
Thai Journal of Mathematics
Volume 13 (2015) Number 1 : 237–244

http://thaijmath.in.cmu.ac.th
ISSN 1686-0209

Derivative-Free Broyden’s Method for Inverse

Partially Known Sturm-Liouville

Potential Functions

Athassawat Kammanee

Department of Mathematics and Statistics, Faculty of Science,
Prince of Songkla University, Hat Yai, Songkhla, Thailand

e-mail : athassawat.k@psu.ac.th

Abstract : In this research a general potential function is recovered by the
information of not only a set of equispaced nodes on half its domain but also
a sequence of given eigenvalues. Furthermore in each iteration step Numerov’s
method is the main tool used to approximate the eigenvalues. In order to achieve
our aim derivative-free Broyden’s method is applied to solve a system of nonlinear
equations. Additionally, the numerical implementation demonstrates that our
method provides agreeable results.
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1 Introduction

The second order ordinary differential equations are the core topic in the theory
of differential equations and with several numerical techniques to reach solutions.
One of the important topics in the second order differential equation is Sturm-
Liouville problem (SLP) since it is one of the basic technique to solve solutions
of partial differential equations. Moreover there are several mathematical model
represented in the SLP such as in mechanical system the vibrational modes of
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a string or sound waves in a pipe. Furthermore in quantum mechanics the SLP
describes the time-independent Schödinger wave equation in one space dimension.

It is well-known that the general Sturm-Liouville equations can be rewritten
as standard (regular,or Schrödinger) form

− y′′ + qy = λy, x ∈ (0, π) (1.1)

with separated, self-adjoint boundary conditions

y′(0)− hy(0) = 0 and y′(π) +Hy(π) = 0. (1.2)

The impedance constants h and H are allowed to be real numbers and ∞. There
are two extreme but common types of boundary conditions which are Dirichlet
boundary condition (h = ∞) and Neumann boundary condition (h = 0). The
function q ∈ L2[0, π] is called a potential function which is assumed to be real
and piecewise continuous on [0, π]. The eigenvalues λ’s are real, simple, countable
and tend to infinity. Furthermore an infinite sequence of eigenvalues {λi}

∞

i=1 is
bounded from below by a constant a, i.e.

a < λ1 < λ2 < ... < λi < ...

Moreover the function yi is said to be the eigenfunction corresponding to λi.
The asymptotic form of those eigenvalue sequences [1] is

λi = ai + q̄ + αi(q) with q̄ =
1

π

∫ π

0

q(x)dx, i = 1, 2, ... (1.3)

where ai = O(i2) depends on the boundary conditions, e.g., ai = i2 for Dirichlet-
Dirichlet boundary conditions and q̄ is the mean value of q. While ai is independent
of q, the sequence {αi(q)}

∞

i=1 ∈ ℓ2 depends on the potential q. It holds αi → 0
if i → ∞ with faster convergence for smoother q. Therefore, the term αi in (1.3)
contains important information on q.

In the direct problem the information of a potential function q is provided to ac-
quire eigenvalues and eigenfunctions. Various numerical techniques discretize this
problem to a finite computable approximation, including finite difference method,
the Numerov’s method and the finite element method. The knowledge of the eigen-
value of the matrix is employed since there are various theories and techniques for
examples QR factorization, power method, and Householder’s transformation.

In order to obtain the enhanced result an asymptotic correction [2, 3] is em-
ployed. Asymptotic correction is necessary for such matrix methods due to the
asymptotic discrepancy between the eigenvalues of (1.1) and the eigenvalues of the
used approximating matrix and, in detail, is essential to avoid swamping the vital
αi(q) term in (1.3) by the difference between the leading terms in the asymptotic
expansion of the eigenvalues (1.1) and its discrete approximations, see [4, 5].

On the other hand we also focus on the issue of determination the potential
function which is employed the information of eigenvalues. Borg [6] has shown
that in order to determine uniquely a general potential function two different sets
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of eigenvalues are sufficient. Furthermore Gel’fand and Levitan [7] utilized the
information of eigenvalues and norming constants, ||yi||

2/yi(0)
2 , to uniquely re-

trieve a general potential function. Hochstadt and Lieberman [8] have proven that
a single spectrum and partially half known potential function points are sufficient
to uniquely accomplish a potential function on its entire interval. Kammanee and
Böckmann [9] have applied the Hochstadt and Lieberman’s theorem to recover a
general potential functions. In order to solve a nonlinear equation the modified
Newton’s method is the main means.

In this research we introduce a method to recover a general potential function
on the entire interval which a set of eigenvalues and a set of the partially known
potential function on either [π2 , π] or [0,

π
2 ] are the main information. In order to

obtain the general potential function the system of non-linear equation is solved by
derivative-free Broyden’s method. Moreover the end of this paper demonstrates
the numerical implementations investigating several types of functions such as a
smooth continuous function, a non-smooth continuous function and a discontinu-
ous function.

2 Methodology of the Inverse Problems

In this study we apply the theorem of Hochstadt and Lieberman[8] in order to
approximate a general potential function based on the information of one sequence
of eigenvalues and one sequence of partial known potential function representative
over half of its domain. To create an algorithm for retrieving a general potential
function, the n exact eigenvalues {λi}

n
i=1 and n equispaced potential nodes on

either [0, π
2 ] or [

π
2 , π], which are {q1, q2, ..., qn} or {qn+1, qn+2, ..., q2n} are presented.

In order to transform a continues problem to a discrete space, we investigate an
n-vector whose ith entry where i = 1, 2, ..., n is a approximation of a potential
node q(ih) or q((n+ i)h) with h = π

2n+1 .
In each iteration step the eigenvalues are approximated, the best option to

approximate eigenvalues is Numerov’s method due to the fact that the order of
precision is order four. Furthermore the exact eigenvalues λi are approximated by
Λi which is computed from

Au +BQu = Λu (2.1)

where A = (ai,j) is a symmetric tri-diagonal 2n × 2n matrix whose elements are
ai,i =

2
h2 and ai,i+1 = ai+1,i = − 1

h2 and Q is a centrosymmetric diagonal 2n× 2n
matrix where

Q =

{
diag

(
q1, q2, ..., qn, q̂n+1, q̂n+2, ..., q̂2n

)
; for q known in [π2 , π]

diag
(
q̂1, q̂2, ..., q̂n, qn+1, qn+2, ..., q2n

)
; for q known in [0, π

2 ]
(2.2)

where q̂i is the given potential function. Moreover the matrix B = I−A/12 where
I is the identity matrix.

In order to reduce error the asymptotic correction is the chief process. For
example, if q(x) = 0 with Dirichlet boundary conditions, the exact eigenvalues are
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λi = i2 and the approximated eigenvalues are Λi =
4 sin(ih/2)

h2 but Λi

λi

= 4
π + O(h)

as i → N , see [4]. The correction term which is applied to relegate the error from
O(i6h4) to O(i4h5/ sin(ih)) with q ∈ C4[0, π] is defined by

ε(i, h) = i2 −
12 sin2(ih/2)

h2[3− sin2(ih/2)]
. (2.3)

The foremost problem in this research is to solve the n−nonlinear equations
in n unknown which is the zero map F : Rn → R

n defined by

F (q) =




Λ1 − λ̃1

...

Λn − λ̃n


 = 0. (2.4)

Due to above reason first we have to make translation λ̃i = λi − ε(i, h).
There are several researches such as [10, 11, 12] in this area applying the mod-

ified Newton’s method (or fixed Jocobian Newton’s method) to find the roots of
the nonlinear equation (2.4) in order to avoid computationally heavy updating of
the Jacobian matrix which is complicated. However in this paper we focus on the
derivative-free Broyden’s method, see [13, 14, 15] where the Jacobian matrix is
approximated each iteration. However there is only the work of [16] utilizing the
Broyden’s method to solve inverse SLPs. The aim of research [16] is to recover
general potential functions employing the information of two sequences of eigen-
values. Moreover the Broyden’s method is the important numerical method to
find the root of nonlinear equations.

Broyden’s iteration is written as

A(k)(q(k+1) − q(k)) = −F (q(k)), k = 0, 1, ... (2.5)

where A(k) is called the approximated updated Jacobian matrix which is defined
as

A(k) = A(k−1) + UV T , (2.6)

with V = q(k) − q(k−1) and U = (V V T )−1(F (q(k)) − F (q(k−1)) − A(k−1)V ), see
[13, 14, 15].

In order to achieve fast convergence we set A(0) = Λ′(q(0)). The matrix A(0)

is the exact Jacobian whose (i, j)-th element Λi,j =
∂Λi

∂qj
is the partial derivative

of Λi(q
(0)) with respect to qj marked with the subscript ”, j”. Our technique to

compute Λ′(q(0)) is similar to [11, 12]. We consider the eigenvalue problem

−Ayi +BQyi = ΛiByi, (2.7)

where yi represents the right eigenvector to the eigenvalue Λi. Differentiating (2.7)
with respect to qj and since the constant matrices A and B are independent of qj
we obtain

−Ayi,j +B(Q,jyi +Qyi,j) = Λi,jByi + ΛiByi,j .
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Assuming B is invertible, multiplication with B−1 yields

−B−1Ayi,j +Q,jyi +Qyi,j = Λi,jyi + Λiyi,j .

Note that our numerical examples indicate that the condition number of B is
low. Here and throughout the rest of this section, let the vector norm denote the
standard Euclidean norm and let 〈·, ·〉 denote the stand inner product. Hence,

〈−B−1Ayi,j , vi〉+ 〈Q,jyi +Qyi,j, vi〉 = 〈Λi,jyi, vi〉+ 〈Λiyi,j , vi〉,

where vi is the left eigenvector corresponding to Λi defined by

− vTi A+ vTi BQ = Λiv
T
i B. (2.8)

Due to the fact that −A + BQ is not a symmetric matrix, the left and right
eigenvectors are different in general. Now we obtain

[A(0)]ij = Λi,j =
〈Q,jyi, vi〉

〈yi, vi〉
=

vTi Q,jyi
vTi yi

, (2.9)

where Q,j is the 2N × 2N diagonal matrix of which the only non-zero elements
are [Q,j ]j,j = 1 and [Q,j]2N+1−j,2N+1−j = 1.

Algorithm 2.1. Computing a general discretized potential function q on uni-
formly spaced nodes from one given sequence of eigenvalues and a given sequence
of partially known potentials.

Input Tolerance threshold ǫ, maximum number of iterations M , the first n
given eigenvalues λ1, λ2, ..., λn and partially known potential function either on
[0, π/2] or [π/2, π].

1. Set k = 1 and δ = ǫ+ 1.

2. Compute q
(0)
i = λn − n2 for i = 1, ..., n.

3. Compute the corrected eigenvalues λ̃i = λi − ε(i, h) where ε(i, h) is obtained
by (2.3) in setting q ≡ 0.

4. Compute the eigenvalues Λi and the left (vi) and right (yi) eigenvector using
(2.8) and (2.7).

5. Compute A(0) using (2.9) and q(1) using (2.5).

6. Repeat until either δ < ǫ or k > M

(a) Compute the first N eigenvalue of (2.7).

(b) Compute F (q) in (2.4) and then compute A(k) using (2.6).

(c) Compute q(k+1) using (2.5) and δ = ‖q(k+1) − q(k)‖.

(d) Set k = k + 1.

Output k, δ and q(k).
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Theorem 2.1 (Convergence of Algorithm 2.1). Let N > 1. Assume that the
eigenvalue of −B−1A + Q are simple for all k. Then, there exists a constant C
such that the iteration (2.5) converges to a solution q∗ of (2.4) if ‖q∗ − q(0)‖ ≤ C.

Proof. Let ‖ · ‖ be a norm on R
n. Since F : Rn → R

n is a continuously differential
operator and F ′(q) is analytic for all q, there exist a Lipschitz constant K > 0
and the solution q∗ ∈ R

n. Furthermore, (F ′(q∗))−1 is assumed to exist. Then we
obtain

‖F ′(q∗)−1(F ′(q)− F ′(q∗))v‖ ≤ K‖q − q∗‖‖v‖

for q and v ∈ R
n. Let θ ∈ (0, 1) and C =

1− θ

2− θ

(
θ

θ + 1

)
1

K
. It now follows from

the standard theory of Broyden’s method, see [13], that the sequence {q(k)}∞k=1

converges to the solution q∗ of F (q) = 0 as

‖q(k) − q∗‖ <
θk

K

(
1− θ

2− θ

)(
θ

θ + 1

)
≤

θk

K
k = 1, 2, ...

Moreover a reasonable choice for an initial guess q(0) follows a suggestion
of [11, 12], where all elements are assumed to be a constant of obtained from
approximating q = λn − n2. This is motivated by the asymptotic expansion of
eigenvalues, cf. (1.3).

3 Numerical experiments

In this section the Algorithm 2.1 is investigated for recovering general potential
functions which are recovered on various type functions. For the first two examples
the smooth continuous functions which are q1(x) = cos 3x and q2(x) = (exp(x) −
x2)/12 are considered. The non-smooth continuous function and discontinuous
function are q3(x) = |x2 − 2| and

q4(x) =





3/2 for π/4 ≤ x < π/2
2 for π/2 ≤ x < 3π/2
x elsewhere

, respectively. For all examples in this paper we employ 40 exact eigenvalues
and 40 partially known potential nodes on either [0, π/2] or [π/2, π]. The exact
eigenvalues are computed by MATSLISE software package [17]. Moreover the
tolerance threshold ǫ was set to 0.00005.

Due to the fact that the convergent rate of derivative-free Broyden’s method
is between 1 and 2 which is better than with modified Newton’s method used in
[3, 2], our iteration step count will in comparison be smaller.

In order to increase the accuracy we can employ more eigenvalues or find
another with high-precision direct methods to approximate eigenvalues [10].
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Table 1: The table shows the norm of error ( ×10−6) and k stands for the
number of the iteration step.

function known potential on [0, π
2
] known potential on [π

2
, π]

q1 1.54985 (k = 6) 1.46982 (k = 6)
q2 4.93512 (k = 5) 5.00135 (k = 5)
q3 9.42044 (k = 9) 9.13251 (k = 9)
q4 10.66687 (k = 10) 10.75428 (k = 10)
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