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Abstract : We analyze a standard adaptive finite element method (AFEM) for
second order semi-linear elliptic partial differential equations (PDEs) with vanish-
ing boundary over a polyhedral domain in R

d, d ≥ 2. Based on a posteriori error
estimates using standard residual technique, we prove the contraction property for
the weighted sum of the energy error and the error estimator between two consecu-
tive iterations, which also leads to the convergence of AFEM. The obtained result
is based on the assumptions that the initial mesh or triangulation is sufficiently
refined and the nonlinear inhomogeneous term f(x, u(x)) is Lipschitz in the second
variable.
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1 Introduction

Let Ω ⊂ R
d(d = 2, 3) be a bounded, polyhedral domain. We consider the

second order semi-linear elliptic partial differential equation in gradient form with
vanishing boundary condition,

−∇ · (A(x)∇u(x)) = f(x, u(x)), ∀x ∈ Ω, (1.1)

u(x) = 0, ∀x ∈ ∂Ω, (1.2)
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where f(x, u(x)) is Lipschitz in the second argument, i.e., there exists a Lipschitz
constant Lf such that

|f(x, v(x)) − f(x,w(x))| ≤ Lf |v(x) − w(x)| , ∀x ∈ Ω,

and A(x) is a positive definite matrix for each x ∈ Ω with strictly monotonicity
property, i.e., there exists a positive constant θ∗ such that

A(p− q) · (p− q) ≥ θ∗ |p− q|2 , ∀ p, q ∈ R
d.

We analyzed here a standard AFEM having loops of four procedures:

SOLVE → ESTIMATE → MARK → REFINE.

For a given current triangulation and known data (f,A,Ω), the procedure SOVLE
finds the approximate solution; the procedure ESTIMATE computes error esti-
mates in a suitable norm based on a posteriori error estimations; the procedure
MARK selects elements according to some marking conditions; the procedure RE-
FINE refines the current mesh to obtain a finer triangulation according to the
marked elements. The main purpose is to construct a sequence of triangulations
together with approximate solutions that will eventually reduce error in an efficient
way in term of degree of freedoms.

In studying convergence of AFEM ones usually concern in how to get the
errors to go to zero. For linear elliptic partial differential equations, it started
with Dörfler [1], who introduced a crucial marking, and proved strict energy error
reduction for the Poisson’s equation provided the initial mesh satisfies a fineness
assumption. Morin et al [2, 3] proved convergence of the AFEM without restric-
tions on the initial mesh and introduced the concepts of data oscillation and the
interior node property, which later was extended to general second order elliptic
partial differential equations by Mekchay and Nochetto [4] . Cascon et al [5] ob-
tained quasi-optimal convergence rate for general standard of AFEMs but without
the usages of the local lower bound and interior node property.

For nonlinear elliptic partial differential equations, Dörfler [6] developed a
robust strategy for nonlinear Poisson equation; Veeser [7] proved convergence of
AFEM for the nonlinear Laplacian; Diening and Kreuzer [8] proved that the AFEM
for p-Laplacian is linear convergent; and Garau et al [9] showed that the AFEM
for quasi-linear problems converges for Kacanov iterations.

In this paper we organized as follows. In section 2, the standard finite element
method and AFEM are formulated. In section 3, the crucial Lemmas required for
obtaining the contraction property are given and proved. In the last section the
contraction property and the convergence result are presented.

2 Problem and Formulation

Let H1(Ω) be the usual Sobolev space of functions in L2(Ω) whose first order
weak derivatives are also in L2(Ω), endowed with the norm

‖u‖1 :=
(
‖u‖20 + ‖∇u‖20

)1/2
,
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where ‖ · ‖0 denotes the standard L2-norm induced by the standard inner product
〈·, ·〉 in L2(Ω). Denoted by H1

0 (Ω) the space of functions in H1(Ω) with vanishing
trace on ∂Ω. A weak solution of (1.1)-(1.2) is a function u ∈ H1

0 (Ω) satisfying

B(u, v) = L(u; v) ∀ v ∈ H1
0 (Ω), (2.1)

where the bilinear form B : H1(Ω)×H1(Ω) → R is defined by

B(u, v) =
∫

Ω

A(x)∇u(x) · ∇v(x) dx.

The functional L : H1
0 (Ω)×H1

0 (Ω) → R is defined by

L(u; v) =
∫

Ω

f(x, u(x))v(x) dx.

Since A is positive definite, the bilinear B is symmetric and coercive on H1
0 (Ω),

i.e.,

B(v, v) ≥ cB‖v‖21, (2.2)

for some cB > 0 depending only on A and Ω. It is also continuous on H1(Ω), i.e.,

B(v, w) ≤ CB‖v‖1‖w‖1, (2.3)

for some CB > 0 depending only on A and Ω.

The bilinear form B induces the energy norm on H1
0 (Ω), defined as

|||v||| :=
√
B(v, v), ∀ v ∈ H1

0 (Ω).

The semi-norm on H1(Ω) is |v|1 := ‖∇v‖0. Note that the norm ‖ · ‖1, the semi-
norm |v|1, and the energy norm ||| · ||| are all equivalent on H1

0 (Ω).

Let T0 be an initial triangulation (mesh) of Ω and T be the class of all shape-
regular conforming refinements of T0. Given any conforming triangulation T ∈ T

we define the corresponding finite element space, the space of piecewise polynomial
functions of fixed degree n ≥ 1, by

V(T ) :=
{
v ∈ H1

0 (Ω) : v|T ∈ Pn(T ), ∀T ∈ T
}
,

where Pn(T ) denotes the space of all polynomials of degree ≤ n defined on the
element T ∈ T . Then there exists the unique approximation of u, called the finite
element solution, defined as

uT ∈ V(T ); B(uT , v) = L(uT ; v), ∀ v ∈ V(T ). (2.4)
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2.1 L
2−Estimates

For simplicity, we write fT := f(x, uT ), fk := fTk
and f := f(x, u). Based on

the results obtained by Jumpawai’s Thesis [10], the L2 estimates for the error can
be given as follows.

Lemma 2.1. Let u be a weak solution satisfying (2.1) and uT ∈ V(T ) be the

solution of (2.4). Then

‖u− uT ‖0 ≤ C∗
1‖u− uT ‖1 sup

g∈L2(Ω),‖g‖0≤1

(
inf

v∈V(T )
‖ϕg − v‖1

)
+ C∗

2‖f − fT ‖0,

where C∗
1 and C∗

2 are constants depending only on data. For a given g ∈ L2(Ω),
denoted by ϕg ∈ H1

0 (Ω) the corresponding unique solution of the linear equation

B(ϕg, w) = 〈g, w〉 , ∀w ∈ H1
0 (Ω). (2.5)

Proof. Let w ∈ L2(Ω). Then w ∈ (L2(Ω))∗, the dual space of L2(Ω). Ones can
easily show that

‖w‖0 = sup
g∈L2(Ω),‖g‖0≤1

〈g, w〉 . (2.6)

From (2.1) and (2.4), we have

B(u− uT , v) = 〈f − fT , v〉 , ∀ v ∈ V(T ). (2.7)

By setting w := u − uT ∈ H1
0 (Ω) in (2.5) and using (2.7), for any ṽ ∈ V(T ) we

have

〈g, u− uT 〉 = B(ϕg, u− uT ) = B(ϕg − ṽ, u− uT ) + B(ṽ, u− uT ),

= B(ϕg − ṽ, u− uT , ) + 〈f − fT , ṽ〉 . (2.8)

Applying continuity of B and the Cauchy-Schwartz inequality to get

〈g, u− uT 〉 ≤ CB‖u− uT ‖1 · ‖ϕg − ṽ‖1 + ‖f − fT ‖0‖ṽ‖0. (2.9)

Let ϕg,T ∈ V(T ) be a finite element solution of ϕg in (2.5). By Céa’s Lemma [11],
p.55,

‖ϕg − ϕg,T ‖1 ≤ CB

cB
inf

v∈V(T )
‖ϕg − v‖1. (2.10)

Taking ṽ = ϕg,T ∈ V(T ) and using (2.10) in (2.9), it gives

〈g, u− uT 〉 ≤ CB‖u− uT ‖1 · ‖ϕg − ϕg,T ‖1 + ‖f − fT ‖0‖ϕg,T ‖0,

hence,

〈g, u− uT 〉 ≤
C2

B

cB
‖u− uT ‖1

(
inf

v∈V(T )
‖ϕg − v‖1

)
+ ‖f − fT ‖0‖ϕg,T ‖0. (2.11)
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By triangle inequality, the last term of (2.11) becomes to

‖ϕg,T ‖0 = ‖ϕg,T − ϕg + ϕg‖0 ≤ ‖ϕg,T − ϕg‖0 + ‖ϕg‖0. (2.12)

By duality technique for linear problem (2.5) on a convex polygonal domain [11],
p.92 and regularity theorem [11], p.90, the first term on the right hand side of
(2.12) becomes

‖ϕg,T − ϕg‖0 ≤ CΩh‖ϕg,T − ϕg‖1 ≤ cCΩh
2‖g‖0. (2.13)

where CΩ and c are constants depending on the domain Ω and shape-regularity,

and h = max
T∈T

hT , hT := |T |1/d, where |T | is the measure of T in R
d. Note that

this definition is equivalent to the diameter of T .
Setting w = ϕg in (2.12) and applying the coercivity (2.2) and Cauchy-

Schwartz inequality, we get

cB‖ϕg‖21 ≤ B(ϕg, ϕg) = 〈g, ϕg〉 ≤ ‖g‖0‖ϕg‖0
Since ‖v‖0 ≤ ‖v‖1 for all v ∈ H1(Ω), we get cB‖ϕg‖20 ≤ ‖g‖0‖ϕg‖0. Therefore,

‖ϕg‖0 ≤ 1

cB
‖g‖0. (2.14)

Combining the previous inequalities into (2.12), we have

‖ϕg,T ‖0 ≤ ‖ϕg,T − ϕg‖0 + ‖ϕg‖0

≤ cCΩh
2‖g‖0 +

1

cB
‖g‖0

=

(
cCΩh

2 +
1

cB

)
‖g‖0.

The inequality (2.11) becomes

〈g, u− uT 〉 ≤
CB

cB
‖u− uT ‖1 inf

v∈V(T )
‖ϕg − v‖1 +

(
cCΩh

2 +
1

cB

)
‖f − fT ‖0‖g‖0.

By setting C∗
1 = CB

cB
and C∗

2 = cCΩh
2 + 1

cB
and taking sup over all ‖g‖0 ≤ 1, we

obtain the result

‖u− uT ‖0 = sup
g∈L2(Ω),‖g‖0≤1

〈g, u− uT 〉

≤ C∗
1‖u− uT ‖1 sup

g∈L2(Ω),‖g‖0≤1

(
inf

v∈V(T )
‖ϕg − v‖1

)
+ C∗

2‖f − fT ‖0.

Corollary 2.2. Under the hypotheses of Lemma 2.1 and f satisfies Lf ≤ ρ < 1
C∗

2

for some positive ρ. Then

‖u− uT ‖0 ≤ Cfh‖u− uT ‖1
where Cf is a constant depending only on ρ, the shape regularity, and the data

(A,Ω).
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Proof. By regularity theorem [11], p.90,

inf
v∈V(T )

‖ϕg − v‖1 ≤ ‖ϕg − ϕg,T ‖1 ≤ ch‖g‖0.

Lemma 2.1 becomes

‖u− uT ‖0 ≤ cC∗
1h‖u− uT ‖1 + C∗

2‖f − fT ‖0.

By Lipschitz condition, it follows that ‖f−fT ‖0 ≤ Lf‖u−uT ‖0 and by assumption
Lf ≤ ρ, we get ‖f − fT ‖0 ≤ ρ‖u− uT ‖0. Hence,

‖u− uT ‖0 ≤ cC∗
1h‖u− uT ‖1 + C∗

2ρ‖u− uT ‖0.

Since C∗
2ρ < 1, we can combine terms to get

‖u− uT ‖0 ≤ Cfh‖u− uT ‖1,

where Cf :=
cC∗

1

1−C∗

2
ρ is a positive constant.

2.2 Adaptive Finite Element Method: AFEM

We analyze here a standard adaptive finite element method (AFEM) as a loop
of procedures

SOLVE → ESTIMATE → MARK → REFINE.

SOLVE: Given a current triangulation T and a finite element space V(T ), it
produces the finite element solution uT ∈ V(T ),

uT =SOLVE(T ).

Since (2.4) is a nonlinear problem, one requires an iterative technique to approxi-
mate uT (for example, see [9] for quasi-linear problem).

ESIMATE: For T ∈ T, T ∈ T and v ∈ H1
0 (Ω) we define the local interior residual

RT (v) := f(x, v)|T +∇ · (A∇v)|T . (2.15)

The jump residual on side S ⊂ ∂T ∩ Ω

JS(v) := (A∇v)|S · ~nT + (A∇v)|S · ~nT ′ , (2.16)

where ~nT and ~nT ′ are the outward unit normal vectors on S corresponding to T

and T ′, respectively. The local error indicator ηT (v, T ) on T is defined via

η2T (v, T ) := h2
T ‖RT (v)‖2L2(T ) + hT ‖JS(v)‖2L2(∂T∩Ω). (2.17)
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The global error indicator ηT for T is

ηT (v) :=

(
∑

T∈T

η2T (v, T )

)1/2

,

and for any subset T ′ ⊂ T ,

ηT (v, T ′) :=

(
∑

T∈T ′

η2(v, T )

)1/2

.

Based on a posteriori error analysis, see [12], Jampawai [10] has obtained the
upper bound estimate stated as:

Upper bound: Let u be the weak solution (2.1) of the model problem and
uk =SOLVE(Tk). Then

|||u− uk||| ≤ C1ηk(uk) + C2hk‖f − fk‖0 (2.18)

where C1, C2 depend on the shape regularity and the data (A,Ω), hk is defined to
be the maximum of hT for T in Tk, and denoting ηk(uk) for ηTk

(uk).

MARK: Given a triangulation T , the set of indicators {ηT (uT , T )}T∈T , and the
marking parameter θ ∈ (0, 1], the procedure MARK produces a marked subset
M ⊂ T ,

M = MARK({ηT (uT , T )}T∈T , T , θ),

such that M satisfies some marking properties in some optimal way. For example,
in this paper we use Dörfler Marking [1],

ηT (uT ,M) ≥ θηT (uT ), (2.19)

MARK will find an optimal subset M satisfying the marking property (2.19).

REFINE: Given a fixed integer b ≥ 1, for any T ∈ T and M ⊂ T of marked
elements, the procedure produces a finer conforming triangulation

T∗ = REFINE(T ,M)

by refining all elements T ∈ M for b times, and together with a few more elements
surrounding to be conforming. Note that V(T ) ⊂ V(T∗). For T ′ ∈ T∗\T obtained
by refining T ∈ T , i.e., by using newest vertex bisection method b times, we have

|T ′| ≤ 2−b|T |, (2.20)

where |T | is the measure of the element T in R
d. Note that for T ′, as a child of T ,

hT ′ = 2−b/dhT . (2.21)

Adaptive Algorithm.
Given the initial grid T0, TOL, and marking parameter 0 < θ ≤ 1, set k = 0:
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1. uk = SOLVE(Tk);
2. {ηk(uk, T )}T∈Tk

= ESTIMATE(uk, Tk); (STOP: if ηk < TOL.)

3. Mk = MARK({ηk(uk, T )}T∈Tk
, Tk, θ);

4. Tk+1 = REFINE(Mk, Tk), set k = k + 1, go to Step 1.

Note that from (2.21) the algorithm gives the decreasing sequence {hk}k≥0, namely,
hk ≤ h0 for all k.

3 Lemmas

In this section we prove lemmas required for obtaining the contraction property
and the convergence of AFEM stated in the next section. These lemmas are
obtained according to the AFEM algorithm, based on the four main procedures,
SOLVE, ESTIMATE, MARK, and REFINE.

Lemma 3.1. Let u be the weak solution of (2.1), uk = SOLVE(Tk), and uk+1 =
SOLVE(Tk+1). Then

|||u− uk|||2 = |||u− uk+1|||2 + |||uk+1 − uk|||2 + 2 〈f − fk+1, uk+1 − uk〉 .
Proof. By nested property of refinements, we have that Vk ⊂ Vk+1 ⊂ H1

0 (Ω) and
uk+1 − uk ∈ Vk+1 ⊆ H1

0 (Ω). From (2.1) and (2.4), we get

〈f − fk+1, uk+1 − uk〉 = 〈f, uk+1 − uk〉 − 〈fk+1, uk+1 − uk〉
= B(u, uk+1 − uk)− B(uk+1, uk+1 − uk)

= B(u− uk+1, uk+1 − uk).

By definition of the energy norm, we obtain the followings:

B(u− uk+1, uk+1 − uk) = B(u− uk+1, uk+1 − u+ u− uk)

= B(u− uk+1, uk+1 − u) + B(u− uk+1, u− uk)

= −|||u− uk+1|||2 + B(u− uk+1, u− uk),

B(u− uk+1, u− uk) = B(u− uk + uk − uk+1, u− uk)

= B(u− uk, u− uk) + B(uk − uk+1, u− uk)

= |||u − uk|||2 + B(uk − uk+1, u− uk),

B(uk − uk+1, u− uk) = B(uk − uk+1, u− uk + uk+1 − uk+1)

= B(uk − uk+1, uk+1 − uk) + B(uk − uk+1, u− uk+1)

= −|||uk+1 − uk|||2 − B(u− uk+1, uk+1 − uk)

= −|||uk+1 − uk|||2 − 〈f − fk+1, uk+1 − uk〉 .
By combining all these terms together, we obtain

|||u− uk|||2 = |||u− uk+1|||2 + |||uk+1 − uk|||2 + 2 〈f − fk+1, uk+1 − uk〉 .
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Lemma 3.2. Let u satisfies (2.1), uk = SOLVE(Tk), and uk+1 = SOLVE(Tk+1).
Given that f satisfying the assumption in Corollary 2.2, then

〈fk+1 − f, uk+1 − uk〉 ≤
3

2
C2

eC
2
fLfh

2|||u − uk+1|||2 +
1

2
C2

eC
2
fLfh

2|||u− uk|||2.

Proof. By Cauchy-Schwartz inequality,

〈fk+1 − f, uk+1 − uk〉 = 〈fk+1 − f, uk+1 − u+ u− uk〉
= 〈fk+1 − f, uk+1 − u〉+ 〈fk+1 − f, u− uk〉
≤ ‖fk+1 − f‖0‖uk+1 − u‖0 + ‖fk+1 − f‖0‖u− uk‖0.

Applying the Lipschitz condition for ‖fk+1 − f‖0, we get

〈fk+1 − f, uk+1 − uk〉 ≤ Lf‖uk+1 − u‖20 + Lf‖uk+1 − u‖0‖u− uk‖0.

By Corollary 2.2, we obtain

〈fk+1 − f, uk+1 − uk〉 ≤ LfC
2
fh

2‖u− uk+1‖21 + LfC
2
fh

2‖u− uk+1‖1‖u− uk‖1.

By the equivalent of norms ||| · ||| and ‖ · ‖1, i.e., ‖ · ‖1 ≤ Ce||| · |||, we obtain

〈fk+1 − f, uk+1 − uk〉≤LfC
2
eC

2
fh

2|||u− uk+1|||2+LfC
2
eC

2
fh

2|||u− uk+1||||||u − uk|||,

and by applying the inequality, 2ab ≤ a2 + b2, we get

〈fk+1 − f, uk+1 − uk〉 =
3

2
C2

eC
2
fLfh

2|||u − uk+1|||2 +
1

2
C2

eC
2
fLfh

2|||u − uk|||2.

Corollary 3.3. Under assumption of Lemma 3.2, then

(
1− 3C2

eC
2
fLfh

2
)
|||u − uk+1|||2 ≤

(
1 + C2

eC
2
fLfh

2
)
|||u − uk|||2 − |||uk+1 − uk|||2.

Proof. By Lemma 3.1, we obtain

|||u − uk+1|||2 = |||u − uk|||2 − |||uk+1 − uk|||2 + 2 〈fk+1 − f, uk+1 − uk〉 . (3.1)

Applying Lemma 3.2 to the last term of (3.1), we get

|||u− uk+1|||2 ≤ |||u − uk|||2 − |||uk+1 − uk|||2 + 3C2
eC

2
fLfh

2|||u− uk+1|||2

+ C2
eC

2
fLfh

2|||u− uk|||2,

which leads to

(
1− 3C2

eC
2
fLfh

2
)
|||u − uk+1|||2 ≤

(
1 + C2

eC
2
fLfh

2
)
|||u− uk|||2 − |||uk+1 − uk|||2.
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Lemma 3.4. For any T ∈ T, there holds for all v, w ∈ V(T ), and δ > 0,

η2T (v, T ) ≤ (1 + δ)η2T (w, T ) + hT

(
1 +

1

δ

)
‖JS(v − w)‖2L2(∂T∩Ω)

+ 2h2
T

(
1 +

1

δ

) (
‖∇·(A∇(v − w))‖2L2(T ) + ‖f(v)− f(w)‖2L2(T )

)
.

Proof. For any T ∈ T, let v, w ∈ V(T ). We denote for simplicity for f(x, v) and
f(x,w) by f(v) and f(w), respectively. Consider T ∈ T and its sides S ⊂ ∂T , by
using (2.15) we get,

RT (v) = ∇·(A∇v) + f(v)

= ∇·(A∇(v − w)) +∇·(A∇w) + f(w) + f(v)− f(w)

= RT (w) +∇·(A∇(v − w)) + f(v)− f(w).

By linearity of the jump residual (2.16), we have

JS(v) = JS(v − w) + JS(w).

The local error indicator (2.17) leads to

η2T (v, T ) = h2
T ‖RT (w) +∇·(A∇(v − w)) + f(v)− f(w)‖2L2(T )

+ hT ‖JS(v − w) + JS(w)‖2L2(∂T∩Ω) .

By triangle inequality,

η2T (v, T ) ≤ h2
T

(
‖RT (w)‖L2(T ) + ‖∇·(A∇(v − w)) + f(v)− f(w)‖L2(T )

)2

+ hT

(
‖JS(v − w)‖L2(∂T∩Ω) + ‖JS(w)‖L2(∂T∩Ω)

)2
. (3.2)

For simplicity, let denote

a := ‖RT (w)‖L2(T )

p := ‖∇·(A∇(v − w)) + f(v)− f(w)‖L2(T )

q := ‖JS(v − w)‖L2(∂T∩Ω)

t := ‖JS(w)‖L2(∂T∩Ω).

The inequality (3.2) becomes

η2T (v, T ) ≤ h2
T

(
a2 + p2 + 2ap

)
+ hT

(
q2 + t2 + 2qt

)
(3.3)

Applying the Young’s inequality to ap and qt of (3.3), we obtain, for δ > 0,

η2T (v, T ) ≤ h2
T

(
a2 + p2 + δa2 +

1

δ
p2
)
+ hT

(
q2 + t2 + δt2 +

1

δ
q2
)

= h2
T (1 + δ)a2 + h2

T

(
1 +

1

δ

)
p2 + hT

(
1 +

1

δ

)
q2 + hT (1 + δ)t2.
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Therefore,

η2T (v, T ) ≤ (1 + δ)
{
h2
Ta

2 + hT t
2
}
+ hT

(
1 +

1

δ

)
q2 + h2

T

(
1 +

1

δ

)
p2. (3.4)

By (2.17), the first term of the right hand side of (3.4) becomes η2T (w, T ). For the
term p2 we get

p2 =
(
‖∇·(A∇(v − w)) + f(v)− f(w)‖L2(T )

)2

≤ 2
(
‖∇·(A∇(v − w))‖2L2(T ) + ‖f(v)− f(w)‖2L2(T )

)
.

Finally, the inequality (3.4) becomes

η2T (v, T ) ≤ (1 + δ)η2T (w, T ) + hT

(
1 +

1

δ

)
‖JS(v − w)‖2L2(∂T∩Ω)

+ 2h2
T

(
1 +

1

δ

)(
‖∇·(A∇(v − w))‖2L2(T ) + ‖f(v)− f(w)‖2L2(T )

)
.

Lemma 3.5. For Tk ∈ T, let Mk =MARK({ηk(uk)}T∈Tk
, Tk), let Tk+1 ∈ T be

defined by Tk+1 = REFINE(Tk,Mk) for λ := 1−2−b/d > 0. Then for v ∈ H1
0 (Ω),

η2k+1(v) ≤ η2k(v) − λη2k(v,Mk).

Proof. Let Mk be a set of elements in Tk that are refined to get Tk+1 and M̃k+1 be

a set of newly obtained elements in Tk+1 from the refinement of Tk, i.e., M̃k+1 =
Tk+1\(Tk+1∩Tk). Note that the marked set Mk ⊆ Mk ⊂ Tk. It is easy to see that⋃

T∈Mk
T =

⋃
T ′∈M̃k+1

T ′ and Mk ∪ (Tk ∩ Tk+1) = Tk. Since Tk+1 is decomposed

into two disjoint subsets Tk ∩ Tk+1 and M̃k+1, then

η2k+1(v) =
∑

T∈Tk∩Tk+1

η2k+1(v, T ) +
∑

T ′∈M̃k+1

η2k+1(v, T
′). (3.5)

Similarly, Tk is the disjoint union of Tk ∩ Tk+1 and Mk, then

η2k(v) =
∑

T∈Tk∩Tk+1

η2k(v, T ) +
∑

T∈Mk

η2k(v, T ).

From the definition of indicators (2.17), we have that ηk(v, T ) = ηk+1(v, T ) for all
v ∈ H1

0 (Ω), T ∈ Tk ∩ Tk+1. Then (3.5) becomes to

η2k+1(v) = η2k(v) +
∑

T ′∈M̃k+1

η2k+1(v, T
′)−

∑

T∈Mk

η2k(v, T ). (3.6)

For a marked element T ∈ Mk, we set Pk+1(T ) = {T ′ ∈ Tk+1 : T ′ ⊂ T } ⊂ M̃k+1,
the set of all children of T . Thus,

∑

T∈Mk+1

η2k+1(v, T ) =
∑

T∈Mk

(
∑

T ′∈Pk+1(T )

η2k+1(v, T
′)

)
≤ 2−b/d

∑

T∈Mk

η2k(v, T ),
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where the last term comes from the refinement criteria (2.21). Therefore,

η2k+1(v) ≤ η2k(v) + 2−b/d
∑

T∈Mk

η2k(v, T )−
∑

T∈Mk

η2k(v, T ). (3.7)

By defining λ = 1− 2−b/d > 0, (3.7) becomes

η2k+1(v) ≤ η2k(v)− λ
∑

T∈Mk

η2k(v, T ).

Since Mk ⊆ Mk,
∑

T∈Mk

η2k(v, T ) ≤
∑

T∈Mk

η2k(v, T ), we finally get

η2k+1(v) ≤ η2k(v)− λ
∑

T∈Mk

η2k(v, T ) = η2k(v)− λη2k(v,Mk).

Lemma 3.6. For Tk ∈ T and Mk =MARK({ηk(uk)}T∈Tk
, Tk), let Tk+1 ∈ T

defined by Tk+1 = REFINE(Tk,Mk). Then for all vk ∈ Vk, vk+1 ∈ Vk+1, and

δ > 0, there holds

η2k+1(vk+1) ≤ (1 + δ)
{
η2k(vk)− λη2k(vk,Mk)

}
+ (1 +

1

δ
)Kk‖vk+1 − vk‖21,

where Kk := CA + 2L2
fh

2
k + 2CAA(1 + hk)

2.

Proof. By setting T = Tk+1, v = vk+1 and w = vk in Lemma 3.4, we get

η2k+1(vk+1) =
∑

T∈Tk+1

η2k+1(vk+1, T )

≤ (1 + δ)
∑

T∈Tk+1

η2k+1(vk, T ) +
(
1 +

1

δ

) ∑

T∈Tk+1

hT ‖JS(vk+1 − vk)‖2L2(∂T∩Ω)

+2
(
1 +

1

δ

)[ ∑

T∈Tk+1

h2
T ‖∇·(A∇(vk+1 − vk))‖2L2(T )+

∑

T∈Tk+1

h2
T ‖f(vk+1)− f(vk)‖2L2(T )

]
.

To estimate the ‖JS(vk+1 − vk)‖ term, we applied the trace theorem and the
inverse inequality [13] [P.37, 111], to obtain
∑

T∈Tk+1

hT ‖JS(vk+1 − vk)‖2L2(∂T∩Ω) ≤ 2
∑

T∈Tk+1

hT ‖(A∇(vk+1 − vk))|T · n‖2L2(∂T∩Ω)

≤ C∂

∑

T∈Tk+1

‖A‖∞ ‖∇(vk+1 − vk)‖2L2(T ),

where C∂ is a constant depends only on shape-regular parameter, and independent
of k, and because A is a bounded matrix. This can be written as

∑

T∈Tk+1

hT ‖J(vk+1 − vk)‖2L2(∂T∩Ω) ≤ CA‖vk+1 − vk‖21,
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where CA := C∂ ‖A‖∞.
To estimate ‖∇·(A∇(vk+1 − vk))‖ observe that

∇·(A∇(vk+1 − vk)) = (∇·A) · (∇(vk+1 − vk)) +A : ∇2(vk+1 − vk),

where ∇2(vk+1 − vk) is Hessian matrix of vk+1 − vk and : denotes the Frobenius
inner product (or, component-wise inner product). This leads to an estimate

∑

T∈Tk+1

h2
T ‖∇·(A∇(vk+1 − vk))‖2L2(T ) ≤

∑

T∈Tk+1

h2
T

(
‖∇·A‖∞‖∇(vk+1 − vk)‖L2(T )

+ ‖A‖∞‖∇2(vk+1 − vk)‖L2(T )

)2

.

Applying the inverse estimates [11] [p.85] to the Hessian to get

∑

T∈Tk+1

h2
T ‖∇·(A∇(vk+1−vk))‖2L2(T )≤

∑

T∈Tk+1

(
hT ‖∇·A‖∞+ ‖A‖∞

)2‖∇(vk+1 − vk)‖2L2(T ).

This gives that

∑

T∈Tk+1

h2
T ‖∇·(A∇(vk − vk+1))‖2L2(T ) ≤ CAA(1 + hk)

2‖vk+1 − vk‖21,

where CAA := max{‖∇·A‖∞, ‖A‖∞}.
Finally, by the Lipschitz condition on f , we obtain an estimate

∑

T∈Tk+1

h2
T ‖f(vk+1)− f(vk)‖2L2(T ) ≤

∑

T∈Tk+1

h2
TL

2
f‖vk+1 − vk‖2L2(T )

≤ h2
kL

2
f‖vk+1 − vk‖21.

After combining all estimates above and applying Lemma 3.5, we get

η2k+1(vk+1) = (1 + δ)
(
η2k(vk)− λη2k(vk,Mk)

)
+

(
1 +

1

δ

)
Kk‖vk+1 − vk‖21,

where Kk := CA + 2h2
kL

2
f + 2CAA(1 + hk)

2.

Note that since {hk}∞k=0 is decreasing, the constant Kk is bounded above by
K∗, which is independent of k, given that, for example, h0 < 1 for the starting
triangulation. In this case, Kk ≤ CA + 2L2

f + 8CAA =: K∗ for all k.

4 Contraction Property and Convergence

In this section we prove the contraction property for the weighted sum of the
energy error and the error estimator from two consecutive iterations of AFEM. The
convergence of AFEM follows directly from the theorem as stated in the corollary.
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Theorem 4.1. Given an initial triangulation T0 with initial mesh-size h0, let θ ∈
(0, 1] and {Tk,Vk, uk}k≥0 be a sequence of triangulations Tk, finite element spaces

Vk, and discrete solutions uk produced by AFEM. Then there exists a constant K

depending only on the data, and Lipschitz constants such that if h0 < K, then

there exist constants α, γ > 0 and 0 < µ < 1 such that

γη2k+1(uk+1) + α|||u − uk+1|||2 ≤ µ
(
γη2k(uk) + α|||u − uk|||2

)
.

Proof. For simplicity in writing, let denote ηk := ηk(uk), ηk+1 := ηk+1(uk+1),
ek+1 := |||u − uk+1|||, and |||u − uk||| := ek. By setting vk = uk and vk+1 = uk+1 in
Lemma 3.6, we get

η2k+1 ≤ (1 + δ)
{
η2k − λη2k(uk,Mk)

}
+ (1 +

1

δ
)Kk‖uk+1 − uk‖21. (4.1)

Using equivalence of norms and setting Ek = |||uk+1 − uk|||, (4.1) becomes

η2k+1 ≤ (1 + δ)
{
η2k − λη2k(uk,Mk)

}
+ (1 +

1

δ
)C2

eKkE
2
k ,

where Ce is a constant for the equivalence depending on the data A and Ω. Ap-
plying Dörfler Marking (2.19), ηk(uk,Mk) ≥ θηk, we have

η2k+1 ≤ (1 + δ)
{
η2k − λθ2η2k

}
+ (1 +

1

δ
)C2

eKkE
2
k . (4.2)

Since Kk ≤ K∗, (4.2) leads to

η2k+1 ≤ (1 + δ)
{
η2k − λθ2η2k

}
+ (1 +

1

δ
)C2

eK
∗E2

k. (4.3)

Multiplying (4.3) by γ := δ
C2

eK
∗(1+δ) > 0 to obtain

γη2k+1 ≤ γ(1 + δ)η2k − γλθ2(1 + δ)η2k + E2
k.

By Corollary 3.3, if for h0 < 1√
3C2

eC
2
f
Lf

, then

γη2k+1 + (1−3C2
eC

2
fLfh

2
k)e

2
k+1≤γ(1+δ)η2k − γλθ2(1+δ)η2k + (1+C2

eC
2
fLfh

2
k)e

2
k.

To balance the ηk term, we can rewrite as, for β > 0,

γη2k+1 +
(
1− 3C2

eC
2
fLfh

2
k

)
e2k+1 ≤ γ(1 + δ)η2k +

(
1 + C2

eC
2
fLfh

2
k

)
e2k

− βγλθ2(1 + δ)η2k − (1− β)γλθ2(1 + δ)η2k.
(4.4)

Using the upper bound (2.18), the Lipschitz condition on f , the Corollary 2.2, and
the equivalence of norms, we get

ek ≤ C1ηk + C2hk‖f − fk‖0
≤ C1ηk + C2hkLf ‖u− uk‖0
≤ C1ηk + C2LfCfh

2
k‖u− uk‖1

≤ C1ηk + CeC2CfLfh
2
kek.



Convergence of AFEM for Second Order ... 273

If for h0 < 1√
CeC2CfLf

, then we have

0 <

(
1− CeC2CfLfh

2
k

C1

)
ek ≤ ηk. (4.5)

Combining (4.5) to the right hand side of (4.4), we have

γη2k+1 + (1−3C2
eC

2
fLfh

2
k)e

2
k+1

≤ γ(1+δ)η2k +
(
1+C2

eC
2
fLfh

2
k

)
e2k − (1− β)γλθ2(1 + δ)η2k

− βγλθ2(1+δ)

(
1−CeC2CfLfh

2
k

C1

)2

e2k.

For convenience we denote the coefficients as follows;

α1 = 1− 3C2
eC

2
fLfh

2
k > 0,

α2 = 1 + C2
eC

2
fLfh

2
k −

δ

C2
eK

∗
βλθ2

(
1− CeC2CfLfh

2
k

C1

)2

,

α3 = (1 + δ)
(
1− (1− β)λθ2

)
.

This can be written as

γη2k+1 + α1e
2
k+1 ≤ γα3η

2
k + α2e

2
k = γα3η

2
k + α1

(
α2

α1

)
e2k. (4.6)

The result follows by setting α = α1 and showing that µ := max{α3,
α2

α1
} < 1.

Showing 0 < α3 < 1 is equivalent to 0 < (1 + δ)
(
1− (1− β)λθ2

)
< 1. This is

the case if we choose β > 0 such that

0 < β < 1− 1

λθ2

(
δ

1 + δ

)
. (4.7)

Since λ and θ are known from AFEM and λθ2 < 1, then we can choose β > 0
satisfying (4.7) provided that δ > 0 is pre-selected so that 1

λθ2 · δ
1+δ < 1, i.e.,

choosing

0 < δ <
λθ2

1− λθ2
. (4.8)

In order to arrive at (4.6) it is required that h0 < min{ 1√
3C2

eC
2
f
Lf

, 1√
CeC2CfLf

},
for obtaining (4.4) and (4.5), thus this gives α1 > 0.

We get α2 > 0 by selecting δ satisfying (4.8) and sufficiently small so that

δ

C2
eK

∗
βλθ2

(
1− CeC2CfLfh

2
k

C1

)2

< 1.
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The case 0 < α2 < α1 holds if and only if

1 + C2
eC

2
fLfh

2
k −

δ

C2
eK

∗
βλθ2

(
1− CeC2CfLfh

2
k

C1

)2

< 1− 3C2
eC

2
fLfh

2
k.

This is equivalent to

h2
k <

δβλθ2

4C4
eK

∗C2
fLfC

2
1

(1− CeC2CfLfh
2
k)

2.

For convenience for computation, set r = CeC2CfLf and s = δβλθ2

4C4
eK

∗C2
f
LfC2

1

. The

condition on hk becomes that

h2
k < s(1 − 2rh2

k + r2h4
k)

This is the case if h0 <
√

s
1+2rs because sr2h4

k ≥ 0.

By selecting K := min

{
1√

3C2
eC

2
f
Lf

, 1√
CeC2LfCf

,
√

s
1+2rs

}
> 0, the condition

h0 < K will give us the contraction result for (4.6).

Corollary 4.2 (Convergence). Under the hypothesis of Theorem 4.1,

lim
k→∞

ηk(uk) = 0 and lim
k→∞

|||u− uk||| = 0.

Proof. From Theorem 4.1, it is easy to see that

γη2k+1(uk+1) + α|||u − uk+1|||2 ≤ µk+1
(
γη20(u0) + α|||u − u0|||2

)

Since limk→∞ µ = 0 for µ ∈ (0, 1), and γ, α > 0, thus

lim
k→∞

ηk(uk) = 0 and lim
k→∞

|||u− uk+1||| = 0.

5 Examples

In this section, we give some examples of semi-linear elliptic partial differen-
tial equations satisfying the assumption of the main Theorem 4.1. The following
are examples of nonlinear functions f(x, u) that satisfy the assumptions of the
theorem.

Example 5.1. Let f(x, u) = e−
1
m

u2

, where x ∈ Ω := [0, 1]2 and a constant m > 0.
It is clear that

∣∣∣∣
∂f

∂u

∣∣∣∣ =
∣∣∣∣

−2u

me
1
m

u2

∣∣∣∣ =
2

m
· |u|
e

1
m

u2
, ∀u ∈ R. (5.1)
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By calculus, |u|

e
1
m

u2 has absolute maximum
√

m
2e , i.e.,

|u|

e
1
m

u2 ≤
√

m
2e , ∀u ∈ R. Thus,

∣∣∣∣
∂f

∂u

∣∣∣∣ ≤
√

2

me
, ∀u ∈ R.

We can choose Lf =
√

2
me . By corollary 2.2, Lf < 1

C∗

2

, if

m >
2

ec2B
(ccBCB + 1)2,

where cB = θ∗, CB = ‖A‖∞ and c = (1+c1)c2CB

cB
. In the case where A is identity,

we get that cB = CB = 1, therefore, and we require that m >
2(c+1)2

e in order
to satisfy the condition of the Corollary 2.2. Moreover, since f(x, u) is continuous
and bounded on Ω,

∫

Ω

|f(x, u)|2dx =

∫

Ω

e−
2
m

u2

dx < ∞.

Example 5.2. Let f((x1, x2), u) = x2 sin(mx1u), where (x1, x2) ∈ Ω := [0, 1]2

and m > 0. It is easy to see that

∣∣∣∣
∂f

∂u

∣∣∣∣ = |mx1x2 cos(mx1u)| ≤ m, ∀u ∈ R, ∀(x1, x2) ∈ Ω.

Similarly, if we choose Lf = m., then we require that

m <
cB

ccBCB + 1
.

In the case where A = I we need that m < 1
c+1 . Moreover, since f(x, u) is

continuous and bounded on Ω,

∫

Ω

|f(x, u)|2 dx =

∫

Ω

x2
2 sin

2(mx1u) dx < ∞.
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