Thai Journal of Mathematics

Modules which are Reduced over their Endomorphism Rings

N. Agayev ${ }^{\dagger}$, S. Halicioglu ${ }^{\ddagger}$, A. Harmanci ${ }^{\ddagger}$ and B. Ungor ${ }^{\ddagger} \ddagger$
${ }^{\dagger}$ Fatih Sultan Mehmet Vakif University, Faculty Of Engineering, Computer Engineering Department, Istanbul, Turkey e-mail : naghayev@fsm.edu.tr
\ddagger Department of Mathematics, Hacettepe University, 06800 Ankara, Turkey
e-mail : halici@ankara.edu.tr (S. Halicioglu) harmanci@hacettepe.edu.tr (A. Harmanci) bungor@science.ankara.edu.tr (B. Ungor)

Abstract

Let R be an arbitrary ring with identity and M a right R-module with $S=\operatorname{End}_{R}(M)$. The module M is called reduced if for any $m \in M$ and $f \in S$, $f m=0$ implies $f M \cap S m=0$. In this paper, we investigate properties of reduced modules and rigid modules.

Keywords : Reduced modules, rigid modules, semicommutative modules, abelian modules, Baer modules, quasi-Baer modules, principally quasi-Baer modules, Rickart modules, principally projective modules.
2010 Mathematics Subject Classification : 16D10; 16D80; 16D99.

1 Introduction

Throughout this paper R denotes an associative ring with identity. For a module $M, S=\operatorname{End}_{R}(M)$ denotes the ring of right R-module endomorphisms of M. Then M is a left S-module, right R-module and (S, R)-bimodule. In this work, for any rings S and R and any (S, R)-bimodule $M, r_{R}($.$) and l_{M}($.$) denote$ the right annihilator of a subset of M in R and the left annihilator of a subset of R in M, respectively. Similarly, $l_{S}($.$) and r_{M}($.$) denote the left annihilator of a subset$

[^0]of M in S and the right annihilator of a subset of S in M, respectively. A ring R is reduced if it has no nonzero nilpotent elements. Recently, the reduced ring concept was extended to R-modules by Lee and Zhou in [1], that is, an R-module M is called reduced if for any $m \in M$ and $a \in R$, $m a=0$ implies $m R \cap M a=0$. A ring R is called semicommutative if for any $a, b \in R, a b=0$ implies $a R b=0$. The module M is called semicommutative [2], if for any $f \in S$ and $m \in M, f m=0$ implies $f S m=0$. Baer rings [3] are introduced as rings in which the right (left) annihilator of every nonempty subset is generated by an idempotent. The module M is called Baer [4] if for all R-submodules N of $M, l_{S}(N)=S e$ with $e^{2}=e \in S$. A submodule N of M is said to be fully invariant if for any $f \in S, f(N) \leq N$. A ring R is said to be quasi-Baer if the right annihilator of each right ideal of R is generated (as a right ideal) by an idempotent. The module M is said to be quasi-Baer [4] if for every fully invariant submodule N of $M, l_{S}(N)=S e$ with $e^{2}=e \in S$. A ring R is called right principally quasi-Baer if the right annihilator of a principal right ideal of R is generated by an idempotent. The module M is called principally quasi-Baer [5] if for any $m \in M, l_{S}(S m)=S f$ for some $f^{2}=f \in S$. A ring R is called right (left) principally projective if every right (left) ideal is projective [6]. The module M is called Rickart [7] if for any $f \in S$, $r_{M}(f)=e M$ for some $e^{2}=e \in S$. The ring R is called right Rickart if R_{R} is a Rickart module, that is, the right annihilator of any element is generated by an idempotent. It is obvious that the module R_{R} is Rickart if and only if the ring R is right principally projective. In what follows, by $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{Z}_{n}$ and $\mathbb{Z} / \mathbb{Z} n$ we denote, respectively, integers, rational numbers, real numbers, the ring of integers modulo n and the \mathbb{Z}-module of integers modulo n.

2 Reduced Modules

Let M be an R-module with $S=\operatorname{End}_{R}(M)$. Some properties of R-modules do not characterize the ring R, namely there are reduced R-modules but R need not be reduced and there are abelian R-modules but R is not an abelian ring. Because of that reduced, rigid, symmetric, semicommutative and Armendariz modules in terms of endomorphism rings S are introduced by the present authors (see [8]). In this section we study properties of modules which are reduced over their endomorphism rings.

We start with the following proposition.
Proposition 2.1. Let M be an R-module with $S=\operatorname{End}_{R}(M)$. Consider the following conditions for $f \in S$.
(1) $S(\operatorname{Ker} f) \cap \operatorname{Imf}=0$.
(2) Whenever $m \in M$, $f m=0$ if and only if $\operatorname{Im} f \cap S m=0$.

Then $(1) \Rightarrow(2)$. If M is a semicommutative module, then $(2) \Rightarrow(1)$.
Proof. Clear.
Following the definition of Lee and Zhou [1], M is a reduced module if and only if condition (2) of Proposition 2.1 holds for each $f \in S$. If M is a reduced
module, then it is semicommutative and so condition (1) of Proposition 2.1 also holds for each $f \in S$.

As an illustration we state the following examples.
Example 2.2. Let p be any prime integer and M denote the \mathbb{Z}-module $(\mathbb{Z} / \mathbb{Z} p) \oplus \mathbb{Q}$. Then S is isomorphic to the matrix ring $\left\{\left.\left[\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right] \right\rvert\, a \in \mathbb{Z}_{p}, b \in \mathbb{Q}\right\}$. It is evident that M is a reduced module.

Note that every module need not be reduced.
Example 2.3. Let p be any prime integer and $M=\mathbb{Z}\left(p^{\infty}\right)$ the $\operatorname{Prüfer} p$-group as a \mathbb{Z}-module. Let $\left\{v_{i}\right\}(i=1,2,3, \cdots)$ be elements in M which they satisfy the equalities $p v_{1}=0, p v_{i}=v_{i-1}(i=2,3, \cdots)$. By [9, page 54$]$, S is isomorphic to the ring of p-adic integers $\mathbb{A}(p)$. Define f as $f\left(v_{1}\right)=0$ and $f\left(v_{i}\right)=v_{i+1}$ for $(i=2,3,4, \cdots)$. Let $m=v_{2}$. Then $f\left(v_{2}\right)=v_{1}$ and $f^{2}\left(v_{2}\right)=0$. Hence M is not reduced.

Lemma 2.4. Let M be an R-module with $S=\operatorname{End}_{R}(M)$. If M is a reduced module, then S is a reduced ring.

Proof. It is clear from [8, Lemma 2.11] and [8, Proposition 2.14].
Definition 2.5. Let M be an R-module with $S=\operatorname{End}_{R}(M)$. The module M is called principally projective if for any $m \in M, l_{S}(m)=S e$ for some $e^{2}=e \in S$.

It is obvious that the module ${ }_{R} R$ is principally projective if and only if the ring R is left principally projective. It is straightforward that all Baer and quasi-Baer modules are principally projective. And every quasi-Baer module is principally quasi-Baer. There are principally projective modules which are not quasi-Baer or Baer (see [10, Example 8.2]).

Example 2.6. Let R be a Prüfer domain (a commutative ring with an identity, no zero divisors and all finitely generated ideals are projective) and M the right R-module $R \oplus R$. By (3), page 17), S is a 2×2 matrix ring over R and it is a Baer ring. Hence M is Baer and so principally projective module.

Note that the endomorphism ring of a principally projective module may not be a right principally projective ring in general. For if M is a principally projective module and $\varphi \in S$, then we have two cases. $\operatorname{Ker} \varphi=0$ or $\operatorname{Ker} \varphi \neq 0$. If $\operatorname{Ker} \varphi=0$, then for any $f \in r_{S}(\varphi), \varphi f=0$ implies $f=0$. Hence $r_{S}(\varphi)=0$. Assume that $\operatorname{Ker} \varphi \neq 0$. There exists a nonzero $m \in M$ such that $\varphi m=0$. By hypothesis, $\varphi \in l_{S}(m)=S e$ for some $e^{2}=e \in S$. In this case $\varphi=\varphi e$ and so $r_{S}(\varphi) \leq(1-e) S$. The following example shows that this inclusion is strict.

Example 2.7. Let Q be the ring and N the Q-module constructed by Osofsky in [11]. Since Q is commutative, we can just as well think of N as a right Q module. Let $S=\operatorname{End}_{Q}(N)$. It is easy to see that N is a principally projective
module. Identify S with the $\operatorname{ring}\left[\begin{array}{cc}Q & 0 \\ Q / I & Q / I\end{array}\right]$ in the obvious way, and consider $\varphi=\left[\begin{array}{cc}0 & 0 \\ 1+I & 0\end{array}\right] \in S$. Then $r_{S}(\varphi)=\left[\begin{array}{cc}I & 0 \\ Q / I & Q / I\end{array}\right]$. This is not a direct summand of S because I is not a direct summand of Q. Therefore S is not a right principally projective ring.
Proposition 2.8. Let M be an R-module with $S=\operatorname{End}_{R}(M)$. If M is semicommutative, then we have the followings.
(1) M is a Baer module if and only if M is a quasi-Baer module.
(2) M is a principally projective module if and only if M is a principally quasi-Baer module.
Proof. Let M be an R-module with M semicommutative.
(1) The necessity is clear. By Theorem 2.14 of [12] and [2, Lemma 2.15], the sufficiency follows.
(2) The necessity follows from the proof of Lemma 2.15 of 12 . The sufficiency is clear from the semicommutativity.

Recall that a ring R is called abelian if every idempotent is central, that is, $a e=e a$ for any $e^{2}=e, a \in R$. Abelian modules are introduced by Roos in 13 and studied by Goodearl and Boyle [14, Roman and Rizvi [15]. Following Roos [13], a module M is called abelian if all idempotents of S are central.
Remark 2.9. It is easy to show that if M is a semicommutative module, then S is an abelian ring. It follows from Theorem 2.14 of [12], every reduced module M is semicommutative, and every semicommutative module M is abelian. The converses hold if M is a principally projective module. Note that for a prime integer p, the cyclic group M of p^{2} elements is a \mathbb{Z}-module for which $S=\mathbb{Z}_{p^{2}}$. The module M is neither reduced nor principally projective although it is semicommutative.
Proposition 2.10. Let M be a uniform R-module with $S=\operatorname{End}_{R}(M)$. If M is a reduced module, then S is a domain.

Proof. For $f, g \in S$, suppose $f g=0$ with $f \neq 0$. We show that $g=0$. For any $m \in M, f g m R=0$ and so $f M \cap S g m R=0$. By hypothesis $f M=0$ or $S g m R=0$. Then $S g m=0$ and so $g m=0$ for all $m \in M$. Hence $g=0$.

Lemma 2.11. [16, Lemma 1. 9] Let a module $M=M_{1} \oplus M_{2}$ be a direct sum of submodules M_{1}, M_{2}. Then M_{1} is a fully invariant submodule of M if and only if $\operatorname{Hom}\left(M_{1}, M_{2}\right)=0$.

We observe in Example 3.7 that the direct sum of reduced modules need not be reduced. Note the following fact.
Proposition 2.12. Let M be an R-module with $S=\operatorname{End}_{R}(M)$. Let $M=M_{1} \oplus M_{2}$ be a decomposition of M where M_{1} and M_{2} are fully invariant submodules of M with $S_{1}=\operatorname{End}_{R}\left(M_{1}\right)$ and $S_{2}=\operatorname{End}_{R}\left(M_{2}\right)$.
(1) If M_{1} and M_{2} are reduced over S, then M is reduced.
(2) If M_{1} and M_{2} are reduced over S_{1} and S_{2} respectively, then M is reduced.

Proof. (1) Let $f \in S, m \in M$ and $f m=0$. There exist $m_{1} \in M_{1}$ and $m_{2} \in$ M_{2} such that $m=m_{1}+m_{2}$. Hence $f m_{1}+f m_{2}=0$. Since M_{1} and M_{2} are fully invariant submodules of $M, f m_{1}=0$ and $f m_{2}=0$ by Lemma 2.11. So $f M_{1} \cap S m_{1}=0$ and $f M_{2} \cap S m_{2}=0$. Let $x \in f M \cap S m$. Then $x=f m^{\prime}=g m$ for some $m^{\prime} \in M$ and $g \in S$. For $m^{\prime} \in M$ there exist $m_{1}^{\prime} \in M_{1}$ and $m_{2}^{\prime} \in M_{2}$ such that $m^{\prime}=m_{1}^{\prime}+m_{2}^{\prime}$. So $f m_{1}^{\prime}-g m_{1}=g m_{2}-f m_{2}^{\prime} \in M_{1} \cap M_{2}=0$. It follows that $f m_{1}^{\prime}=g m_{1}=0$ and $f m_{2}^{\prime}=g m_{2}=0$. Therefore $x=0$.
(2) Let $f \in S, m \in M$ and $f m=0$. There exist $m_{1} \in M_{1}$ and $m_{2} \in M_{2}$ such that $m=m_{1}+m_{2}$. Hence $f m_{1}+f m_{2}=0$. Since M_{1} and M_{2} are fully invariant submodules of $M, f m_{1}=0$ and $f m_{2}=0$. Let the restrictions of f to M_{1} and M_{2} be denoted by the same f. Then $f M_{1} \cap S_{1} m_{1}=0$ and $f M_{2} \cap S_{2} m_{2}=0$. Let $x \in f M \cap S m$. Then $x=f m^{\prime}=g m$ for some $m^{\prime} \in M$ and $g \in S$. For $m^{\prime} \in M$, there exist $m_{1}^{\prime} \in M_{1}$ and $m_{2}^{\prime} \in M_{2}$ such that $m^{\prime}=m_{1}^{\prime}+m_{2}^{\prime}$. So $f m_{1}^{\prime}+f m_{2}^{\prime}=g m_{1}+g m_{2}$. It follows that $f m_{1}^{\prime}=g m_{1}=0$ and $f m_{2}^{\prime}=g m_{2}=0$. Therefore $x=0$.

Corollary 2.13. Let M be an R-module with $S=\operatorname{End}_{R}(M)$. Let $M=M_{1} \oplus$ M_{2} where M_{1} and M_{2} are submodules of M with $S_{1}=\operatorname{End}_{R}\left(M_{1}\right)$ and $S_{2}=$ $\operatorname{End}_{R}\left(M_{2}\right)$. If M is semicommutative, then we have the following.
(1) If M_{1} and M_{2} are reduced over S, then M is reduced.
(2) If M_{1} and M_{2} are reduced over S_{1} and S_{2} respectively, then M is reduced.

Proof. Let M be a semicommutative module. It is enough to show that every direct summand N of M is fully invariant. We write $M=N \oplus L$. Let π denote the natural projection of M onto N. From $\pi(1-\pi)=0$ and $(1-\pi) \pi=0$ we have $\pi g(1-\pi)=0$ and $(1-\pi) g \pi=0$ for each $g \in S$. Then π is a central idempotent in S. Hence $g(N)=g(\pi(M))=\pi(g(M)) \leq N$. This completes the proof.

We end this section with some observations relating to being M an reduced module and S an reduced ring. Recall that a module M is called n-epiretractable [17] if every n-generated submodule of M is a homomorphic image of M.

Theorem 2.1. Let M be an R-module with $S=\operatorname{End}_{R}(M)$. Then the following hold.
(1) If M is a 1-epiretractable module and S is a reduced ring, then M is reduced.
(2) If M is a principally projective module and S is a reduced ring, then M is reduced.

Proof. (1) Let $f m=0$ for $f \in S$ and $m \in M$. Since M is 1-epiretractable, there exists $g \in S$ such that $g M=m R$. We have $f g M=0$ and $f g=g f=0$ since S is reduced. Let $f m^{\prime}=h m \in f M \cap S m$ where $m^{\prime} \in M, h \in S$. Then $g f m^{\prime}=g h m=0$ and so $g h m R=0$. This implies $g h g M=0$, i.e., $g h g=0$. Therefore $g h=h g=0$. Now by assumption, there exists $m_{1} \in M$ such that $m=g m_{1}$. Then $f m^{\prime}=h m=h g m_{1}=0$. Hence M is reduced.
(2) Let $f m=0$ for $f \in S$ and $m \in M$, and $f m^{\prime}=g m \in f M \cap S m$. Since $f m=0 \in m R$, we may find an idempotent e in S such that $f \in l_{S}(m R)=S e$.

By hypothesis, e is central in S. So $f=f e=e f, e m=0$. Then $f m^{\prime}=e g m=$ gem $=0$. Hence $f M \cap S m=0$. Thus M is reduced.

Theorem 2.2. Let M be an R-module with $S=\operatorname{End}_{R}(M)$. If M is a reduced module, then the following hold.
(1) Assume that for every submodule N of M there exist $e^{2}=e \in S$ and $f \in S$ such that $N \subseteq e M$ and $f(N)=e M$. Then M is a Baer module.
(2) If every fully invariant submodule is a direct summand of M, then M is a Baer module.
(3) If M is a uniform module, then each nonzero element of S is a monomorphism.

Proof. (1) Let N be a submodule of M . Then there exist an idempotent homomorphism $e \in S$ and $f \in S$ such that $N \subseteq e M$ and $f N=e M$. We prove that $l_{S}(N)=S(1-e)$. It is trivial that $S(1-e) \leq l_{S}(N)$ since $N \subseteq e M$. Let $g \in l_{S}(N)$. By hypothesis $g N=0$ implies $g f N=0$. Then $g f N=g e M=0$, and so $g e=0$. Hence $g=g(1-e) \in S(1-e)$. So $l_{S}(N) \leq S(1-e)$. This completes the proof.
(2) Since M is a reduced module, if $f m=0$ where $f \in S$, then for all $g \in S$, $f g m \in f M \cap S m=0$. This implies that for all $f \in S, \operatorname{Kerf}$ is a fully invariant submodule of M. Let I be an ideal of S. Since $r_{M}(I)=\cap_{f \in I} \operatorname{Kerf}$ and all the Kerf are fully invariant submodules of $M, r_{M}(I)$ is a fully invariant submodule of M. So it is a direct summand of M and therefore M is a Baer module.
(3) Let $f m=0$ where $f \in S, m \in M$. Then $f m R=0$. By hypothesis, $f M \cap$ $S m R=0$ and so $f M=0$ or $S m R=0$. Hence $f=0$ or $m=0$.

3 Rigid Modules

Let M be an R-module with $S=\operatorname{End}_{R}(M)$. Rigid R-modules are introduced and studied in [18] and [19] by the present authors. Recently, rigid modules over their endomorphism rings are studied in [8]. In this section we continue to investigate further properties of a rigid module over its endomorphism ring as a generalization of a reduced module over its endomorphism ring and relations between reduced, semicommutative and \mathcal{K}-co(non)singular modules.

We mention the following obvious proposition.
Proposition 3.1. Let M be an R-module with $S=\operatorname{End}_{R}(M)$. For any $f \in S$, the following are equivalent.
(1) $\operatorname{Kerf} \cap \operatorname{Imf}=0$.
(2) For $m \in M, f^{2} m=0$ if and only if $\mathrm{fm}=0$.

A module M is called rigid if it satisfies Proposition 3.1 for every $f \in S$. By [8, Lemma 2.20], if M is a rigid module, then S is a reduced ring and therefore abelian.

Rickart modules provide a generalization of a right principally projective ring to the general module theoretic setting. It is clear that every Baer module is a Rickart module while the converse is not true. For example, $\mathbb{Z}^{(\mathbb{R})}$ is Rickart but not Baer as a \mathbb{Z}-module.

Proposition 3.2. Let M be an R-module with $S=\operatorname{End}_{R}(M)$. If M is a reduced module, then M is a rigid module. The converse holds if M satisfies one of the following conditions.
(1) M is a semicommutative module.
(2) M is a principally projective module.
(3) M is a Rickart module.

Proof. For any $f \in S, S(\operatorname{Ker} f) \cap \operatorname{Im} f=0$ by hypothesis. Since $\operatorname{Ker} f \cap \operatorname{Imf} \subset$ $S(\operatorname{Ker} f) \cap \operatorname{Imf}, \operatorname{Ker} f \cap \operatorname{Imf}=0$. By Proposition 3.1, M is a rigid module. Conversely,
(1) Assume that M is a rigid and semicommutative module. Let $f \in S$ and $m \in M$ with $f m=0$. Let $f m^{\prime}=g m \in f M \cap S m$. We multiply it by f from the left and we have $f^{2} m^{\prime}=f g m$. Since M is semicommutative and $f m=0, f^{2} m^{\prime}=f g m=0$. By hypothesis $\mathrm{fm}^{\prime}=0$.
(2) Let M be a rigid and principally projective module. Assume that $f m=0$ for $f \in S$ and $m \in M$. Then there exists $e^{2}=e \in S$ such that $l_{S}(m R)=S e$. Since e is central in $S, f e=e f=f$ and $e g=g f$ for each $g \in S$ and $e m=0$. Let $f m^{\prime}=g m \in f M \cap S m$. Multiply $f m^{\prime}=g m$ by e from the left to obtain efm $m^{\prime}=f m^{\prime}=g e m=0$. Therefore M is a reduced module.
(3) Let M be a Rickart and rigid module. Assume that $f m=0$ for $f \in S$ and $m \in M$. Then there exists $e^{2}=e \in S$ such that $r_{M}(f)=e M$. Since e is central in $S, f e=e f=0$ and $m=e m$. Let $f m^{\prime}=g m \in f M \cap S m$. We multiply $f m^{\prime}=g m$ from the left by e to obtain ef $m^{\prime}=f e m^{\prime}=$ egm $=g e m=g m=0$. Therefore M is a reduced module.

There are semicommutative modules which are neither rigid nor principally projective.

Example 3.3. Consider the ring

$$
R=\left\{\left.\left[\begin{array}{ll}
a & b \\
0 & a
\end{array}\right] \right\rvert\, a, b \in \mathbb{Z}\right\}
$$

and the right R-module

$$
M=\left\{\left.\left[\begin{array}{ll}
0 & a \\
a & b
\end{array}\right] \right\rvert\, a, b \in \mathbb{Z}\right\}
$$

Let $f \in S$ and $f\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]=\left[\begin{array}{ll}0 & c \\ c & d\end{array}\right]$. Multiplying the latter by $\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$ we
have $f\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 0 & c\end{array}\right]$. For any $\left[\begin{array}{ll}0 & a \\ a & b\end{array}\right] \in M, f\left[\begin{array}{ll}0 & a \\ a & b\end{array}\right]=\left[\begin{array}{cc}0 & a c \\ a c & a d+b c\end{array}\right]$.
Similarly, let $g \in S$ and $g\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]=\left[\begin{array}{cc}0 & c^{\prime} \\ c^{\prime} & d^{\prime}\end{array}\right]$. Then $g\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 0 & c^{\prime}\end{array}\right]$.

For any $\left[\begin{array}{ll}0 & a \\ a & b\end{array}\right] \in M, g\left[\begin{array}{ll}0 & a \\ a & b\end{array}\right]=\left[\begin{array}{cc}0 & a c^{\prime} \\ a c^{\prime} & a d^{\prime}+b c^{\prime}\end{array}\right]$. Then it is easy to check that for any $\left[\begin{array}{ll}0 & a \\ a & b\end{array}\right] \in M$,

$$
f g\left[\begin{array}{ll}
0 & a \\
a & b
\end{array}\right]=f\left[\begin{array}{cc}
0 & a c^{\prime} \\
a c^{\prime} & a d^{\prime}+b c^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
0 & a c^{\prime} c \\
a c^{\prime} c & a d^{\prime} c+a d c^{\prime}+b c^{\prime} c
\end{array}\right]
$$

and

$$
g f\left[\begin{array}{ll}
0 & a \\
a & b
\end{array}\right]=g\left[\begin{array}{cc}
0 & a c \\
a c & a d+b c
\end{array}\right]=\left[\begin{array}{cc}
0 & a c c^{\prime} \\
a c c^{\prime} & a c d^{\prime}+a c^{\prime} d+b c c^{\prime}
\end{array}\right]
$$

Hence $f g=g f$ for all $f, g \in S$. Therefore S is commutative and so M is semicommutative. Define $f \in S$ by $f\left[\begin{array}{ll}0 & a \\ a & b\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 0 & a\end{array}\right]$ where $\left[\begin{array}{ll}0 & a \\ a & b\end{array}\right] \in M$. Then $f\left[\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]$ and $f^{2}\left[\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right]=0$. Hence M is not rigid. Let $m=$ $\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]$, then $l_{S}(m) \neq 0$ since the endomorphism f defined preceding belongs to $l_{S}(m) . M$ is indecomposable as a right R-module, therefore S does not have any idempotents other than zero and identity. Hence $l_{S}(m)$ can not be generated by an idempotent as a left ideal of S.

An R-module M is called Hopfian provided every surjective endomorphism of M is an isomorphism. For example, every Noetherian module is Hopfian (see 9, Lemma 11.6]).

Theorem 3.1. Let T be a ring and M a left T-module. If $t \in T$ satisfies $M=t M$ and M is rigid over T, then $t m=0$ implies $m=0$ for any $m \in M$.

Proof. Let $m \in M$ with $t m=0$. Since $M=t M$, there exists $u \in M$ such that $m=t u$. Then $0=t m=t^{2} u$. It implies $t u=0$ by hypothesis. Hence $m=0$.

Corollary 3.4. Let M be an R-module with $S=\operatorname{End}_{R}(M)$. If M is rigid, then M_{R} is Hopfian.

Proof. It is clear from Theorem 3.1
A right R-module M is said to be nonsingular if for any $m \in M, m E=0$ for an essential right ideal E of R implies $m=0$, and M is called cononsingular if each submodule N of M with $r_{R}(N)=\{r \in R \mid N r=0\} \neq 0$ is essential in M. In [4], a module M is said to be \mathcal{K}-nonsingular if for every $\varphi \in S, \operatorname{Ker} \varphi$ is essential in M implies $\varphi=0$. Also the module M is said to be \mathcal{K}-cononsingular if for every submodule N of $M, \varphi N \neq 0$ for all $0 \neq \varphi \in S$ implies N is essential in M.

Proposition 3.5. Let M be an R-module with $S=\operatorname{End}_{R}(M)$. If M is a rigid module, then M is a \mathcal{K}-nonsingular module.

Proof. Let $f \in S$. Assume that Kerf is an essential submodule of M. Since M is rigid, $\operatorname{Ker} f \cap \operatorname{Imf}=0$. Then $\operatorname{Imf}=0$ and so $f=0$. Hence M is \mathcal{K} nonsingular.

Corollary 3.6. Let M be an R-module with $S=E n d_{R}(M)$. If M is a reduced module, then M is \mathcal{K}-nonsingular.

Example 3.7 shows that the converse statement of Corollary 3.6 need not be true in general. There exists a \mathcal{K}-nonsingular module which is neither reduced nor \mathcal{K}-cononsingular.

Example 3.7. Let M denote the \mathbb{Z}-module $\mathbb{Z} \oplus \mathbb{Q}$. We show that for any $f \in S$ with Kerf essential in M we have $f=0$. Since S is isomorphic to the ring $\left\{\left.\left[\begin{array}{ll}a & 0 \\ b & c\end{array}\right] \right\rvert\, a \in \mathbb{Z}, b, c \in \mathbb{Q}\right\}$, we may assume S as this ring. We write the elements of S as matrices and the elements of $\mathbb{Z} \oplus \mathbb{Q}$ as 2×1 columns. Let $f=\left[\begin{array}{ll}a & 0 \\ b & c\end{array}\right] \in S$ and $m=\left[\begin{array}{l}n \\ q\end{array}\right], a, n \in \mathbb{Z}$ and $b, c \in \mathbb{Q}$ with $f m=0$. Then we have $a n=0$, $b n+c q=0$. Assume that Kerf is essential in M. Then $\operatorname{Kerf} \cap(\mathbb{Z} \oplus(0)) \neq 0$. There exists $m \in \operatorname{Kerf}$ such that n is nonzero and $a n=0$ and $b n=0$. Hence $a=b=0$. Similarly, $\operatorname{Kerf} \cap((0) \oplus \mathbb{Q}) \neq 0$. We may find $m^{\prime}=\left[\begin{array}{c}0 \\ q^{\prime}\end{array}\right] \in \operatorname{Kerf}$ such that q^{\prime} is nonzero. So $c q^{\prime}=0$ and then $c=0$. It follows $f=0$ and M is \mathcal{K}-nonsingular. Let $f=\left[\begin{array}{rr}0 & 0 \\ 2 & -1\end{array}\right] \in S$ and $m=\left[\begin{array}{l}1 \\ 2\end{array}\right]$. Then $f m=0$. Let $g=\left[\begin{array}{rr}0 & 0 \\ -1 & 1\end{array}\right] \in S$ and $m^{\prime}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$. Then $f m^{\prime}=g m \in f M \cap S m \neq 0$. Therefore M is not reduced. Let $N=(1,1 / 2) \mathbb{Z}+(1,1 / 3) \mathbb{Z}$. Then N is not essential in M. If $\left[\begin{array}{ll}a & 0 \\ b & c\end{array}\right] \in l_{S}(N)$, then $\left[\begin{array}{ll}a & 0 \\ b & c\end{array}\right]\left[\begin{array}{c}1 \\ 1 / 2\end{array}\right]=0$ and $\left[\begin{array}{ll}0 & 0 \\ b & c\end{array}\right]\left[\begin{array}{c}1 \\ 1 / 3\end{array}\right]=0$ implies $a=0$ and $b+c / 2=0, b+c / 3=0$. It follows that $a=0, b=0$ and $c=0$. Hence M is not \mathcal{K}-cononsingular.

The proof of Theorem [3.2 is clear from Rizvi and Roman [4. Theorem 2.12]. We give a proof for the sake of completeness.

Theorem 3.2. Let M be an R-module with $S=\operatorname{End}_{R}(M)$. If M is a rigid and extending module, then it is Baer and \mathcal{K}-cononsingular.

Proof. If M is a rigid module, from Proposition (3.5, M is a \mathcal{K}-nonsingular module. Since a \mathcal{K}-nonsingular and extending module is a Baer module by 4 , Theorem 2.12], M is Baer. Let N be a submodule of M with $l_{S}(N)=0$. We claim N is essential in M. We may find a direct summand K of M so that N is an essential submodule of K. Let $M=K \oplus L$ and π_{L} denote the canonical projection from M onto L. Then $\pi_{L}(N)=0$. Hence $\pi_{L} \in l_{S}(N)$. Thus $\pi_{L}=0$ and so $L=0, M=K$ and N is essential in M.

Corollary 3.8. Let M be an R-module with $S=\operatorname{End}_{R}(M)$. If M is a reduced and extending module, then M is Baer and \mathcal{K}-cononsingular.

Corollary 3.9. Let M be an R-module with $S=\operatorname{End}_{R}(M)$. If M is a rigid and extending module, then M is a Rickart module.

Proof. It is clear from Theorem 3.2 since Baer modules are Rickart modules.
Corollary 3.10. Let M be an R-module with $S=\operatorname{End}_{R}(M)$. If M is a reduced and extending module, then M is a Baer module.

In the following result we give the relations between principally projective modules, reduced modules, semicommutative modules, abelian modules and rigid modules.

Theorem 3.3. Let M be an R-module with $S=\operatorname{End}_{R}(M)$. If M is a principally projective module, then the following conditions are equivalent.
(1) M is a reduced module.
(2) M is a semicommutative module.
(3) M is an abelian module.
(4) M is a rigid module.
(5) S is a reduced ring.

Proof. (1) $\Leftrightarrow(2)$ Clear from Lemma 3.2.
$(2) \Rightarrow$ (3) Clear from Remark 2.9 ,
$(3) \Rightarrow(2)$ Let $f \in S, m \in M$ with $f m=0$. There exists $e^{2}=e \in S$ such that $l_{S}(m)=S e$. Then $f=e f=f e, e m=0$ and e is central in S. So $0=e m=$ $S e m=f S e m=f e S m=f S m$. Hence M is semicommutative.
$(3) \Rightarrow(4)$ Let $f^{2} m=0$ for $f \in S, m \in M$. For some $e^{2}=e \in S$ we have $f \in l_{S}(f m)=S e$. Then $f e=f$ and efm=0. By hypothesis, efm=fem. Hence $0=$ efm $=$ eem $=f m$. So M is rigid.
(4) \Rightarrow (3) Let $e^{2}=e \in S$. For any $f \in S$, (ef -efe $)^{2} m=0$ for all $m \in M$ since $(e f-e f e)^{2}=0$. We have $(e f-e f e) m=0$ for all $m \in M$ by hypothesis. Hence $e f-e f e=0$. Similarly, $(f e-e f e)^{2} m=0$ for all $m \in M$ implies $f e-e f e=0$. It follows that $e f=f e=e f e$ and so S is abelian, therefore M is abelian.
$(1) \Rightarrow(5)$ It follows from Lemma 2.4
(5) \Rightarrow (1) Let $f \in S$ and $m \in M$ with $f m=0$. Assume that $f m=0$. There exists $e^{2}=e \in S$ such that $f \in l_{S}(m)=S e$. Then $e m=0, f=f e$. By hypothesis, e is a central idempotent in S. Hence $f=f e=e f$. Let $f m^{\prime}=g m \in f M \cap S m$. Then $\mathrm{fm}^{\prime}=e \mathrm{fm} \mathrm{m}^{\prime}=e \mathrm{gm}=\mathrm{gem}=0$. It follows that $f M \cap S m=0$ and (1) holds.

References

[1] T. K. Lee, Zhou, Reduced Modules, Rings, modules, algebras and abelian groups, Lecture Notes in Pure and Appl. Math. 236 (2004) 365-377.
[2] N. Agayev, T. Ozen, A. Harmanci, On a Class of Semicommutative Modules, Proc. Indian Acad. Sci. 119 (2) (2009) 149-158.
[3] I. Kaplansky, Rings of Operators, Math. Lecture Note Series, Benjamin, New York, 1965.
[4] S. T. Rizvi, C. S. Roman, Baer and Quasi-Baer Modules, Comm. Algebra 32 (2004) 103-123.
[5] B. Ungor, N. Agayev, S. Halicioglu, A. Harmanci, On principally quasi-Baer modules, Albanian J. Math. 5 (3) (2011) 165-173.
[6] G. F. Birkenmeier, J. Y. Kim, J. K. Park, On extensions of Baer and quasiBaer Rings, J. Pure Appl. Algebra 159 (2001) 25-42.
[7] S. T. Rizvi, C. S. Roman, On direct sums of Baer modules, J. Algebra. 321 (2009) 682-696.
[8] N. Agayev, S. Halicioglu, A. Harmanci, On Rickart modules, Bull. Iranian Math. Soc. 38 (2) (2012) 433-445.
[9] F. W. Anderson, K. R. Fuller, Rings and Categories of Modules, SpringerVerlag, New York, 1974.
[10] A. W. Chatters, C. R. Hajarnavis, Rings with Chain Conditions, Pitman, Boston, 1980.
[11] B. L. Osofsky, A Counter-Example to a lemma of Skornjakov, Pacific J. Math. 15 (1965) 985-987.
[12] N. Agayev, G. Güngöroğlu, A. Harmanci, S. Halıcıoğlu, Abelian Modules, Acta Math. Univ. Comenianae. 78 (2) (2009) 235-244.
[13] J. E. Roos, Sur les categories auto-injectifs a droit, C. R. Acad. Sci. Paris. 265 (1967) 14-17.
[14] K. R. Goodearl, A. K. Boyle, Dimension theory for nonsingular injective modules, Memoirs Amer. Math. Soc. 7 (177) (1976).
[15] S. T. Rizvi, C. S. Roman, On \mathcal{K}-nonsingular Modules and Applications, Comm. Algebra. 34 (2007) 2960-2982.
[16] A. C. Ozcan, A. Harmanci, P. F. Smith, Duo Modules, Glasgow Math. J. 48 (3) (2006) 533-545.
[17] A. Ghorbani, M. R. Vedadi, Epi-Retractable modules and some applications, Bull. Iranian Math. Soc. 35 (1) (2009) 155-166.
[18] N. Agayev, S. Halicioglu, A. Harmanci, On symmetric modules, Riv. Mat. Univ. Parma. 8 (2) (2009) 91-99.
[19] N. Agayev, S. Halicioglu, A. Harmanci, On Reduced Modules, Commun. Fac. Sci. Univ. Ank. Series A1. 58 (1) (2009) 9-16.
(Received 8 February 2013)
(Accepted 24 March 2014)

Thai J. Math. Online @ http://thaijmath.in.cmu.ac.th

[^0]: ${ }^{1}$ Corresponding author.
 Copyright © 2015 by the Mathematical Association of Thailand. All rights reserved.

