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Abstract : For each n, k ∈ N, let Yi = (Yi1, Yi2, . . . , Yik), i = 1, 2, . . . , n, be
independent random vectors in Rk such that Yij are independent for all j =
1, 2, . . . , k. Without assuming the existence of the third moments, a uniform Berry-
Esseen bound for multidimensional central limit theorem on a closed sphere is
presented in this paper.
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1 Introduction

Central limit theorem is one of the well-known theorem is probability the-
ory that can be applied to the area of statistics. This theorem guarantee that,
under some conditions, the distribution of sum or mean of a large number of in-
dependent random variables tend to be close to the normal distribution. The
rate of this convergence was independently quantified by Berry [1] and Esseen
[2]. Their results have been known as the Berry-Esseen inequality and been stud-
ied by many researchers such as Chaidee [3], Chen and Shao [4, 5], Nagaev [6],
Neammanee and Thongtha [7], Paditz [8] and Shevtsova [9]. The extension of
the theorem to multidimension, multidimension central limit theorem, was first
investigated by Bergström [10]. Bergström proved that for a fixed k ∈ N, the
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distribution of sum of independent and identically distributed random vectors
Yi = (Yi1, Yi2, . . . , Yik), i = 1, 2, . . . , n, where the random vectors Yi satisfy:

EYi = 0̄,
n
∑

i=1

EY 2
ij = 1 for j = 1, 2, . . . , k and

EYijYil = 0 for j 6= l,

converges weakly to the Gaussian distribution in Rk. This means that the dis-
tribution of sum of the random vectors Yi can be approximated by the Gaussian
distribution. A uniform bound of the approximation was first investigated by
Esseen [2]. He gave a bound over the set of closed sphere,

Bk(r) = {w ∈ R
k | w2

1 + w2
2 + · · ·+ w2

k ≤ r2}

for r > 0, under the assumption that

k
∑

j=1

E|Yij |4 < ∞. His result is

|Fn(Bk(r)) − Φk(Bk(r))| ≤
Ck

n
k

k+1

where Fn is the distribution of sum of Yi, i = 1, 2, ..., n, and Φk is the Gaussion
distribution in R

k. A few decades later, many researchers put their effort to
find the uniform bound. The bound was improved in many directions such as:
extending the result to more general sets, see [11], ralaxing the assumption about
Yi, i = 1, 2, . . . , n, see [12], [13] and [14], improving the rate of convergence, see
[15] and computing the constant Ck on the bounds of the approximation, see [13],
[16] and [17]. In the last direction, Götze[13] calculated the constant in the case
that the random vectors Yi may not be identically distributed. He assumed the
finiteness of the third moments and used the Stein’s method to find a uniform
bound on any measurable convex set C in R

k. His estimation is

|Fn(C) − Φk(C)| ≤ Ckγ3

where γ3 =

n
∑

i=1

E||Yi||3, || · || is the Euclidean norm in R
k and Ck = 124.4ak

√
k+

10.7, where ak = 2.04, 2.4, 2.69, 2.94 for k = 2, 3, 4, 5, respectively and ak ≤ 1.27
√
k

for k ≥ 6. Thongtha and Neammanee [17] assumed an independence of all com-
ponent of Yi and used the Stein’s method to investigate a constant on a uniform
bound over the set of closed sphere Bk(r) as shown in the following theorem.

Theorem 1.1. Let Yi = (Yi1, Yi2, . . . , Yik), i = 1, 2, . . . , n be independent random

vectors in R
k with zero means and Yij are independent for all j = 1, 2, . . . , k.

Define Wn =

n
∑

i=1

Yi. Let Fn be the distribution function of Wn. Assume that
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n
∑

i=1

EY 2
ij = 1 for j = 1, 2, . . . , k and

k
∑

j=1

E|Yij |3 < ∞ for i = 1, 2, . . . , n. Then

sup
r∈R

|Fn(Bk(r)) − Φk(Bk(r))| ≤ cβ3

where c =
4.55

k
+

3

k
√
k

and β3 =

k
∑

j=1

n
∑

i=1

E|Yij |3.

All of the above mentioned research, at least the finiteness of the third moments
are assumed. In this work, we will give a constant on a uniform bound of the
approximation over the set of closed sphere without assuming the existence of the
third moments.

The contents of this paper are organized as follows. The Stein’s method which
is a main tool to prove the main result is described in section 2 while the statement
and the proof of the result are given in section 3.

2 Stein’s Method

The Stien’s method, introduced by Stein [18] in 1972, is now widely used
technique for estimating Berry-Esseen bounds. This technique was initially intro-
duced in order to investigate the bounds in one dimension. Over several decades,
the method have been developed by many researchers in order to find bounds of
multivariate normal approximation such as Barbour [19], Götze [13], Chatterjee
and Meckes [20], Reinert and Röllin [14] and Thongtha and Neammanee [17]. The
Stein’s technique is based on the a partial differential equation. The keys of this
method consist of two parts, the partial differrential equation and its correspond-
ing solution. Thongtha and Neammanee [17] introduced the Stein’s equation and
the corresponding solution and used it to estimate the bounds over the set of closed
shpere Bk(r). The equation is

k
∑

i=1

fwi
(w) −

k
∑

i=1

wifB(w) =
√
k[hB(w)− Φk(B)], (2.1)

where w = (w1, w2, . . . , wk) ∈ R
k, B is a Borel set in R

k,fwi
are the partial

derivatives of fB with respect to wi for i = 1, 2, . . . , k, and hB is the indicator
function on B, that is

hB(w) =

{

1 if w ∈ B,

0 if w /∈ B.
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The corresponding solution of the equation (2.1) is given as follows.

fB(w) =



















−
√
2πe

1
2
w̄2

(1− Φk(B))(1 − Φ1(w̄)) if w ∈ B, w̄ ≥ 0,√
2πe

1
2
w̄2

(1 − Φk(B))Φ1(w̄) if w ∈ B, w̄ < 0,√
2πe

1
2
w̄2

Φk(B)[1 − Φ1(w̄))] if w /∈ B, w̄ ≥ 0,

−
√
2πe

1
2
w̄2

Φk(B)Φ1(w̄)) if w /∈ B, w̄ < 0

(2.2)

where w̄ =
1√
k

k
∑

i=1

wi. If Wn =

n
∑

i=1

Yi and B = Bk(r), we can easily compute

from the equation (2.1) that

P (Wn ∈ Bk(r)) − Φk(Bk(r)) =
1√
k
E[

k
∑

i=1

frwi
(Wn)−

k
∑

i=1

Wnifr(Wn)], (2.3)

where fr denote the solution in equation (2.2) in the case that B = Bk(r). From
the equation (2.3), we can approximate the left hand side by estimating the right
hand side which depends on the solution fr. Thongtha and Neammanee [17] gave
some properties of fr which is used to approximate the right hand side of the
equation (2.3). Here are the properties.

Proposition 2.1 For k ∈ N, w ∈ R
k and r > 0, we have

1. |fr(w)| ≤
1

|w̄| for w̄ 6= 0,

2. |fr(w)| ≤ 2 and

3. |frwi
(w)| ≤ 2√

k
for i = 1, 2, . . . , k.

In Propostion 2.2, Thongtha and Neammanee [21] gave a bound of a function
concerning fB in the equation (2.2).

Proposition 2.2 For k ∈ N, i = 1, 2, . . . , k and any Borel set B in R
k, the

function gi : R
k → R is defined by

gi(w) =
∂

∂wi

(

k
∑

j=1

wj)fB(w)

is bounded by 2.

3 The Main Result

In this section, we give a constant on a uniform Berry- Esseen bound for
multidimensional central limit theorem over the set of Bk(r) for r > 0. The used
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technique is the Stein’s method together with the concentration inequality.
For n ∈ N, let Xi, i = 1, 2, . . . , n, be independent random variables with zero

means and
n
∑

i=1

EX2
i = 1. Define Sn =

n
∑

i=1

Xi and S
(i)
n = Sn −Xi, and let

α =

n
∑

i=1

EX2
i I(|Xi| > 1) and β =

n
∑

i=1

E|Xi|3I(|Xi| ≤ 1).

The following proposition is a concentration inequality which is presented in
Chen and Shao [4].

Proposition 3.1. If α+ β ≤ 0.14, then for a < b,

P (a ≤ S(i)
n ≤ b) ≤ 1.5(b− a) + 3.3δ1

where δ1 =
1

2
(0.28α+ β).

The concentration inequality has an important role in proving the main result.
To charpen the result, we decide to create a new concentration inequality which
is proved by using the same idea as in Proposition 3.1. Here is our concentration
inequality.

Proposition 3.2. If α+ β ≤ 0.25, then for a < b,

P (a ≤ S(i)
n ≤ b) ≤ 1.67(b− a) + 4.77δ2

where δ2 =
1

2
(0.5α+ β).

Proof. Follows an idea of Proposition 3.1.

The Proposition 3.2 is used to prove the main result which is stated as follows.

Theorem 3.3. Let Yi = (Yi1, Yi2, . . . , Yik), i = 1, 2, . . . , n, be independent random

vectors in R
k with zero means and Yij are independent for all j = 1, 2, . . . , k.

Define Wn =

n
∑

i=1

Yi. Let Fn be the distribution function of Wn. Assume that

n
∑

i=1

EY 2
ij = 1 for j = 1, 2, . . . , k . Then,

|Fn(Bk(r)) − Φk(Bk(r))| ≤
(

7.2√
k
+ 4

)

δ

for all polsitive real numbers r where

δ =

k
∑

j=1

n
∑

i=1

{

EY 2
ijI(|Yij | > 1) + E|Yij |3I(|Yij | ≤ 1)

}

.
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Theorem 3.3 is proved by combining the ideas in [4] and [17]. To prove the
theorem, we introduce the following notations.
For k, n ∈ N, i = 1, 2, ..., n and j = 1, 2, ..., k, let

Y ij = YijI(|Yij | ≤1), Wnj =

n
∑

i=1

Y ij , W
(i)

nj = Wnj − Y ij ,

αj =

n
∑

i=1

EY 2
i I(|Yij | > 1), βj =

n
∑

i=1

E|Yi|3I(|Yij | ≤ 1) and

K̄ij(t) = EY ij [I(0 ≤ t ≤ Y ij)− I(Y ij ≤ t < 0)]

for t ∈ R where I is an indicator function on Ω. We can easily compute that

K̄ij(t) ≥ 0 for all t ∈ R, (3.1)
n
∑

i=1

∫

∞

−∞

K̄ij(t)dt = 1− αj and (3.2)

n
∑

i=1

E

∫

∞

−∞

(|Yij |+ |t|)K̄ij(t)dt =
3

2
βj (3.3)

for all j = 1, 2, . . . , k, see an idea in [5].
We are now ready to prove Theorem 3.3.

Proof. If there exists an element i ∈ {1, 2, . . . , k} such that

αi + βi ≥ 0.25,

then the theorem is done by the fact that |P (Wn ∈ Bk(r)) − Φk(Bk(r))| ≤ 1 and
(

7.2√
k
+ 4

)

δ ≥
(

7.2√
k
+ 4

)

(αi + βi) ≥ 1. (3.4)

Next, we assume that αi+βi ≤ 0.25 for all i ∈ {1, 2, . . . , k}. Let fr be the solution
defined in (2.2) in the case that B = Bk(r) and frwi

the derivative of fr with
respect to wi for i = 1, 2, . . . , k. By equation (2.3),

P (Wn ∈ Bk(r)) − Φk(Bk(r)) =
1√
k

k
∑

i=1

[Si − Ti] (3.5)

where

Si = Efrwi
(Wn1,Wn2, . . . ,Wnk), and Ti = EWnifr(Wn1,Wn2, . . . ,Wnk).

To prove the theorem, we claim that for all i ∈ {1, 2, . . . , n}

|Si − Ti| ≤
(

7.2√
k
+ 4

)

(αi + βi) (3.6)
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This equation will be proved in case of k = 2. For multidimension, we can prove
it by using the same argument. Follows an idea in [5], we can show that

S1 =

n
∑

i=1

E

∫

∞

−∞

frw1
(W

(i)
n1 + Yi1,Wn2)K̄i1(t)dt

+α1Efrw1
(Wn1,Wn2), and

T1 =

n
∑

i=1

E

∫

∞

−∞

frw1
(W

(i)
n1 + t,Wn2)K̄i1(t)dt

+
n
∑

i=1

EYi1I(|Yi1| > 1)[fr(Wn1,Wn2)− fr(W
(i)
n1 ,Wn2)].

Thus,

S1 − T1 = R1 +R2 +R3 +R4 (3.7)

where

R1 =
n
∑

i=1

EI(|Yi1| ≤ 1)

∫

∞

−∞

[frw1
(W

(i)
n1 + Yi1,Wn2)− frw1

(W
(i)
n1 + t,Wn2)]K̄i1(t)dt

R2 =

n
∑

i=1

EI(|Yi1| > 1)

∫

∞

−∞

[frw1
(W

(i)
n1 + Yi1,Wn2)− frw1

(W
(i)
n1 + t,Wn2)]K̄i1(t)dt

R3 = α1Efrw1
(Wn1,Wn2)

R4 = −
n
∑

i=1

EYi1I(|Yi1| > 1)[fr(Wn1,Wn2)− fr(W
(i)
n1 ,Wn2)].

By Proposition 2.1(3) and (3.2),

|R2 +R3| ≤
4√
2

n
∑

i=1

EI(|Yi1| > 1)

∫

∞

−∞

K̄i1(t)dt+
2√
2
α1

≤ 4√
2

n
∑

i=1

EI(|Yi1| > 1) +
2√
2
α1

≤ 6√
2
α1. (3.8)

By Proposition 2.1(2),

|R4| ≤ 4
n
∑

i=1

EYi1I(|Yi1| > 1) ≤ 4α1. (3.9)

By the same argument as of (3.7) in [17], we write

R1 =
1√
2
R11 +

1

2
R12 (3.10)
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where

R11 =

n
∑

i=1

E[I(|Yi1| ≤ 1)

∫

∞

−∞

[hB2(r)(W
(i)
n1 + Yi1,Wn2)− hB2(r)(W

(i)
n1 + t,Wn2)]K̄i1(t)dt]

R12 =
n
∑

i=1

E[I(|Yi1| ≤ 1)

∫

∞

−∞

[(W
(i)
n1 + Yi1 +Wn2)fr(W

(i)
n1 + Yi1,Wn2)

− (W
(i)
n1 + t+Wn2)fr(W

(i)
n1 + t,Wn2)]K̄i1(t)dt].

For i = 1, 2, . . . , n, let

Ai1 = {w ∈ Ω | −t+ η(w) < W
(i)
n1 (w) ≤ −Yi1(w) + η(w)},

Bi1 = {w ∈ Ω | −Yi1(w) − η(w) ≤ W
(i)
n1 (w) < −t− η(w)}

where

η(w) =
√

r2 −W 2
n2(w)I(w ∈ Λ) and Λ = {w ∈ Ω | W 2

n2(w) ≤ r2}.

Using the argument of (3.9)–(3.11) in [17] together with Proposition 3.2 and (3.2),
we obtain that

R11 ≤
n
∑

i=1

E[I(|Yi1| ≤ 1)

∫

∞

−∞

(I(Ai1) + I(Bi1)K̄i1(t)dt]

=

n
∑

i=1

EI(|Yi1| ≤ 1)

∫ 0

−∞

P (Ai1 | Yi1,Wn2)K̄i1(t)dt

+

n
∑

i=1

EI(|Yi1| ≤ 1)

∫

∞

0

P (Bi1 | Yi1,Wn2)K̄i1(t)dt

≤
n
∑

i=1

EI(|Yi1| ≤ 1)

∫

∞

−∞

[1.67|Yi1 − t|+ 4.77(
0.5α1 + β1

2
)]K̄i1(t)dt

≤ 1.67

n
∑

i=1

EI(|Yi1| ≤ 1)

∫

∞

−∞

(|Yi1|+ |t|)K̄i1(t)dt + 1.2α1 + 2.39β1

≤ 4.9β1 + 1.2α1 (3.11)

where we used the equation (3.3) in the last inequality. Similarly, we can show
that

R11 ≥ −
n
∑

i=1

E[I(|Yi1| < 1)

∫

∞

−∞

(I(Ci1) + I(Di1)K̄i1(t)dt]

≥ −(4.9β1 + 1.2α1) (3.12)

where

Ci1 = {w ∈ Ω | −Yi1(w) + η(w) < W
(i)
n1 (w) ≤ −t+ η(w)} and

Di1 = {w ∈ Ω | −t− η(w) ≤ W
(i)
n1 (w) < −Yi1(w)− η(w)}.
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By (3.11) and (3.12), we have

|R11| ≤ 4.9β1 + 1.2α1. (3.13)

To prove the equation (3.6), it remains to estimate |R12|. Since g1 in Proposition
2.2 is piecewise continuous, by Proposition 2.2, (3.1),(3.3) and the fundamental
theorem of calculus,

|R12| = |
n
∑

i=1

EI(|Yi1| ≤ 1)

∫

∞

−∞

∫ Yi1

t

g1(W
(i)
n1 + u,Wn2)duK̄i1(t)dt|

≤ 2

n
∑

i=1

EI(|Yi1| ≤ 1)

∫

∞

−∞

(|Yi1|+ |t|)K̄i1(t)dt

≤ 3β1. (3.14)

Combining (3.7)–(3.10), (3.13) and (3.14) yields

|S1 − T1| ≤
(

7.2√
2
+ 4

)

α1 +

(

4.9√
2
+

3

2

)

β1 ≤
(

7.2√
2
+ 4

)

(α1 + β1) (3.15)

Similarly, we have the same conclusion as in (3.15) for the other elements i in
{2, 3, . . . , k}. Hence, the equation (3.6) is proved. By equations (3.4)–(3.6), we
have the theorem.

Corollary 3.4. Assume the assumption as in Theorem 3.3. If αi + βi ≤ 0.25 for

all i = 1, 2, . . . , k , then

|Fn(Bk(r)) − Φk(Bk(r))| ≤
(

7.2

k
+

4√
k

)

δ

for all polsitive real numbers r.

Proof. If αi + βi ≤ 0.25 for all i = 1, 2, . . . , k, the result is done by the equation
(3.5) and (3.6).
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[14] G. Reinert, A. Röllin, Multivariate normal approximation with Stein’s
method of exchangeable pairs under a general linearity condition, Ann.

Probab. 37 (6) (2009) 2150–2173.

[15] B.V. Bahr, Multi-dimentional integral limit theorems, Ark. Mat. 7 (1967)
71–88.

[16] D. Thongtha, K. Neammanee, Bounds on normal approximation on a half
plane in multidimension, impress in Journal of Mathematics Research. 4 (1)
(2012) 9–16.

[17] D. Thongtha, K. Neammanee, Constants on a uniform Berry-Esseen bound on
some Borel sets in R

k via Stein’s method, impress in Comm. Statist. Theory

Methods .



Constant on a Uniform Berry-Esseen Bound on a Closed Sphere ... 199

[18] C. Stein, A bound for the error in the normal approximation to the distri-
bution of a sum of dependent random variables, Proc. Sixth Berkeley Symp.

Math. Stat. Prob. 2 (1972) 583–602, Univ. California Press. Berkley, CA.

[19] A.D. Barbour, Stein’s Method for Diffusion Approximations, Probab. Theory
Relat. Field. 84 (1990) 297–322.

[20] S. Chatterjee, E. Meckes, Multivariate normal approximation using exchange-
able pairs, Alea. 4 (2008) 257–283.

[21] D. Thongtha, Berry-Esseen Bounds for Multidimensional Central Limit The-
orem via Stein’s Method, Ph.D. thesis, Chulalongkorn University. (2011).

(Received 17 June 2013)
(Accepted 22 January 2014)

Thai J. Math. Online @ http://thaijmath.in.cmu.ac.th

http://thaijmath.in.cmu.ac.th

	Introduction 
	Stein's Method
	The Main Result

