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1 Introduction

The product of an almost contact manifold M and the real line R carries a
natural almost complex structure. However if one takes M to be an almost contact
metric manifold and suppose that the product metric G on M ×R is Kaehlerian,
then the structure on M is cosymplectic [1] and not Sasakian. On the other hand
Oubina [2] pointed out that if the conformally related metric e2tG, t being the
coordinate on R, is Kaehlerian, then M is Sasakian and conversely.

In [3], Tanno classified connected almost contact metric manifolds whose au-
tomorphism groups possess the maximum dimension. For such a manifold M , the
sectional curvature of plane sections containing ξ is a constant, say c. If c > 0, M
is a homogeneous Sasakian manifold of constant sectional curvature. If c = 0, M
is the product of a line or a circle with a Kaehler manifold of constant holomorphic
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sectional curvature. If c < 0, M is a warped product space R ×f Cn. In 1971,
Kenmotsu studied a class of contact Riemannian manifolds satisfying some special
conditions [4]. We call it Kenmotsu manifold. Kenmotsu manifolds have been
studied by Jun et al. [5], Özgür and De [6], De and Pathak [7], Yıldiz et al. [8]
and others.

Hayden [9] introduced semi-symmetric linear connection on a Riemannian
manifold and this was further developed by Yano [10], Amur and Pujar [11],
Prvanović [12], De and Biswas [13], Sharfuddin and Hussain [14], Binh [15], Ö.

Zengin et al. [16], Chaubey and Ojha [17, 18], Yılmaz [19] and others.
Let Mn be an n-dimensional Riemannian manifold of class C∞ endowed with

the Riemannian metric g and D be the Levi-Civita connection on (Mn, g).
A linear connection ∇ defined on (Mn, g) is said to be semi-symmetric [20] if

its torsion tensor T is of the form

T (X,Y ) = η(Y )X − η(X)Y, (1.1)

where η is a 1-form and ξ is a vector field given by

η(X) = g(X, ξ), (1.2)

for all vector fields X ∈ χ(Mn) , χ(Mn) is the set of all differentiable vector fields
on Mn.

A semi-symmetric connection ∇ is called a semi-symmetric metric connection
[9] if it further satisfies

∇g = 0. (1.3)

A relation between the semi-symmetric metric connection ∇ and the Levi-Civita
connection D on (Mn, g) has been obtained by Yano [10] which is given by

∇XY = DXY + η(Y )X − g(X,Y )ξ. (1.4)

We also have

(∇Xη)(Y ) = (DXη)(Y )− η(X)η(Y ) + η(ξ)g(X,Y ). (1.5)

Further, a relation between the curvature tensor R of the semi-symmetric metric
connection ∇ and the curvature tensor K of the Levi-Civita connection D is given
by

R(X,Y )W = K(X,Y )W + α(X,W )Y − α(Y,W )X + g(X,W )QY

− g(Y,W )QX, (1.6)

where α is a tensor field of type (0,2) and Q is a tensor field of type (1,1) which is
given by

α(Y,W ) = g(QY,W ) = (DY η)(W ) − η(Y )η(W ) +
1

2
η(ξ)g(Y,W ). (1.7)
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From (1.6) and (1.7), we obtain

R̃(X,Y,W,U) = K̃(X,Y,W,U)− α(Y,W )g(X,U) + α(X,W )g(Y, U)

− g(Y,W )α(X,U) + g(X,W )α(Y, U), (1.8)

where

R̃(X,Y,W,U) = g(R(X,Y )W,U), K̃(X,Y,W,U) = g(K(X,Y )W,U). (1.9)

A transformation of a (2n + 1)-dimensional Riemannian manifold M, which
transforms every geodesic circle of M into a geodesic circle, is called a concircular
transformation ([21, 22]). A concircular transformation is always a conformal
transformation [21]. Here geodesic circle means a curve in M whose first curvature
is constant and whose second curvature is identically zero. Thus the geometry
of concircular transformations, i.e., the concircular geometry, is generalization of
inversive geometry in the sense that the change of metric is more general than
that induced by a circle preserving diffeomorphism (see also [23]). An interesing
invariant of a concircular transformation is the concircular curvature tensor Z. It
is defined by ([22, 24])

Z(X,Y )W = R(X,Y )W −
r

2n(2n+ 1)
[g(Y,W )X − g(X,W )Y ]. (1.10)

From (1.10), it follows that

Z̃(X,Y,W,U) = R̃(X,Y,W,U)−
r

2n(2n+ 1)
[g(Y,W )g(X,U)− g(X,W )g(Y, U)],

(1.11)

and
Z̃(X,Y,W,U) = g(Z(X,Y )W,U), (1.12)

where X , Y , W , U ∈ χ(M) and Z is the concircular curvature tensor and r

is the scalar curvature with respect to the semi-symmetric metric connection.
Riemannian manifolds with vanishing concircular curvature tensor are of constant
curvature. Thus the concircular curvature tensor is a measure of the failure of a
Riemannian manifold to be of constant curvature.

In this paper we study the concircular curvature tensor on Kenmotsu manifolds
with respect to the semi-symmetric metric connection. The paper is organized as
follows: After introduction in Section 2, we give a brief account of the Kenmotsu
manifolds. Section 3 is devoted to study φ-concircularly flat Kenmotsu manifolds
with respect to the semi-symmetric metric connection and also determine the φ-
sectional curvature of the plane by two vectors. Section 4 deals with Z · S = 0
in a Kenmotsu manifold with respect to the semi-symmetric metric connection.
Finally, we study Z · Z = 0 in a Kenmotsu manifold with respect to the semi-
symmetric metric connection and we prove that the manifold is an η-Einstein
manifold provided the scalar curvature of the manifold is not equal to 2n(6n− 1).
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2 Preliminaries

Let M be an (2n + 1)-dimensional almost contact metric manifold with an
almost contact metric structure (φ, ξ, η, g) consisting of a (1, 1) tensor field φ, a
vector field ξ, a 1-form η and a Riemannian metric g on M satisfying [25]

φ2(X) = −X + η(X)ξ, g(X, ξ) = η(X), (2.1)

η(ξ) = 1, φ(ξ) = 0, η(φ(X)) = 0, (2.2)

g(φX, φY ) = g(X,Y )− η(X)η(Y ), (2.3)

for all vector fields X,Y on M . If an almost contact metric manifold satisfies

(DXφ)(Y ) = g(φX, Y )ξ − η(Y )φX, (2.4)

then M is called a Kenmotsu manifold [4]. From the above relations, it follows
that

DXξ = X − η(X)ξ, (2.5)

(DXη)(Y ) = g(X,Y )− η(X)η(Y ). (2.6)

Moreover the curvature tensor K and the Ricci tensor S̃ of the Kenmotsu manifold
with respect to the Levi-Civita connection satisfies

K(X,Y )ξ = η(X)Y − η(Y )X, (2.7)

K(ξ,X)Y = η(Y )X − g(X,Y )ξ, (2.8)

K(X, ξ)Y = g(X,Y )ξ − η(Y )X, (2.9)

S̃(φX, φY ) = S̃(X,Y ) + 2nη(X)η(Y ), (2.10)

S̃(X, ξ) = −2nη(X). (2.11)

We state the following lemma which will be used in the next section:

Lemma 2.1 ([4]). Let M be an η-Einstein Kenmotsu manifold of the form S̃(X,Y )
= ag(X,Y )+bη(X)η(Y ). If b = constant(or, a = constant), then M is an Einstein
one.

3 φ-Concircularly Flat Kenmotsu Manifolds

with respect to the Semi-Symmetric Metric

Connection

Let C be the Weyl conformal curvature tensor of a (2n+ 1)-dimensional man-
ifold M . Since at each point p ∈ M the tangent space χp(M) can be decomposed
into the direct sum χp(M) = φ(χp(M))⊕ L(ξp), where L(ξp) is an 1-dimensional
linear subspace of χp(M) generated by ξp. Then we have a map:

C : χp(M)× χp(M)× χp(M) −→ φ(χp(M))⊕ L(ξp).

It may be natural to consider the following particular cases:
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(1) C : χp(M)× χp(M)× χp(M) −→ L(ξp), i.e, the projection of the image of
C in φ(χp(M)) is zero.

(2) C : χp(M)×χp(M)×χp(M) −→ φ(χp(M)), i.e, the projection of the image
of C in L(ξp) is zero.

C(X,Y )ξ = 0. (3.1)

(3) C : φ(χp(M)) × φ(χp(M)) × φ(χp(M)) −→ L(ξp), i.e, when C is restricted
to φ(χp(M)) × φ(χp(M)) × φ(χp(M)), the projection of the image of C in
φ(χp(M)) is zero. This condition is equivalent to

φ2C(φX, φY )φW = 0. (3.2)

The cases (1) and (2) were considered in [26] and [27] respectively. The case
(3) was considered in [28] for the case M is a K-contact manifold. Furthermore
in [29], the authors studied contact metric manifolds satisfying (3). Analogous to
the definition of ξ-conformally flat and φ-conformally flat, we give the folowing
definitions:

Definition 3.1. A Kenmotsu manifold is said to be φ-concircuiarly flat with
respect to semi-symmetric metric connection if

g(Z(φX, φY )φW, φU) = 0, (3.3)

where X,Y,W,U ∈ χ(M).

Definition 3.2. A Kenmotsu manifold is said to be an η-Einstein manifold if its
Ricci tensor S̃ of the Levi-Civita connection is of the form

S̃(X,Y ) = ag(X,Y ) + bη(X)η(Y ), (3.4)

where a and b are smooth functions on the manifold.

Using (1.7), (2.2) and (2.6) in (1.6), we obtain

R(X,Y )W = K(X,Y )W − 3g(Y,W )X + 3g(X,W )Y + 2η(Y )η(W )X

− 2η(X)η(W )Y + 2g(Y,W )η(X)ξ − 2g(X,W )η(Y )ξ. (3.5)

Using (1.9) in (3.5), we get

R̃(X,Y,W,U) = K̃(X,Y,W,U)− 3g(Y,W )g(X,U) + 3g(X,W )g(Y, U)

+ 2η(Y )η(W )g(X,U)− 2η(X)η(W )g(Y, U)

+ 2g(Y,W )η(X)η(U)− 2g(X,W )η(Y )η(U). (3.6)

Let {e1, . . . , e2n, e2n+1} be a local orthonormal basis of vector fields in M . Putting
X = U = ei; 1 ≤ i ≤ 2n+ 1, in (3.6) and also using (2.1) and (2.2), we have

S(Y,W ) = S̃(Y,W )− 2(3n− 1)g(Y,W ) + 2(2n− 1)η(Y )η(W ). (3.7)



250 Thai J. Math. 13 (2015)/ A. Barman

Putting W = ξ in (3.7) and using (2.1), (2.2) and (2.11), we obtain

S(Y, ξ) = −4nη(Y ). (3.8)

Let {e1, . . . , e2n, e2n+1} be a local orthonormal basis of vector fields in M . Putting
Y = W = ei; 1 ≤ i ≤ 2n+ 1, in (3.7) and also using (2.2), it follows that

r = r̃ − 2n(6n− 1). (3.9)

where S and r̃ are the Ricci tensor and the scalar curvature with respect to the
semi-symmetric metric connection and the Levi-Civita connection respectively.

Putting X = φX , Y = φY , W = φW and U = φU in (1.11) and using (1.12),
we get

g(Z(φX, φY )φW, φU) = R̃(φX, φY, φW, φU) −
r

2n(2n+ 1)
[g(φY, φW )g(φX, φU)

− g(φX, φW )g(φY, φU)]. (3.10)

Using (3.6) and (3.9) in (3.10), we obtain

g(Z(φX, φY )φW, φU) = K̃(φX, φY, φW, φU) −

[

3 +
r̃ − 2n(6n− 1)

2n(2n+ 1)

]

× [g(φY, φW )g(φX, φU)− g(φX, φW )g(φY, φU)].
(3.11)

Again using (3.3) in (3.11), we have

K̃(φX, φY, φW, φU) =

[

3 +
r̃ − 2n(6n− 1)

2n(2n+ 1)

]

[g(φY, φW )g(φX, φU)

− g(φX, φW )g(φY, φU)]. (3.12)

Let {e1, . . . , e2n, ξ} be a local orthonormal basis of vector fields in M , then
{φe1, . . . , φe2n, ξ} is also a local orthonormal basis. Putting X = U = ei in
(3.12) and summing over i = 1 to 2n, it follows that

2n
∑

i=1

K̃(φei, φY, φW, φei) =

2n
∑

i=1

[

3 +
r̃ − 2n(6n− 1)

2n(2n+ 1)

]

[g(φY, φW )g(φei, φei)

− g(φei, φW )g(φY, φei)]. (3.13)

From (3.13) yields

S̃(φY, φW ) = (2n− 1)

[

3 +
r̃ − 2n(6n− 1)

2n(2n+ 1)

]

g(φY, φW ). (3.14)

Using (2.3) and (2.10) in (3.14), we obtain

S̃(Y,W ) = (2n− 1)

(

3 +
r̃ − 2n(6n− 1)

2n(2n+ 1)

)

g(Y,W )

−

[

(2n− 1)

(

3 +
r̃ − 2n(6n− 1)

2n(2n+ 1)

)

+ 2n

]

η(Y )η(W ). (3.15)
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Therefore, S̃(Y,W ) = ag(Y,W )+bη(Y )η(W ), where a = (2n−1)
(

3 + r̃−2n(6n−1)
2n(2n+1)

)

,

b = −
[

(2n− 1)
(

3 + r̃−2n(6n−1)
2n(2n+1)

)

+ 2n
]

. This result shows that the manifold is

an η-Einstein manifold.

Hence we can state the following theorem:

Theorem 3.3. If a Kenmotsu manifold is φ-concircularly flat with respect to
semi-symmetric metric connection, then the manifold is an η-Einstein manifold.

Definition 3.4. A plane section in χ(M) is called a φ-section if there exists a
unit vector X in χ(M) orthogonal to ξ such that {X,φX} is orthogonal basis of
the plane section. Then the sectional curvature ′K(X,φX) is called a φ-sectional
curvature.

Let ξ⊥ denoted the (2n + 1) dimensional distribution orthogonal to ξ in a
Kenmotsu manifold admitting a semi-symmetric metric connection whose curva-
ture tensor vanishes. Then for any X ∈ ξ⊥, g(X, ξ) = 0. Now we shall determine
the φ-sectional curvature ′K at the plane determine by the vectors X,φX ∈ ξ⊥.
Putting Y = φX , W = φX and U = X in (3.6), we get

K̃(X,φX, φX,X) = 3[g(X,X)g(φX, φX)− g(X,φX)g(X,φX)]. (3.16)

Then

′K(X,φX) =
K̃(X,φX, φX,X)

g(X,X)g(φX, φX)− g(X,φX)
2 = 3. (3.17)

Summing up we can state the following theorem :

Theorem 3.5. If a Kenmotsu manifold admits a semi-symmetric metric connec-
tion whose curvature tensor vanishes, then the φ-sectional curvature of the plane
determined by two vectors X,φX ∈ ξ⊥ is 3.

4 Kenmotsu Manifolds with respect to the Semi-

Symmetric Metric Connection Satisfying

Z · S = 0

In this section, we consider Kenmotsu manifold with respect to the semi-
symmetric metric connection M2n+1 satisfying condition

(Z(U, Y ) · S)(W,X) = 0.

Then we have

S(Z(U, Y )W,X) + S(W,Z(U, Y )X) = 0. (4.1)
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Putting U = ξ in (4.1), it follows that

S(Z(ξ, Y )W,X) + S(W,Z(ξ, Y )X) = 0. (4.2)

Putting X = ξ and using (2.1) in (1.10), we get

Z(ξ, Y )W = R(ξ, Y )W −
r

2n(2n+ 1)
[g(Y,W )ξ − η(W )Y ]. (4.3)

Again putting X = ξ in (3.5) and using (2.8), we obtain

R(ξ, Y )W = 2[η(W )Y − g(Y,W )ξ]. (4.4)

Using (3.9), (4.3) and (4.4) in (4.2), we have

[

r̃ + 6n− 4n2

2n(2n+ 1)

]

[η(W )S(X,Y )− g(Y,W )S(X, ξ)

+ η(X)S(W,Y )− g(Y,X)S(W, ξ)] = 0. (4.5)

Now we consider

Case (I): r̃ 6= 4n2 − 6n and

η(W )S(X,Y )− g(Y,W )S(X, ξ) + η(X)S(W,Y )− g(Y,X)S(W, ξ) = 0. (4.6)

Case (II): r̃ = 4n2 − 6n and

η(W )S(X,Y )− g(Y,W )S(X, ξ) + η(X)S(W,Y )− g(Y,X)S(W, ξ) = 0. (4.7)

Case (III): r̃ = 4n2 − 6n and

η(W )S(X,Y )− g(Y,W )S(X, ξ) + η(X)S(W,Y )− g(Y,X)S(W, ξ) 6= 0. (4.8)

From Case (I), we obtain

η(W )S(X,Y )− g(Y,W )S(X, ξ) + η(X)S(W,Y )− g(Y,X)S(W, ξ) = 0. (4.9)

Putting W = ξ in (4.9) and using (3.7) and (3.8), we get

S̃(X,Y ) = (2n− 2)g(X,Y )− 2(2n− 1)η(X)η(Y ). (4.10)

Let {e1, . . . , e2n, e2n+1} be a local orthonormal basis of vector fields in M . Putting
X = Y = ei; 1 ≤ i ≤ 2n+ 1, in (4.10) and also using (2.2), it follows that

r̃ = 4n2 − 6n,

which is contradictory.
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Then from Case (II), we have

η(W )S(X,Y )− g(Y,W )S(X, ξ) + η(X)S(W,Y )− g(Y,X)S(W, ξ) = 0. (4.11)

Putting W = ξ in (4.11) and using (3.7) and (3.8), we obtain

S̃(X,Y ) = (2n− 2)g(X,Y )− 2(2n− 1)η(X)η(Y ). (4.12)

Therefore, S̃(X,Y ) = ag(X,Y ) + bη(X)η(Y ), where a = (2n − 2) and b =
−2(2n− 1). This result shows that the manifold is an η-Einstein manifold.

From Case (III), we get

η(W )S(X,Y )− g(Y,W )S(X, ξ) + η(X)S(W,Y )− g(Y,X)S(W, ξ) 6= 0. (4.13)

Putting W = ξ in (4.13) and using (3.7) and (3.8), we have

S̃(X,Y ) 6= (2n− 2)g(X,Y )− 2(2n− 1)η(X)η(Y ). (4.14)

Let {e1, . . . , e2n, e2n+1} be a local orthonormal basis of vector fields in M . Putting
X = Y = ei; 1 ≤ i ≤ 2n+ 1, in (4.14) and also using (2.2), it follows that

r̃ 6= 4n2 − 6n,

which is also contradictory.

From the above discussions we can state the following theorem:

Theorem 4.1. If a Kenmotsu manifold with respect to the semi-symmetric
metric connection satisfying Z · S = 0, then the manifold is an η-Einstein
manifold provided the relation (4.7) holds.

Since a and b are both constant, by Lemma 2.1, we get the following:

Corollary 4.2. If a Kenmotsu manifold with respect to the semi-symmetric metric
connection satisfying Z ·S = 0, then the manifold is an Einstein manifold provided
the relation (4.7) holds.

5 Kenmotsu Manifolds with respect to the Semi-

Symmetric Metric Connection Satisfying

Z · Z = 0

In this section we consider Kenmotsu manifold with respect to the semi-
symmetric metric connection M2n+1 satisfying condition

(Z(X,Y ).Z)(U, V )W = 0.
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Then we have

(Z(X,Y )Z)(U, V )W −Z(Z(X,Y )U, V )W −Z(U,Z(X,Y )V )W

−Z(U, V )Z(X,Y )W = 0. (5.1)

Putting X = ξ in (5.1), it follows that

(Z(ξ, Y )Z)(U, V )W −Z(Z(ξ, Y )U, V )W −Z(U,Z(ξ, Y )V )W

−Z(U, V )Z(ξ, Y )W = 0. (5.2)

Putting U = ξ in (5.2), we obtain

(Z(ξ, Y )Z)(ξ, V )W −Z(Z(ξ, Y )ξ, V )W − Z(ξ,Z(ξ, Y )V )W

− Z(ξ, V )Z(ξ, Y )W = 0. (5.3)

From (3.9), (4.3) and (4.4), we get

Z(ξ, Y )W =

[

r̃ − 4n2 + 6n

4n2 + 2n

]

[η(W )Y − g(Y,W )ξ]. (5.4)

Putting W = ξ in (5.4) and using (2.1) and (2.2), we have

Z(ξ, Y )ξ =

[

r̃ − 4n2 + 6n

4n2 + 2n

]

[Y − η(Y )ξ]. (5.5)

Now using (5.4) and (5.5) in (5.3), it follows that

3

(

r̃ − 12n2 + 2n

2n(2n+ 1)

)

g(V,W )Y −

(

r̃ − 12n2 + 2n

2n(2n+ 1)

)

K(Y, V )W

− 3

(

r̃ − 12n2 + 2n

2n(2n+ 1)

)

g(Y,W )V − 2η(V )η(W )Y + 2η(Y )η(W )V

− 2g(V,W )η(Y )ξ + 2g(Y,W )η(V )ξ = 0. (5.6)

Contracting Y in (5.6), we obtain

S̃(V,W ) =

[

r̃ − 12n2 + 2n

2n+ 1
+

36n2(2n+ 1)

r̃ − 12n2 + 2n
+ 3n−

4n(2n+ 1)

r̃ − 12n2 + 2n

]

g(V,W )

+

[

2n(4n− 2)(2n+ 1)

r̃ − 12n2 + 2n

]

η(V )η(W ). (5.7)

Therefore, S̃(V,W ) = ag(V,W )+bη(V )η(W ), where a = [ r̃−12n2+2n
2n+1 + 36n2(2n+1)

r̃−12n2+2n+

3n− 4n(2n+1)
r̃−12n2+2n ] and b = [ 2n(4n−2)(2n+1)

r̃−12n2+2n ].

We can state the following theorem:
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Theorem 5.1. If a Kenmotsu manifold with respect to the semi-symmetric
metric connection satisfying Z·Z = 0, then the manifold is an η-Einstein manifold
provided the scalar curvature of the manifold is not equal to 2n(6n− 1).

Since a and b are both constant, by Lemma 2.1, we get the following:

Corollary 5.2. If a Kenmotsu manifold with respect to the semi-symmetric metric
connection satisfying Z ·Z = 0, then the manifold is an Einstein manifold provided
the scalar curvature of the manifold is not equal to 2n(6n− 1).
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