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Abstract : In this paper, we study the behavior of solutions of piecewise linear
system of difference equations xn+1 = |xn| − yn − 2 and yn+1 = xn + |yn| with
initial condition that (x0, y0) is in R2 − {(x, y) : x < 0 and y < 0}. After we
observe via a computer program and some direct computations, we found that
the system has an equilibrium point and periodic solutions. We also show that
the solution of the system is eventually periodic with prime period 3 by finding
the pattern of solutions and formulating the statements that involve the natural
numbers and then proving by mathematical induction.
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1 Introduction

Difference equations usually describe the evolution of a certain phenomenon
over the course of time. In mathematics, a difference equation is a sequence of
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numbers that are the functions of previous numbers. The following definitions [1]
are used in this paper. A difference equation of order (k+1) is an equation of the
form

xn+1 = f(xn, xn−1, xn−2, . . . , xn−k), n = 0, 1, . . . (1.1)

where f is a continuous function which maps some set Jk+1 into J . The set J is
usually an interval of real numbers, or a union of intervals, but it may even be a
discrete set such as the set of integers.

A solution of Eq.(1.1) is a sequence {xn}
∞

n=−k which satisfies Eq.(1.1) for all
n ≥ 0. If we prescribe a set of (k + 1) initial conditions

x−k, x−k+1, . . . , x0 ∈ J

then
x1 = f(x0, x−1, . . . , x−k)

x2 = f(x1, x0, . . . , x−k+1)

...

and so the solution {xn}
∞

n=−k of Eq.(1.1) exists for all n ≥ −k and is uniquely
determined by the initial conditions.

A solution of Eq.(1.1) which is constant for all n ≥ −k is called an equilibrium
solution of Eq.(1.1). If

xn = x̄ for all n ≥ −k

is an equilibrium solution of Eq.(1.1), then x̄ is called an equilibrium point, or
simply an equilibrium, of Eq.(1.1).

A solution{xn}
∞

n=−k of Eq.(1.1) is called periodic with period p (or a period p

solution) if there exists an integer p ≥ 1 such that

xn+p = xn for all n ≥ −k (1.2)

We say that the solution is periodic with prime period p if p is the smallest positive
integer for which (1.2) holds. In this case, a p-tuple

(xn+1, xn+2, · · · , xn+p)

of any p consecutive values of the solution is called a p - cycle of Eq.(1.1).
A solution {xn}

∞

n=−k of Eq.(1.1) is called eventually periodic with period p if
there exists an integer N ≥ −k such that {xn}

∞

n=−k is periodic with period p; that
is,

xn+p = xn for all n ≥ N

Difference equations have rich and far reaching applications, especially in the
field of Biology and Economics [2, 3, 4].

Devaney [5, 6] investigated the piecewise linear difference equation, known as
the gingerbreadman map,

xn+1 = |xn| − xn−1 + 1, n = 1, 2, 3, . . . (1.3)
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which has been shown to be chaotic in certain regions and stable in others. The
name of this equation is due to the fact that solutions in the plane look like a
gingerbreadman” [5] when graphed. Equation(1.3) is equivalent to the piecewise
linear system,







xn+1 = |xn| − yn + 1
, n = 0, 1, . . .

yn+1 = xn

(1.4)

Gerasimos Ladas made significant contributions to the generalized ginger-
breadman map as an open problem in the form of 81 piecewise linear systems:







xn+1 = |xn|+ ayn + b

, n = 0, 1, . . .
yn+1 = xn + c|yn|+ d

(1.5)

where the initial conditions x0, and y0 are arbitrary real numbers and the param-
eters a, b, c, and d are integers between −1 and 1, inclusively.

Grove and his team [7] found that the behavior of solution of the piecewise
linear system of difference equation,







xn+1 = |xn| − yn − 1
, n = 0, 1, . . .

yn+1 = xn + yn

(1.6)

is eventually periodic with period 3 for every initial condition (x0, y0) ∈ R2. We
would like to study a generalization of system (1.6), which is the system







xn+1 = |xn| − yn − b

, n = 0, 1, . . .
yn+1 = xn + yn

(1.7)

with initial condition (x0, y0) ∈ R2 and b is positive integer. So, we investigate
system(1.7) by substituting b with 2. In this paper we consider the system of
piecewise linear difference equations







xn+1 = |xn| − yn − 2
, n = 0, 1, . . .

yn+1 = xn + |yn|
(1.8)

with initial condition (x0, y0) being some points in R2. The results of this problem
will help us to predict the behavior of generalization of system (1.6) and (1.8) and
we believe that the investigating of the system will give us the germ of generality
that is required to understand systems with more complicated behavior. We let




a, b

c, d

e, f



 be a 3-cycle that consists of 3 points, i.e. (a, b), (c, d), (e, f).
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2 Main Results

The solutions of System(1.8) are has the unique equilibrium point

(x̄, ȳ) =

(

−
4

5
,−

2

5

)

and two 3-cycles

P 1
3 =





0, −2
0, 2

−4, 2



 and P 2
3 =





0, − 2
3

− 4
3 ,

2
3

− 4
3 , − 2

3



 .

The main result of this paper is as follows:

Lemma 2.1. Let {(xn, yn)}
∞

n=0 be a solution of System (1.8) and suppose that
there is an N ≥ 0 such that yN = −xN − 2 ≥ 0. Then (xN+1, yN+1) = (0,−2) ∈
P 1
3 .

Proof. We have

xN+1 = |xN | − yN − 2 = 0, and
yN+1 = xN + |yN | = −2.

Hence (xN+1, yN+1) = (0,−2) ∈ P 1
3 .

Lemma 2.2. Let L1 = {(0, y)|y ≥ 0} and {(xn, yn)}
∞

n=0 be a solution of System
(1.8). Then every solution with initial condition in L1 is eventually periodic with
prime period 3.

Proof. Let (x0, y0) ∈ L1, we have

x1 = |x0| − y0 − 2 = −y0 − 2 < 0, and
y1 = x0 + |y0| = y0 > 0.

We see that y1 = −x1 − 2, and applying Lemma 2.1, (x2, y2) = (0,−2) ∈ P 1
3 .

Lemma 2.3. Let L2 = {(0, y)|y < 0}and {(xn, yn)}
∞

n=0 be a solution of System
(1.8). Then every solution with initial condition in L2 is eventually periodic with
prime period 3.

Proof. Let (x0, y0) ∈ L2, we have

x1 = |x0| − y0 − 2 = 0− y0 − 2 = −y0 − 2, and
y1 = x0 + |y0| = 0− y0 = −y0 > 0.

Case1: x1 = −y0 − 2 > 0, y0 < −2. Thus,

x2 = |x1| − y1 − 2 = −4 < 0
y2 = x1 + |y1| = −2y0 − 2 > 0,
x3 = |x2| − y2 − 2 = 2y0 + 4 < 0
y3 = x2 + |y2| = −2y0 − 6.
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If y3 = −2y0 − 6 ≥ 0, y0 ≤ −3, then we see that y3 = −x3 − 2 ≥ 0, and applying
Lemma 2.1, (x4, y4) = (0,−2) ∈ P 1

3 .
Suppose that y3 = −2y0 − 6 < 0,−3 < y0 < −2, we will prove that for

y0 ∈ (−3,−2) the solution is eventually prime period 3(P 1
3 or P 2

3 ) by Mathematical
induction.

For each integer n with n ≥ 1, let P(n) be the following statement:
“for y0 ∈ (ln−1, un−1),

x3n+1 = 0, y3n+1 = 22ny0 + δn,

such that y3n+1 is non-negative when y0 ∈ [un, un−1), and so (x3n+3, y3n+3) =
(0,−2) ∈ P 1

3 . On the other hand, y3n+1 is negative when y0 ∈ [ln−1, un), and so

x3n+2 = −22ny0 − (δn + 2) < 0, y3n+2 = −22ny0 − δn > 0,
x3n+3 = 22n+1y0 + 2δn < 0, y3n+3 = −22n+1y0 − (2δn + 2),

such that y3n+3 is non-negative when y0 ∈ (ln−1, ln], and so (x3n+4, y3n+4) =
(0,−2) ∈ P 1

3 where as y3n+3 is negative when y0 ∈ (ln, un) where

ln =
−22n+4 − 2

3× 22n+1
, un =

−22n+3 + 2

3× 22n
, δn =

22n+3 − 2

3
.”

We shall show that P(1) is true. Since x3 = 2y0+4 < 0 and y3 = −2y0−6 < 0
when y0 ∈ (l0, u0) = (−3,−2), we have that

x3(1)+1 = x4 = |x3| − y3 − 2 = 0, and
y3(1)+1 = y4 = x3 + |y3| = 4y0 + 10 = 22(1)y0 + δ1.

If y0 ∈ [u1, u1−1) = [u1, u0) = [− 10
4 ,−2), then y3(1)+1 = 4y0 + 10 ≥ 0. We

apply Lemma 2.2 to obtain (x3(1)+3, y3(1)+3) = (0,−2) ∈ P 1
3 .

If y0 ∈ (l1−1, u1) = (l0, u1) = (−3,− 10
4 ), then y3(1)+1 = 4y0 + 10 < 0, and so

x3(1)+2 = x5 = |x4| − y4 − 2 = −4y0 − 12 = −22(1)y0 − (δ1 + 2) < 0

y3(1)+2 = y5 = x4 + |y4| = −4y0 − 10 = −22(1)y0 − δ1 > 0,
x3(1)+3 = x6 = |x5| − y5 − 2 = 8y0 + 20 = 22(1)+1y0 + 2δ1 < 0

y3(1)+3 = y6 = x5 + |y5| = −8y0 − 22 = −22(1)+1y0 − (2δ1 + 2).

If y0 ∈ (l1−1, l1] = (l0, l1] = (−3,− 22
8 ], then y3(1)+3 = −8y0−22 ≥ 0, we apply

Lemma 2.1 to obtain (x3(1)+4, y3(1)+4) = (0,−2) ∈ P 1
3 .

If y0 ∈ (l1, u1) = (− 22
8 ,−

10
4 ), then y3(1)+3 = −8y0 − 22 < 0. Hence, P(1) is

true.
Next, assume that P(N) is true. We shall show that P(N + 1) is true. Since

P(N) is true, we have

x3N+3 = 22N+1y0 + 2δN < 0 and y3N+3 = −22N+1y0 − (2δN + 2) < 0

when

y0 ∈ (lN , uN ) =
(

−22N+4
−2

3×22N+1 , −22N+3+2
3×22N

)

.



232 Thai J. Math. 13 (2015)/ W. Tikjha et al.

Then,

x3(N+1)+1 = x3N+4 = |x3N+3| − y3N+3 − 2 = 0, and

y3(N+1)+1 = y3N+4 = x3N+3 + |y3N+3| = 22(N+1)y0 + 4δN + 2

= 22(N+1)y0 + δN+1.

Note that

δN+1 = 22N+5
−2

3 = 4
(

22N+3
−2

3

)

+ 6
3 = 4δN + 2.

If

y0 ∈ [uN+1, u(N+1)−1) = [uN+1, uN) =
[

−22N+5+2
3×22N+2 , −22N+3+2

3×22N

)

,

then y3(N+1)+1 = 22(N+1)y0 + δN+1 = 22(N+1)y0 +
(

22N+5
−2

3

)

≥ 0. We apply

Lemma 2.2 to obtain (y3(N+1)+3, y3(N+1)+3) = (0,−2) ∈ P 1
3 .

If

y0 ∈ (l(N+1)−1, u(N+1)) = (lN , uN+1) =
(

−22N+4
−2

3×22N+1 , −22N+5+2
3×22N+2

)

,

then

y3(N+1)+1 = 22(N+1)y0 + δN+1 = 22(N+1)y0 +
(

22N+5
−2

3

)

< 0, so

x3(N+1)+2 = |x3N+4| − y3N+4 − 2 = −22(N+1)y0 − (δN+1 + 2)

= −22N+2y0 +
(

−22N+5
−4

3

)

< 0

y3(N+1)+2 = x3N+4 + |y3N+4| = −22(N+1)y0 − δN+1 > 0,

x3(N+1)+3 = |x3N+5| − y3N+5 − 2 = 22(N+1)+1y0 + 2δN+1 < 0
y3(N+1)+3 = x3N+5 + |y3N+5| = −22(N+1)+1y0 − (2δN+1 + 2).

If

y0 ∈ (l(N+1)−1, lN+1] = (lN , lN+1] =
(

−22N+4
−2

3×22N+1 , −22N+6
−2

3×22N+3

]

,

then

y3(N+1)+3 = −22(N+1)+1y0 − (2δN+1 + 2) = −22N+3y0 +
(

−22N+5
·2−2

3

)

≥ 0.

We apply Lemma 2.1 to obtain (x3(N+1)+4, y3(N+1)+4) = (0,−2) ∈ P 1
3 .

If

y0 ∈ (lN+1, uN+1) =
(

−22N+6
−2

3×22N+3 , −22N+5+2
3×22N+2

)

,

then

y3(N+1)+3 = −22(N+1)+1y0 − (2δN+1 + 2) = −22N+3y0 +
(

−22N+5
·2−2

3

)

< 0.

Hence, P(N + 1) is true. By Mathematical induction, P(n) is true for all n ≥ 1.
Note that
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lim
n→∞

ln = −
8

3
= lim

n→∞

un.

We also note that if (x0, y0) = (0,− 8
3 ), then (x3, y3) = (− 4

3 ,−
2
3 ) ∈ P 2

3 . We can
conclude that in Case1, every solution of the system is eventually prime period 3
(P 1

3 or P 2
3 ).

Case2: x1 = −y0 − 2 ≤ 0, y0 ≥ −2, then

x2 = |x1| − y1 − 2 = y0 + 2 + y0 − 2 = 2y0 < 0
y2 = x1 + |y1| = −y0 − 2− y0 = −2y0 − 2.

If y2 = −2y0 − 2 ≥ 0,−2 ≤ y0 ≤ −1, then we apply Lemma 2.1:

(x3, y3) = (0,−2) ∈ P 1
3 .

Suppose that y2 = −2y0 − 2 < 0, y0 > −1, then

x3 = |x2| − y3 − 2 = 0
y3 = x2 + |y3| = 4y0 + 2.

If y3 = 4y0 + 2 ≥ 0, then we apply Lemma 2.2, and so

(x5, y5) = (0,−2) ∈ P 1
3 .

Suppose that y3 = 4y0 + 2 < 0,−1 < y0 < − 2
4 . We will prove that for

y0 ∈ (−1,− 2
4 ) the solution is eventually prime period 3 by Mathematical induction.

For each integer n with n ≥ 1, let Q(n) be the following statement; “for
y0 ∈ (ln, un), we have

x3n+1 = −22ny0 − (γn + 2) < 0, y3n+1 = −22ny0 − γn > 0
x3n+2 = 22n+1y0 + 2γn < 0, y3n+2 = −22n+1y0 − (2γn + 2)

such that y3n+2 is non-negative when y0 ∈ (ln, ln+1], and so (x3n+3, y3n+3) =
(0,−2) ∈ P 1

3 where as y3n+2 is negative when y0 ∈ (ln+1, un), and so

x3n+3 = 0, y3n+3 = 22n+2y0 + (4γn + 2).

Thus y3n+3 is non-negative when y0 ∈ [un+1, un), and so (x3n+5, y3n+5) = (0,−2) ∈
P 1
3 where as y3n+3 is negative when y0 ∈ (ln+1, un+1) where

ln = −22n−2
3×22n−1 , un = −22n+1+2

3×22n , γn = 22n+1
−2

3 .”

The proof is similar the above case. So we will omit the proof. Then we have Q(n)
is true for all n ≥ 1.
Note that

lim
n→∞

ln = −
2

3
= lim

n→∞

un

and we also note that (x0, y0) = (0,− 2
3 ) ∈ P 2

3 .
The proof is complete.
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Lemma 2.4. Let Q1 = {(x, y) ∈ R × R|x ≥ 0 and y ≥ 0} and {(xn, yn)}
∞

n=0

be a solution of System (1.8). Then every solution with initial condition in Q1 is
eventually in L1 or L2.

Proof. Let (x0, y0) ∈ Q1. Then

x1 = |x0| − y0 − 2 = x0 − y0 − 2
y1 = x0 + |y0| = x0 + y0 ≥ 0.

Case 1: When x1 = x0 − y0 − 2 ≥ 0,

x2 = |x1| − y1 − 2 = −2y0 − 4 < 0
y2 = x1 + |y1| = 2x0 − 2 > 0,
x3 = |x2| − y2 − 2 = −2x0 + 2y0 + 4 ≤ 0
y3 = x2 + |y2| = 2x0 − 2y0 − 6,
x4 = |x3| − y3 − 2 = 0.

.

Then, (x4, y4) is in L1 or L2.
Case 2: When x1 = x0 − y0 − 2 < 0,

x2 = |x1| − y1 − 2 = −2x0 ≤ 0
y2 = x1 + |y1| = 2x0 − 2,
x3 = |x2| − y2 − 2 = 0.

Then (x4, y4) is in L1 or L2.

Lemma 2.5. Let Q2 = {(x, y) ∈ R × R|x < 0 and y ≥ 0} and {(xn, yn)}
∞

n=0

be a solution of System (1.8). Then every solution with initial condition in Q2 is
eventually periodic with prime period 3.

Proof. Let (x0, y0) ∈ Q2. Then,

x1 = |x0| − y0 − 2 = −x0 − y0 − 2
y1 = x0 + |y0| = x0 + y0.

If x1 = −x0 − y0 − 2 < 0 and y1 = x0 + y0 ≥ 0, then we apply Lemma 2.1,
that (x2, y2) = (0,−2) ∈ P 1

3 .

If x1 = −x0 − y0 − 2 < 0 and y1 = x0 + y0 < 0, then x2 = |x1| − y1 − 2 = 0,
(x2, y2) is in L1 or L2.

If x1 = −x0 − y0 − 2 ≥ 0 and y1 = x0 + y0 < 0, then

x2 = |x1| − y1 − 2 = −2x0 − 2y0 − 4 ≥ 0
y2 = x1 + |y1| = −2x0 − 2y0 − 2 > 0,
x3 = |x2| − y2 − 2 = −4
y3 = x2 + |y2| = −4x0 − 4y0 − 6 ≥ 0,
x4 = |x3| − y3 − 2 = 4x0 + 4y0 + 8 ≤ 0
y4 = x3 + |y3| = −4x0 − 4y0 − 10,
x5 = |x3| − y3 − 2 = 0.
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Thus (x5, y5) is in L1 or L2.
In above cases, the solutions are eventually in L1 or L2. We apply Lemma

(2.2) and Lemma (2.3).
If x1 = −x0 − y0 − 2 ≥ 0 and y1 = x0 + y0 ≥ 0, we apply Lemma 2.4, then the

proof is complete.

Lemma 2.6. Let Q4 = {(x, y) ∈ R × R|x ≥ 0 and y < 0} and {(xn, yn)}
∞

n=0

be a solution of System (1.8). Then every solution with initial condition in Q4 is
eventually periodic with prime period 3.

Proof. Let (x0, y0) ∈ Q4. Then

x1 = |x0| − y0 − 2 = x0 − y0 − 2
y1 = x0 + |y0| = x0 − y0 > 0.

If x1 = x0 − y0 − 2 ≥ 0, then (x1, y1) ∈ Q1, and we apply Lemma 2.4.
If x1 = x0 − y0 − 2 < 0, then (x1, y1) ∈ Q2, and we apply Lemma 2.5. The

proof is complete.

Theorem 2.7. Let {(xn, yn)}
∞

n=0 be a solution of System (1.8) with initial con-
dition (x0, y0) ∈ R2 − {(x, y) : x < 0 and y < 0}. Then the solution is eventually
prime period 3 solution (P 1

3 or P 2
3 .)

3 Discussion and Conclusion

We begin with the first result in Lemma2.1 as a tool to prove the next lemma
which is about the solution of the system satisfying some conditions such that
the next iteration will be a point in P 1

3 . The second lemma states that if we
begin with initial condition (x0, y0) ∈ L1(nonnegative y axis) then the solution
of the system is eventually P 3

1 in two iterations by using Lemma 2.1. The third
lemma states that if we begin with initial condition (x0, y0) ∈ L2(negative y axis)
then the solution of the system is eventually P 3

1 or P 3
2 . We separate the solutions

into two cases and use Lemma 2.1, Lemma 2.2 and mathematical induction to
prove a couple of induction statements in the third lemma. Now we know that
if we begin with initial condition on the y axis then the solution of the system is
eventually periodic with prime period 3. The forth lemma states that if we begin
with initial condition in the first quadrant the solution will be in L1 or L2 which
means the solution of the system is eventually periodic with prime period 3. The
fifth lemma state that if we begin with initial condition in the second quadrant
then the solution is eventually periodic with prime period 3 by using Lemma 2.1
Lemma 2.2 and Lemma 2.3. The last lemma states that if we begin with initial
condition in the forth quadrant, then the solution will be in the first quadrant
or the second quadrant where we can apply Lemma 2.4 and Lemma 2.5. This
allows us to conclude that the solution of the system is eventually periodic with
prime period 3 when the initial condition is in R2 except for initial conditions in
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the third quadrant. We conjecture that the solution of the system is eventually
periodic with prime period 3 for every initial condition in R2.
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