formulation

Let H'(Q) be the usual Sobolev space of functions in L?(£2) whose first order
weak derivatives are also in L?(f2), endowed with the norm

1/2
el o= (lullg + 1Vull§) "
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where || - || denotes the standard L2-norm induced by the standard inner product
(-,+) in L?(€2). Denoted by Hg () the space of functions in H!(Q) with vanishing
trace on 9. A weak solution of (LI)-(L2) is a function u € HE(Q) satisfying

B(u,v) = L(u;v) Yo € Hy(Q), (2.1)

where the bilinear form B : H'(2) x H*(2) — R is defined by
B(u,v) = / A(x)Vu(z) - Vo(z) de.
Q
The functional £ : H}(Q) x H}(Q) — R is defined by

E(u;v)z/ﬁf(x,u(x))v(x)dx.

Since A is positive definite, the bilinear B is symmetric and coercive on H} (),
ie.,

B(v,v) > cgllv], (2.2)
for some cp > 0 depending only on A and €. It is also continuous on H(Q), i.e.,

B(v, w) < Cgllo[a]lwl]s, (2:3)

for some Cp > 0 depending only on A and Q.
The bilinear form B induces the energy norm on H}((2), defined as

ol := v/B(v,v),  Vve Hg(Q).

The semi-norm on H(Q) is |v]; := ||[Vv|lo. Note that the norm | - |1, the semi-
norm |v|1, and the energy norm || - || are all equivalent on H} ().

Let 7p be an initial triangulation (mesh) of 2 and T be the class of all shape-
reqular conforming refinements of Ty. Given any conforming triangulation 7 € T
we define the corresponding finite element space, the space of piecewise polynomial
functions of fixed degree n > 1, by

V(T) :=={veH)Q) v, eP,(T) VT €T},
where P, (T') denotes the space of all polynomials of degree < n defined on the

element T' € 7. Then there exists the unique approximation of u, called the finite
element solution, defined as

ur € V(T); B(ur,v) = L(uT;v), YoveV(T). (2.4)
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2.1 L?’—Estimates

For simplicity, we write fr := f(x,ur), fr := fr, and f := f(z,u). Based on
the results obtained by Jumpawai’s Thesis [10], the L? estimates for the error can
be given as follows.

Lemma 2.1. Let u be a weak solution satisfying ZI) and ur € V(T) be the
solution of (24)). Then

lu —urllo < CF|lu — ur|h1 sup ( inf ||<ng||1> +CEf = frllo,
g€L2(),lgllo<A\VEV(T)

where C and C3 are constants depending only on data. For a given g € L*(Q),
denoted by o, € Hy () the corresponding unique solution of the linear equation

Blpg,w) = (g,w),  Ywe Hy(Q). (2.5)

Proof. Let w € L*(Q). Then w € (L?(£2))*, the dual space of L?(2). Ones can
easily show that

[wllo="sup — (g,w). (2.6)
9EL2(D),]lgllo<1

From 21 and (Z4]), we have
B(U*UT,’U) = <f7f7—av>7 Vo EV(T) (27)

By setting w := u —uy € H}(Q) in Z5) and using 7)), for any © € V(T) we
have

(9, u—ur) = Blpg,u —ur) = Blpy — 0,u —ur) + B(0,u —ur),
:B(¢976,U*UT,)+<fff7’,ﬁ>. (28)
Applying continuity of B and the Cauchy-Schwartz inequality to get
(g, u—ur) < Cpllu—urll-lleg =0l + 15 = frilollvlo. (2.9)
Let @47 € V(T) be a finite element solution of ¢, in (Z5]). By Céa’s Lemma [I1],
p-55,

Cgr
— < 2B inf — ol 2.10
g — g7l < P g — vl (2.10)

Taking 0 = @47 € V(T) and using (ZI0) in (ZJ), it gives
(9,u —ur) < Cpllu —url1-llvg =gl + I = Frlolleslo;

hence,

02
— < Biju— inf - — . (211
(o= ur) < S rly (int_llgn = olh ) 41 = Frloliegrlo. (211
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By triangle inequality, the last term of (ZITI]) becomes to

g, 7llo = llpg.,7 = g + ¢gllo < ll@g, T = @gllo + llegllo- (2.12)

By duality technique for linear problem (2] on a convex polygonal domain [11],
p-92 and regularity theorem [II], p.90, the first term on the right hand side of

212) becomes
leg. = ¢allo < Cahllgg,T = @gllt < cCah?|gllo. (2.13)

where Cq and ¢ are constants depending on the domain {2 and shape-regularity,
and h = rTna)rchT, hy = |T|1/d, where |T| is the measure of 7' in RY. Note that
€

this definition is equivalent to the diameter of T'.
Setting w = ¢4 in (ZI2) and applying the coercivity (Z2)) and Cauchy-
Schwartz inequality, we get

calleglli < Bleg, pq) = (9, 20) < llgllollegllo

Since ||[v]jo < ||v]|1 for all v € HY(R2), we get cgllegllZ < llgllollegllo- Therefore,

1
legllo < —llgllo- (2.14)
CB
Combining the previous inequalities into ([212]), we have
leg.7llo < llpg. T = #allo + llegllo

1
< cCah?||gllo + —llgllo
B

1
_ <ccah2 n —) lgllo.
CB

The inequality (ZI1]) becomes
(gou—ur) < Llu—urly inf_ g, — ol + (cCah®+ =) I = Friollgl
g, T) > s T 1UGV(T) Pg 1 Q 5 Tllollgllo-

By setting Cf = g—s and Cj = cCqh? + é and taking sup over all ||g|jo < 1, we
obtain the result

lu —urllo = sup (9,u—uT)
geL2(Q),llgllo<1

< Cfllu — ur|1 sup ( inf ||<Pg—v||1) +C3Nf = frllo. O
geL2(Q),|lgllo<1 \VEV(T)

Corollary 2.2. Under the hypotheses of LemmalZ1 and f satisfies Ly < p < 6}2
for some positive p. Then

lv = urllo < Crhllu = urlh

where Cy is a constant depending only on p, the shape regularity, and the data
(4,9).
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Proof. By regularity theorem [I1], p.90,

inf_ {lpg — vl < llpg — < chlgllo-
JdBE eg = vl < ey = ol < chllglo

Lemma [2.1] becomes
[u—urllo < cCyhllu—urlls + C3[|f — frlo

By Lipschitz condition, it follows that || f— f7llo < Ly|lu—u7]|o and by assumption
Ly < p, we get |f — frllo < pllu — urllo. Hence,

lu—urllo < cCYhllu —urlls + C5pllu —urllo.
Since C5p < 1, we can combine terms to get
lu—wurllo < Crhllu—url,

cCT
1-C3p

where Cy 1= is a positive constant. O

2.2 Adaptive Finite Element Method: AFEM

We analyze here a standard adaptive finite element method (AFEM) as a loop
of procedures

SOLVE — ESTIMATE — MARK — REFINE.

SOLVE: Given a current triangulation 7 and a finite element space V(7), it
produces the finite element solution ur € V(T),

ur=SOLVE(T).

Since (24]) is a nonlinear problem, one requires an iterative technique to approxi-
mate ur (for example, see [9] for quasi-linear problem).

ESIMATE: For T € T, T € T and v € H}(Q2) we define the local interior residual
Rr(v) = f(z,v)|r + V- (AV)|r. (2.15)

The jump residual on side S C 9T NN
Js(v) == (AVv)|g - fix + (AV)]s - figr, (2.16)

where 7l and 7ips are the outward unit normal vectors on S corresponding to T’
and T”, respectively. The local error indicator ny(v,T) on T is defined via

ﬂ%‘(”aT) = h2THRT(U)||%2(T) + hT||JS(v)H%2(8Tr‘|Q)' (2.17)
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The global error indicator iy for T is

1/2
n7(v) = <Z n%(v,T)> :

TeT

and for any subset 77 C T,

1/2
nr(v, T') = <Z 772(07T)> :

TeT!

Based on a posteriori error analysis, see [12], Jampawai [10] has obtained the
upper bound estimate stated as:

Upper bound: Let u be the weak solution (Z1I) of the model problem and
ur, =SOLVE(Ty). Then

lw = urll < Crmp(ur) + Cohil[ f = Frllo (2.18)

where C7, C2 depend on the shape regularity and the data (A, Q), hy is defined to
be the maximum of hy for T in Ty, and denoting nx (uy) for nr, (ug).

MARK: Given a triangulation 7, the set of indicators {ny(ur,T)}reT, and the
marking parameter 6 € (0, 1], the procedure MARK produces a marked subset
MCT,

M = MARK({n1(ur,T)}reT, T, 0),

such that M satisfies some marking properties in some optimal way. For example,
in this paper we use Dorfler Marking [1],

nr(ur, M) = Onr(ur), (2.19)
MARK will find an optimal subset M satisfying the marking property (2I9).

REFINE: Given a fixed integer b > 1, for any 7 € T and M C T of marked
elements, the procedure produces a finer conforming triangulation

7. = REFINE(T, M)

by refining all elements T' € M for b times, and together with a few more elements
surrounding to be conforming. Note that V(7)) C V(7.). For T" € T.\T obtained
by refining T € T, i.e., by using newest vertex bisection method b times, we have

'] < 277, (2.20)
where |T'| is the measure of the element 7" in R%. Note that for 77, as a child of T,
hyr =27, (2.21)

Adaptive Algorithm.
Given the initial grid 7y, TOL, and marking parameter 0 < 8 <1, set k = 0:
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ur, = SOLVE(Ty);

Ak (ur, T) yrer, = ESTIMATE (ug, Tx); (STOP: if g, < TOL.)
- My = MARK({ny (ur, T) }rer, Tk, 0);

4. Ti+1 = REFINE(My, Tk), set k =k + 1, go to Step 1.

Note that from (Z2I]) the algorithm gives the decreasing sequence { A4}, o, namely,
hi, < hg for all k. B

3 Lemmas

In this section we prove lemmas required for obtaining the contraction property
and the convergence of AFEM stated in the next section. These lemmas are
obtained according to the AFEM algorithm, based on the four main procedures,
SOLVE, ESTIMATE, MARK, and REFINE.

Lemma 3.1. Let u be the weak solution of 1), ur = SOLVE(T:), and upy1 =
SOLVE(Ti41). Then

o —wnll® = flu — wnea | + g — wrl® +2(f = farr, upsr — ) -
Proof. By nested property of refinements, we have that Vi C Vi1 € H}(Q2) and
U1 — Uk € Vi1 € HF(Q). From 1) and Z4), we get
(f = frorrswgr — ) = (f ups1 — ur) — (fror, w1 — ug)
= B(u, ug+1 — uk) — B(ukt1, ukr1 — ug)
= B(u — Upq1, Up41 — Up)-
By definition of the energy norm, we obtain the followings:
B(u — Upt1, U1 — ui) = B(w — Upq1, U1 — u+u — ug)
= B(u — Upt1, U1 — u) + B(u — Upq1, 0 — ug)

—flu = v r I* + B(u — g1, u — ug),

B(u — ugy1,u —ug) = B(u — up + up — Ugy1,u — ug)
= B(u — up,u — ug) + Blug — ups1, v — ug)

= llu — well* + Blur — w1, v — wp),

B(uk — ugy1,u — ug) = Blug — g1, u — up + Ug+1 — Uk41)
= B(uk — Wit 1, U1 — uk) + B(uk — k1,0 — up+1)
= —flunpr — url® = Bu — w1, upsn — ug)
= —llurgr — wll® = (f = g, urra —ua) -

By combining all these terms together, we obtain

lu = urll® =l = wsea I + lugsr = ul® +2(F = fosr, e —w). O
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Lemma 3.2. Let u satisfies (1)), ur, = SOLVE(Ty), and ugy1 = SOLVE(Ti41).
Given that [ satisfying the assumption in Corollary 2.2, then

3 1
(Fiorr = frunsr —u) < SCECFLpR [lu — upia|* + SCZCTL R fu — u.
Proof. By Cauchy-Schwartz inequality,

= (fer1 — frupg1 —u+u — ug)
= (fer1 — frupsr —u) + (frr1 — fru —ug)
<[ fr+1 = Fllollur+r — wllo + [ fr+1 — fllollw — ukllo-

(fra1 = [ g — ug)
Applying the Lipschitz condition for || fx+1 — f|lo, we get
(frr = frunsn — ur) < Lgllugsr = ullg + Ly llugir — ullollu — uglo.
By Corollary 222 we obtain
{fier = Frunsr — ur) < LyCih2||lu — upa [} + LyCFh? lu — wira |1 lu — wl|1-
By the equivalent of norms || - || and || - |1, i-e., || - [|1 < Ce|| - ||, we obtain

(fir1 = frunsr — u) SLyCZCFR*Ju — upa P + L C2OTR? lu — wiesa Ml — url,

and by applying the inequality, 2ab < a? + b2, we get

3 1
(fior = founsr = wn) = SCPCRL 2l — g1 | + 5CECRL* fu — wy 2. O

Corollary 3.3. Under assumption of Lemmal32, then
(1=3C2CFLsA?) lu — upsaI” < (1 + CZCFLsN?) lu — upll? = Jungr — well®.
Proof. By Lemma [3.1] we obtain
e = eI = u = will® = ks = well® + 2 (frsr = fruerr —we). (3.1)
Applying Lemma to the last term of (B, we get

= wial* < llw = ul® = fursr = ul® +3C2CFL R lu — wpes |
+ CZCTLyh? flu — [,

which leads to

(1—3C2CTLsD?) Jlu — wpsa* < (1+ CZCFLsR?) lu — upl® — g1 — ur]®. O



268 Thai J. Math. 13 (2015)/ T. Jampawai and K. Mekchay
Lemma 3.4. For any T € T, there holds for all v,w € V(T), and § > 0,
2 2 1 2
(0, T) < (L+ )07 (w, T) + hr (1 + 5) [ Js(v = w) 72 orng)
1
+ 203 (14 2) (IV-(AV (0~ w) By + 1£0) — F@) ) ) -

Proof. For any T € T, let v,w € V(T). We denote for simplicity for f(z,v) and
f(z,w) by f(v) and f(w), respectively. Consider T € T and its sides S C 9T, by

using (Z18) we get,

Rr(v) =V-(AVv) + f(v)
=V-(AV(v —w)) + V-(AVw) + f(w) + f(v) — f(w)
=Rp(w)+ V-(AV(v — w)) + f(v) — f(w).

By linearity of the jump residual [2I0]), we have
Js(’u) = Js(v — w) + Js(w).
The local error indicator (217 leads to
(v, T) = b3 | R (w) + V- (AV (0 — w)) + [ () = f(w)|72(1)
+ hr |[Js(v —w) + Js(w)||i2(6TmQ) :
By triangle inequality,
2
17 (v, T) < by (|Rr (W) c2¢ry + V- (AV (0 = w)) + f(v) = f(w)llL2(1))
2
+ by ([[7s(v = w)| 2orn0) + |75 (w) || L2 (0rn0)) - (32)

For simplicity, let denote

a:= Rr(w)lz2r)

p=|[|V-(AV(v —w)) + f(v) = f(w)|[z2(7)
q:=[|Js(v —w)|L2(orna)

t = ||Js(w)|lL2(arn0)-

The inequality ([B:2]) becomes
ngr(v, T) < h2 (a2 +p?+ 2ap) + hr (q2 +t2 + 2qt) (3.3)

Applying the Young’s inequality to ap and gt of ([B3]), we obtain, for § > 0,
1 1
n3(v,T) < b (a® + p* + 6a® + 57)2) 4 hp(g? + 12 4 612 + g‘f)

1 1
= h3(1+8)a® + h&(1+ 5)]02 + hy(1+ 5)(12 + hr(1+ 0)t%.
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Therefore,

1 1
050, T) < (1+8){h3a® + hyt*} + hy (1 + 5)(12 +h3(1+ E)pQ. (3.4)

By (ZI7), the first term of the right hand side of (3.4)) becomes n3-(w,T'). For the
term p? we get

(IV-(AV (0 = w)) + (o) = ()] z2cr))*
<2 (IV-(A9(0 = w) 22z + 1£(0) = F@) ey )

Finally, the inequality (3.4) becomes

p2

1
(0, T) < (1+8)n7(w, T) + hr (1 + 5 s(v = w)lI72 om0
1
+2h7 (1 + 5 (IV-(AV(v - w)IZ2ry + 1 () = f@)]Z2(7)). O

Lemma 3.5. For T, € T, let My =MARK({nr(uk)}rer,, Tr), let Try1r € T be
defined by Trr1 = REFINE(Ti,, My,) for \ := 1-27% > 0. Then forv € H}(S),
a1 (0) < MR (v) = N (v, My,).

Proof. Let My, be a set of elements in Ty that are refined to get Tj41 and MkH be

a set of newly obtained elements in 7x1; from the refinement of 7y, i.e., My41 =
Tie+1\(Te+1NTk). Note that the marked set My C My, C Ti. It is easy to see that
UTeﬂk T = UT’GJ\N/I;CH T and My U (T, N Tet1) = Tg. Since Ti41 is decomposed

into two disjoint subsets T N Ti+1 and Mk+1, then

a1 (V) = Z a1 (0, T) + Z M (0, T7). (3.5)

TeTeNTr+1 T'eEMpiq

Similarly, 7y is the disjoint union of 7, N Tx41 and My, then
mw) = Y. M)+ > niwT).
TeTNTk+1 TeM,

From the definition of indicators ([2I7), we have that (v, T) = k1 (v, T) for all
v € H(Q), T € T N Try1. Then ([B5) becomes to

T () =)+ Y w0 T) = Y i, T). (3.6)
T/E.K\/l_/k+1 Teﬂk

For a marked element T' € My, we set Pry1(T) ={T" € Tps1: T' C T} C ka+1,
the set of all children of T'. Thus,

S T = Y ( 5 ni+1(v,T’)>§2”/d E X

TeEMpt1 TeM;, \T'€Pry1(T) TEM;,
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where the last term comes from the refinement criteria (2221I)). Therefore,
Mo (V) Sm(0) +27 37 (0, T) = Y w0, 7). (3.7)
TEM,, TEM;,
By defining A = 1 — 27%¢ > 0, (87) becomes
M (0) SR =X D i, 7).
Teﬂk

Since My, € My, Z (v, T) < Z ni(v,T), we finally get

TeMy Teﬂk
Mo (v) ) =X D np(w, T) = i (v) — M (v, My). m
TeEMy

Lemma 3.6. For T, € T and My =MARK({nk(uk)}rer.,Tr), let Tep1 € T
defined by Trp41 = REFINE(Ty, My). Then for all vi, € Vi, vg41 € Vig1, and
6 > 0, there holds

1
N1 (Org1) < (14 6) {ni(vr) — Ani (e, M)} + (1 + g)Kk||Uk+1 — vel3,

where Ky, := C4 + ZL?chi +2Caa(1+ hy)2.

Proof. By setting T = Tp11, v = vg+1 and w = vy in Lemma [34] we get

771%+1(Uk+1): Z 771%+1(Uk+1aT)

TETkt1
1
<@+6) > mpp (s, T)+ (1+ 5) > hrllJs(rsr — vl 72 orna)
TETkt1 TeTkt1
1
214 T BRIV (ATt o)t 3 k) — S0 |
T€Tk+1 T€Tk+1

To estimate the ||Js(vkt+1 — vi)| term, we applied the trace theorem and the
inverse inequality [13] [P.37, 111], to obtain

> hrllJs (it — vl Feornay <2 Y hrll(AV(0k1 — )7 - nll720r00)
TETkt1 TETkt1

<Co > Al IV(Wrt1 = vi) 1721,
TETkt1

where Cjy is a constant depends only on shape-regular parameter, and independent
of k, and because A is a bounded matrix. This can be written as

Z hr || J (k41 — Uk)”%aa:rm) < Callvesr —will3,
TeTks1
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where Cy := Cy || 4] -
To estimate |V-(AV (vg+1 — vi))|| observe that

V- (AV (01 —vk)) = (V-A) - (V(0ps1 — o) + A V(01 — vg),

where V2 (vk4+1 — vk) is Hessian matrix of vg41 — v and : denotes the Frobenius
inner product (or, component-wise inner product). This leads to an estimate

> hHIV-(AV (k= o))llFary < Y h%(IIV'AllooIV(kavk)llmm

TETk+1 TETk41
2
1AL (001 = 00 ) -
Applying the inverse estimates [11] [p.85] to the Hessian to get

2
Y IV AV ok —v))llFz ) < D (hrlIV-Allsot [ Alloo) IV (01 = )72 -
T€Tk+1 T€Tk+1
This gives that
> BEIVA(AV 0k — ver)F2ery < Can(l+ hi)?orsr — okl
TETk41
where C44 := max{||V-Al|co; | Alloc }-

Finally, by the Lipschitz condition on f, we obtain an estimate

D b k) = F@R) ey < D hELE vk — vill7zer
T€Tk+1 TE€Tk+1

< hp L ||lvks1 — vkl

After combining all estimates above and applying Lemma [3.5] we get

1
s (0n) = (148) ((00) — M0, M) + (14 3 ) Kallos = el

where K := Ca + 2h3L2 + 204a(1 + hy,)?. O

Note that since {hy},-, is decreasing, the constant K} is bounded above by
K*, which is independent of k, given that, for example, hy < 1 for the starting
triangulation. In this case, K < Cyx + 2L?c +8C a4 =: K* for all k.

4 Contraction Property and Convergence
In this section we prove the contraction property for the weighted sum of the

energy error and the error estimator from two consecutive iterations of AFEM. The
convergence of AFEM follows directly from the theorem as stated in the corollary.
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Theorem 4.1. Given an initial triangulation Ty with initial mesh-size hy, let 0 €
(0,1] and {7k, Vi, ur te>0 be a sequence of triangulations Ty, finite element spaces
Vi, and discrete solutions uy produced by AFEM. Then there exists a constant K
depending only on the data, and Lipschitz constants such that if hg < K, then
there exist constants a,y >0 and 0 < p < 1 such that

i1 (1) + allu — wpa [ < o (v (un) + allu —u]?) -
Proof. For simplicity in writing, let denote nx = ng(uk), Met1 = M1 (Uk+1),s
ert+1 := |lu — ugs1]), and JJu — ux| := ex. By setting vy = uy and Vg1 = Ug4q in
Lemma [3.6] we get
1
)

Using equivalence of norms and setting Ey = ||uk+1 — uk|, (@I) becomes

1
MR < (14 0) {nf = Mg (u, Mie)} + (1 + 5)CZKKER,

where C, is a constant for the equivalence depending on the data A and Q. Ap-
plying Dérfler Marking (ZT9), ny (uk, M) > Oni, we have

Mer < (14 8) {nf — Mg (e, M)} + (L4 ) Kiellupgr —wllf. (4.1)

1
M < (146) {771% - )\927713} +(1+ S)CSKICEIE (4.2)

Since Kj, < K*, ([@2) leads to
1

6)C§K*E,§. (4.3)

Mewr < A +0) {mi — i} + (1 +

Multiplying (3) by v := m > 0 to obtain
Viyr <AL+ 8)n; — AP (1 + 6 + By

By Corollary B3] if for hg < then

1
\/3C2C3L;’
Vi1 + (1=3CZCFLehR)eq sy Sv(L+0)m; — YA (L+0)n + (1+C2CFLshi)ey.
To balance the 7, term, we can rewrite as, for 5 > 0,
Vi1 + (L= 3C2CFLsh7) ey < (1 +8)ni + (14 C2C7Lshi)ex
= BYAG* (1 + 0)i — (1 = B)yAG> (1 + 8)ng.
Using the upper bound (ZI8)), the Lipschitz condition on f, the Corollary[Z2] and
the equivalence of norms, we get
ex < Cimy + Cohgllf — frllo
< Cimg + Cohy Ly [|Ju — ug |
< Cing + CoLpCyhillu — |y
< Cimp + CeCQCfohiek.

(4.4)
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If for hg < —————, then we have
\/CcC2CsLy’

1-C, L+h?
0 <( ¢ Cé’cf fhk)ek < k- (4.5)
1

Combining (£I) to the right hand side of (£4]), we have
Ve + (1_3030)2”th2)62+1
<A(A+0)n; + (14+C2CFLshE) e — (1 — B)yA0* (1 + 6)np

1-C.CoCrLeh2\?
67A92(1+5)<M> e2.
C1
For convenience we denote the coeflicients as follows;

oy =1—3C2CFLshj > 0,

_ 2\ 2
o =1+ C2C2 L2 — 0 ﬂ/\92<1 Cecgffohk>,

ag = (149) (1 -(1- ﬁ))\92) .
This can be written as

o
Viir + Qr€hyy < Yagmp + azep = yoanp + o <—a2) er- (4.6)
1

The result follows by setting & = a; and showing that p := max{as, g—f} < 1.

Showing 0 < a3 < 1 is equivalent to 0 < (14 6) (1 — (1 — 8)A0?) < 1. This is
the case if we choose 3 > 0 such that

1 5
0<5<1_W(1—+5)' (4.7)

Since A and # are known from AFEM and M\§? < 1, then we can choose 3 > 0

satisfying (@1) provided that § > 0 is pre-selected so that 15z - % < 1, ie.,
choosing
G2
0<d< ——. 4.8
1— )62 (48)
. oy s . . 1 1
In order to arrive at (@6 it is required that hy < min{ N \/Cecmef},

for obtaining (@A) and ([3H]), thus this gives oy > 0.
We get ag > 0 by selecting ¢ satisfying (£.8) and sufficiently small so that

5
CZK~

2
1Cecgchfh§) oL

2
B0 < c
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The case 0 < as < a7 holds if and only if

5 1—C.CoCsLh2\°
1+ C2CFLsh; — CQK*BAQQ ( c E) <1-3C2C7Lh;.
This is equivalent to
5BN0?
hi < ————0 (1 - C.CoCtLsh3)?.
o7y o T Ao A
For convenience for computation, set r = C.C2CyL; and s = 46‘31?57%' The

condition on hj becomes that

hi < s(1 —2rhi +r*h})

This is the case if hg < ﬁ because erh% > 0.
By selecting K := min { \/3cglcﬁLf’ \/CECZLfo sr/ 1+32T5} > 0, the condition
ho < K will give us the contraction result for (£4). O

Corollary 4.2 (Convergence). Under the hypothesis of Theorem [{.1],
lim ng(ur) =0 and lim |Ju — ugf = 0.
k—o0 k—o0

Proof. From Theorem [.T] it is easy to see that

k+1 (

Vg (wirn) + allu — wea | < T (v (uo) + oflu — uof|?)

Since limy 0o 4 = 0 for g € (0,1), and 7, a > 0, thus

lim 7x(uk) =0 and lim |Ju — upqi || = 0. n
k—o0 k—o0

5 Examples

In this section, we give some examples of semi-linear elliptic partial differen-
tial equations satisfying the assumption of the main Theorem L1l The following
are examples of nonlinear functions f(z,u) that satisfy the assumptions of the
theorem.

Example 5.1. Let f(z,u) = e ", where z € Q := [0, 1]2 and a constant m > 0.
It is clear that

—2u

1
mem Y

of

ou

_ _ |ul

Yu € R. (5.1)

2
T ;
m eEu2
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By calculus, ‘1“|2 has absolute maximum ./

. 5, 1.e., llu‘Q < /3¢, Vu € R. Thus,

—u
em em

2
<4/—, Yu € R.
me

of
ou

We can choose Ly = /-2 By corollary 22 Ly < CL;, if

2
m > —5(ccgCp + 1)2,
ec

%. In the case where A is identity,

2(c+1)2
[

where ¢cg = 0., Cp = ||A]| and ¢ =

we get that cg = Cp = 1, therefore, and we require that m > in order
to satisfy the condition of the Corollary [Z21 Moreover, since f(x,u) is continuous

and bounded on {,
/ |f (z,u)?dx = / e~ wt da < oo.
Q Q

Example 5.2. Let f((x1,72),u) = z2sin(mxiu), where (r1,22) € Q = [0,1]2
and m > 0. It is easy to see that

0
‘a—z = |max122 cos(mziu)| < m, Yu € R, V(x1,22) € Q.

Similarly, if we choose Lf = m., then we require that

< B
ccgCp +1°
In the case where A = I we need that m < ?11 Moreover, since f(z,u) is
continuous and bounded on §2,

/|f(:c,u)|2d:c:/:c%sinQ(m:clu)d:c<oo.
Q Q
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