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1 Introduction

Throughout this paper R denotes an associative ring with identity. For a
module M, S = Endg(M) denotes the ring of right R-module endomorphisms
of M. Then M is a left S-module, right R-module and (5, R)-bimodule. In this
work, for any rings S and R and any (S, R)-bimodule M, rg(.) and I5;(.) denote
the right annihilator of a subset of M in R and the left annihilator of a subset of R
in M, respectively. Similarly, lg(.) and a7 (.) denote the left annihilator of a subset
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of M in S and the right annihilator of a subset of S in M, respectively. A ring
R is reduced if it has no nonzero nilpotent elements. Recently, the reduced ring
concept was extended to R-modules by Lee and Zhou in [I], that is, an R-module
M is called reduced if for any m € M and a € R, ma = 0 implies mRNMa = 0. A
ring R is called semicommutative if for any a,b € R, ab = 0 implies aRb = 0. The
module M is called semicommutative [2], if for any f € S and m € M, fm =0
implies fSm = 0. Baer rings [3] are introduced as rings in which the right (left)
annihilator of every nonempty subset is generated by an idempotent. The module
M is called Baer [4] if for all R-submodules N of M, lg(N) = Se withe? =¢ € S.
A submodule N of M is said to be fully invariant if for any f € S, f(IN) < N.
A ring R is said to be quasi-Baer if the right annihilator of each right ideal of
R is generated (as a right ideal) by an idempotent. The module M is said to be
quasi-Baer [] if for every fully invariant submodule N of M, lg(N) = Se with
e? =e € S. Aring R is called right principally quasi-Baer if the right annihilator
of a principal right ideal of R is generated by an idempotent. The module M
is called principally quasi-Baer [5] if for any m € M, lg(Sm) = Sf for some
f?=f€S. Aring R is called right (left) principally projective if every right
(left) ideal is projective [6]. The module M is called Rickart [7] if for any f € S,
ra(f) = eM for some e = e € S. The ring R is called right Rickart if Rg is a
Rickart module, that is, the right annihilator of any element is generated by an
idempotent. It is obvious that the module Rp is Rickart if and only if the ring
R is right principally projective. In what follows, by Z, Q, R, Z,, and Z/Zn we
denote, respectively, integers, rational numbers, real numbers, the ring of integers
modulo n and the Z-module of integers modulo n.

2 Reduced Modules

Let M be an R-module with S = Endg(M). Some properties of R-modules do
not characterize the ring R, namely there are reduced R-modules but R need not
be reduced and there are abelian R-modules but R is not an abelian ring. Because
of that reduced, rigid, symmetric, semicommutative and Armendariz modules in
terms of endomorphism rings S are introduced by the present authors (see [g]).
In this section we study properties of modules which are reduced over their endo-
morphism rings.

We start with the following proposition.

Proposition 2.1. Let M be an R-module with S = Endr(M). Consider the
following conditions for f € S.

(1) S(Kerf)nImf =0.

(2) Whenever m € M, fm =0 if and only if Imf N Sm = 0.

Then (1) = (2). If M is a semicommutative module, then (2) = (1).

Proof. Clear. O

Following the definition of Lee and Zhou [I], M is a reduced module if and
only if condition (2) of Proposition [Z1] holds for each f € S. If M is a reduced
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module, then it is semicommutative and so condition (1) of Proposition 2] also
holds for each f € S.
As an illustration we state the following examples.

Example 2.2. Let p be any prime integer and M denote the Z-module (Z/Zp)®Q.

0 } |a€Zp,b€Q}. It is evident

Then S is isomorphic to the matrix ring { [ g b

that M is a reduced module.
Note that every module need not be reduced.

Example 2.3. Let p be any prime integer and M = Z(p>°) the Priifer p-group
as a Z-module. Let {v;} (¢ =1,2,3,---) be elements in M which they satisfy the
equalities pv; = 0, pv; = v;—1 (i = 2,3,---). By [0, page 54], S is isomorphic
to the ring of p-adic integers A(p). Define f as f(v1) = 0 and f(v;) = vi41 for
(i =2,3,4,---). Let m = va. Then f(vs) = v; and f?(ve) = 0. Hence M is not
reduced.

Lemma 2.4. Let M be an R-module with S = Endr(M). If M is a reduced
module, then S is a reduced ring.

Proof. Tt is clear from [8, Lemma 2.11] and [8, Proposition 2.14]. O

Definition 2.5. Let M be an R-module with S = Endg(M). The module M is
called principally projective if for any m € M, ls(m) = Se for some €2 = ¢ € S.

It is obvious that the module g R is principally projective if and only if the ring
R is left principally projective. It is straightforward that all Baer and quasi-Baer
modules are principally projective. And every quasi-Baer module is principally
quasi-Baer. There are principally projective modules which are not quasi-Baer or
Baer (see [10, Example 8.2]).

Example 2.6. Let R be a Priifer domain (a commutative ring with an identity,
no zero divisors and all finitely generated ideals are projective) and M the right
R-module R @ R. By ([3], page 17), S is a 2 x 2 matrix ring over R and it is a
Baer ring. Hence M is Baer and so principally projective module.

Note that the endomorphism ring of a principally projective module may not
be a right principally projective ring in general. For if M is a principally projective
module and ¢ € S, then we have two cases. Kery = 0 or Kerp # 0. If Kerp =0,
then for any f € rg(¢), ¢f = 0 implies f = 0. Hence rg(p) = 0. Assume that
Keryp # 0. There exists a nonzero m € M such that ¢m = 0. By hypothesis,
¢ € lg(m) = Se for some €? = e € S. In this case ¢ = pe and so rs(p) < (1—e)S.
The following example shows that this inclusion is strict.

Example 2.7. Let @ be the ring and N the @Q-module constructed by Osofsky
in [II]. Since @ is commutative, we can just as well think of N as a right Q-
module. Let S = Endg(N). It is easy to see that N is a principally projective
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module. Identify S with the ring [ ] in the obvious way, and consider

Q 0
QI Q/I
0 0 I 0 - .
Y = [ 14T O] € S. Then rg(p) = {Q/I Q/1 ] This is not a direct
summand of S because I is not a direct summand of Q). Therefore S is not a right
principally projective ring.

Proposition 2.8. Let M be an R-module with S = Endr(M). If M is semicom-
mutative, then we have the followings.

(1) M is a Baer module if and only if M is a quasi-Baer module.

(2) M is a principally projective module if and only if M is a principally quasi-Baer
module.

Proof. Let M be an R-module with M semicommutative.

(1) The necessity is clear. By Theorem 2.14 of [12] and [2, Lemma 2.15], the
sufficiency follows.

(2) The necessity follows from the proof of Lemma 2.15 of [12]. The sufficiency is
clear from the semicommutativity. O

Recall that a ring R is called abelian if every idempotent is central, that is,
ae = ea for any e? = e, a € R. Abelian modules are introduced by Roos in [13]
and studied by Goodearl and Boyle [14], Roman and Rizvi [I5]. Following Roos
[13], a module M is called abelian if all idempotents of S are central.

Remark 2.9. It is easy to show that if M is a semicommutative module, then S
is an abelian ring. It follows from Theorem 2.14 of [12], every reduced module M
is semicommutative, and every semicommutative module M is abelian. The con-
verses hold if M is a principally projective module. Note that for a prime integer
p, the cyclic group M of p* elements is a Z-module for which S = Zp2. The module
M s neither reduced nor principally projective although it is semicommutative.

Proposition 2.10. Let M be a uniform R-module with S = Endg(M). If M is
a reduced module, then S is a domain.

Proof. For f, g € S, suppose fg = 0 with f # 0. We show that ¢ = 0. For
any m € M, fgmR = 0 and so fM N SgmR = 0. By hypothesis fM = 0 or
SgmR = 0. Then Sgm = 0 and so gm = 0 for all m € M. Hence g = 0. O

Lemma 2.11. [16, Lemma 1. 9] Let a module M = M; & My be a direct sum of
submodules My, M. Then M is a fully invariant submodule of M if and only if
Hom(Ml, Mg) =0.

We observe in Example [3.7] that the direct sum of reduced modules need not
be reduced. Note the following fact.

Proposition 2.12. Let M be an R-module with S = Endr(M). Let M = M1® M,
be a decomposition of M where My and Ms are fully invariant submodules of M
with Sl = EndR(Ml) and Sg = E’rLdR(Mg)

(1) If My and Mo are reduced over S, then M is reduced.

(2) If My and My are reduced over S1 and So respectively, then M is reduced.
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Proof. (1) Let f € S, m € M and fm = 0. There exist m; € M; and mg €
Ms such that m = my 4+ mo. Hence fmj + fmo = 0. Since M; and M, are
fully invariant submodules of M, fm; = 0 and fms = 0 by Lemma 211 So
fMlﬁSml =0and fMaNSmy =0. Let x € fMﬁSm Then x = fm = gm for
some m € M and g€ S. Form' € M there ex1st ml € M, and m2 € My such
that m’ = my +my. So fm) —gmi = gmy — fmy, € My N My = 0. It follows that
fm/1 =gmy =0 and fm/2 = gmo = 0. Therefore x = 0.

(2) Let f € S, m e M and fm = 0. There exist my; € M; and ms € Ms such
that m = mq + mso. Hence fmy + fmo = 0. Since M; and M, are fully invariant
submodules of M, fm; = 0 and fmo = 0. Let the restrictions of f to M; and
Ms be denoted by the same f. Then fM; N .Sym; = 0 and fMy N Some = 0.
Let x € fM N Sm. Then x = fm/ = gm for some m’ € M and g € S. For
m' € M, there exist m/l € M; and m/2 € M, such that m' = mll + m/2. So
fm/l + fm; = gm1 + gma. It follows that fm/l =gm; =0 and fm/2 =gmg = 0.
Therefore z = 0. O

Corollary 2.13. Let M be an R-module with S = Endr(M). Let M = M; @
My where My and Ms are submodules of M with S1 = Endg(M;) and Sz =
Endg(Ms). If M is semicommutative, then we have the following.

(1) If My and M2 are reduced over S, then M is reduced.

(2) If My and My are reduced over S1 and So respectively, then M is reduced.

Proof. Let M be a semicommutative module. It is enough to show that every
direct summand N of M is fully invariant. We write M = N @ L. Let m denote
the natural projection of M onto N. From 7(1 —7) = 0 and (1 — 7)m = 0 we have
7g(l —7) =0 and (1 — 7m)gm = 0 for each g € S. Then = is a central idempotent
in S. Hence g(N) = g(n(M)) = n(g(M)) < N. This completes the proof. O

We end this section with some observations relating to being M an reduced
module and S an reduced ring. Recall that a module M is called n-epiretractable
[17] if every n-generated submodule of M is a homomorphic image of M.

Theorem 2.1. Let M be an R-module with S = Endr(M). Then the following
hold.

(1) If M is a 1-epiretractable module and S is a reduced ring, then M is reduced.
(2) If M is a principally projective module and S is a reduced ring, then M is
reduced.

Proof. (1) Let fm = 0 for f € S and m € M. Since M is l-epiretractable,
there exists g € S such that gM = mR. We have fgM = 0 and fg = gf =0
since S is reduced. Let fm' = hm € fM N Sm where m’ € M,h € S. Then
gfm’ = ghm = 0 and so ghmR = 0. This implies ghgM = 0, i.e., ghg = 0.
Therefore gh = hg = 0. Now by assumption, there exists m; € M such that
m = gmi. Then fm’ = hm = hgm, = 0. Hence M is reduced.

(2) Let fm =0 for f € S and m € M, and fm’ = gm € fM N Sm. Since
fm =0 € mR, we may find an idempotent e in S such that f € ls(mR) = Se.
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By hypothesis, e is central in S. So f = fe = ef, em = 0. Then fm' = egm =
gem = 0. Hence fM N.Sm = 0. Thus M is reduced. O

Theorem 2.2. Let M be an R-module with S = Endr(M). If M is a reduced
module, then the following hold.

(1) Assume that for every submodule N of M there exist €2 = e € S and f € S
such that N C eM and f(N)=eM. Then M is a Baer module.

(2) If every fully invariant submodule is a direct summand of M, then M is a Baer
module.

(3) If M is a uniform module, then each nonzero element of S is a monomorphism.

Proof. (1) Let N be a submodule of M. Then there exist an idempotent homo-
morphism e € S and f € S such that N C eM and fN = eM. We prove that
Is(N) = S(1—e). It is trivial that S(1—e) < lg(IN) since N C eM. Let g € Ig(N).
By hypothesis g/ N = 0 implies gfN = 0. Then gf N = geM = 0, and so ge = 0.
Hence g = g(1 —e) € S(1 —e). Sols(N) < S(1 —e). This completes the proof.
(2) Since M is a reduced module, if fm = 0 where f € S, then for all g € S,
fgm € fM N Sm = 0. This implies that for all f € S, Kerf is a fully invariant
submodule of M. Let I be an ideal of S. Since ry(I) = NyerKerf and all the
Kerf are fully invariant submodules of M, rp;(I) is a fully invariant submodule
of M. So it is a direct summand of M and therefore M is a Baer module.

(3) Let fm = 0 where f € S, m € M. Then fmR = 0. By hypothesis, fM N
SmR=0and so fM =0or SmR=0. Hence f =0 or m=0. O

3 Rigid Modules

Let M be an R-module with S = Endg(M). Rigid R-modules are introduced
and studied in [I8] and [19] by the present authors. Recently, rigid modules
over their endomorphism rings are studied in [8]. In this section we continue
to investigate further properties of a rigid module over its endomorphism ring as
a generalization of a reduced module over its endomorphism ring and relations
between reduced, semicommutative and K-co(non)singular modules.

We mention the following obvious proposition.

Proposition 3.1. Let M be an R-module with S = Endr(M). For any f € S,
the following are equivalent.

(1) KerfnImf =0.

(2) Form € M, f?>m =0 if and only if fm = 0.

A module M is called rigid if it satisfies Proposition [3] for every f € S. By
[8, Lemma 2.20], if M is a rigid module, then S is a reduced ring and therefore
abelian.

Rickart modules provide a generalization of a right principally projective ring
to the general module theoretic setting. It is clear that every Baer module is a
Rickart module while the converse is not true. For example, Z®) is Rickart but
not Baer as a Z-module.
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Proposition 3.2. Let M be an R-module with S = Endgr(M). If M is a reduced
module, then M is a rigid module. The converse holds if M satisfies one of the
following conditions.

(1) M is a semicommutative module.

(2) M is a principally projective module.

(3) M is a Rickart module.

Proof. For any f € S, S(Kerf)NImf =0 by hypothesis. Since KerfNImf C
S(Kerf)NImf, Kerf N Imf = 0. By Proposition Bl M is a rigid module.
Conversely,

(1) Assume that M is a rigid and semicommutative module. Let f € S and m € M
with fm = 0. Let fm’ = gm € fMNSm. We multiply it by f from the left and we
have f2m’ = fgm. Since M is semicommutative and fm =0, f>m’ = fgm = 0.
By hypothesis fm’ = 0.

(2) Let M be a rigid and principally projective module. Assume that fm = 0
for f € S and m € M. Then there exists e = e € S such that Ig(mR) = Se.
Since e is central in S, fe = ef = f and eg = gf for each g € S and em = 0.
Let fm' = gm € fM N Sm. Multiply fm’ = gm by e from the left to obtain
efm’ = fm’ = gem = 0. Therefore M is a reduced module.

(3) Let M be a Rickart and rigid module. Assume that fm = 0 for f € S and
m € M. Then there exists e? = e € S such that 7y/(f) = eM. Since e is central in
S, fe=ef =0and m =em. Let fm' = gm € fMNSm. We multiply fm’ = gm
from the left by e to obtain efm’ = fem’ = egm = gem = gm = 0. Therefore M
is a reduced module. O

There are semicommutative modules which are neither rigid nor principally
projective.

Example 3.3. Consider the ring

and the right R-module

M:{[O a]|a,beZ}.
a b
Let f € S and f

havef[g (1)]:[8 (C)].Forany[g Z}EM’JC[S Z}:[a
0

c
/
Similarly,lethSandg[(l) (l)]z{c, Z,}.Theng[g (1)]2{8 0,]
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/
Forany[g Z]EM,g{g a]_{a(l' ad,ajbc,}.Thenitiseasytocheck

that for any [
0
a

! “l_y 0 ac | o ac'c
g b | ac ad +bcd | | adc adc+add +bcc

and

f 0 al 0 ac | o acc
970 a0 b | 9] ac ad+be |~ | acd acd +acdd+bec |
Hence fg = gf for all f, g € S. Therefore S is commutative and so M is semicom-

mutative. DeﬁnefESbyf[g Z]—[g g}where{g Z}EM. Then

f[(l) 1} = {8 (1)] andfz[(l) 1} = 0. Hence M is not rigid. Let m =
0 0
0 1
ls(m). M is indecomposable as a right R-module, therefore S does not have any
idempotents other than zero and identity. Hence [g(m) can not be generated by
an idempotent as a left ideal of S.

, then lg(m) # 0 since the endomorphism f defined preceding belongs to

An R-module M is called Hopfian provided every surjective endomorphism of
M is an isomorphism. For example, every Noetherian module is Hopfian (see [9]
Lemma 11.6]).

Theorem 3.1. Let T be a ring and M a left T-module. Ift € T satisfies M = tM
and M s rigid over T, then tm = 0 implies m = 0 for any m € M.

Proof. Let m € M with tm = 0. Since M = tM, there exists v € M such that
m = tu. Then 0 = tm = t?u. It implies tu = 0 by hypothesis. Hence m =0. O

Corollary 3.4. Let M be an R-module with S = Endr(M). If M is rigid, then
Mg, is Hopfian.

Proof. 1t is clear from Theorem 3.1 O

A right R-module M is said to be nonsingular if for any m € M, mE = 0 for
an essential right ideal E of R implies m = 0, and M is called cononsingular if
each submodule N of M with rg(N) = {r € R| Nr =0} # 0 is essential in M. In
[, a module M is said to be K-nonsingular if for every ¢ € S, Keryp is essential
in M implies ¢ = 0. Also the module M is said to be K-cononsingular if for every
submodule N of M, ¢ N # 0 for all 0 # ¢ € S implies N is essential in M.

Proposition 3.5. Let M be an R-module with S = Endr(M). If M is a rigid
module, then M is a K-nonsingular module.
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Proof. Let f € S. Assume that Kerf is an essential submodule of M. Since
M is rigid, Kerf N Imf = 0. Then Imf = 0 and so f = 0. Hence M is K-
nonsingular. [l

Corollary 3.6. Let M be an R-module with S = Endr(M). If M is a reduced
module, then M is K-nonsingular.

Example B.7] shows that the converse statement of Corollary need not be
true in general. There exists a KC-nonsingular module which is neither reduced nor
K-cononsingular.

Example 3.7. Let M denote the Z-module Z & Q. We show that for any f € S
with Kerf essential in M we have f = 0. Since S is isomorphic to the ring

{ [ a 0 } |a€Z,b,ce @}, we may assume S as this ring. We write the elements

b ¢
a 0

of S as matrices and the elements of Z&Q as 2x 1 columns. Let f = [ b e

Jes

and m = [Z}, a,n € Z and b,c € Q with fm = 0. Then we have an = 0,

bn + cq = 0. Assume that Kerf is essential in M. Then Kerf N (Z @ (0)) # 0.
There exists m € Kerf such that n is nonzero and an = 0 and bn = 0. Hence

a = b= 0. Similarly, Kerf N ((0) ® Q) # 0. We may find m’ = { ;), } € Kerf
such that ¢’ is nonzero. So c¢q’ = 0 and then ¢ = 0. It follows f = 0 and M

0 O]ESandm_[l].Thenfm_O.Let

is K-nonsingular. Let f = { 9 _1 9

g= { _(1) (1) ] € Sandm' = 1 . Then fm’ = gm € fMNSm # 0. Therefore

M is not reduced. Let N = (1,1/2)Z+ (1,1/3)Z. Then N is not essential in M. If
a 0 a 0 1 0 0 1 .

[ b e } € lsg(N), then [ b e } [ 1/2 ] =0 and [ b e [ 1/3 } = 0 implies
a=0and b+¢/2=0,b+c¢/3=0. It follows that a = 0, b =0 and ¢ = 0. Hence
M is not K-cononsingular.

The proof of Theorem is clear from Rizvi and Roman [4, Theorem 2.12].
We give a proof for the sake of completeness.

Theorem 3.2. Let M be an R-module with S = Endr(M). If M is a rigid and
extending module, then it is Baer and KC-cononsingular.

Proof. If M is a rigid module, from PropositionB.0 M is a K-nonsingular module.
Since a K-nonsingular and extending module is a Baer module by [4, Theorem
2.12], M is Baer. Let N be a submodule of M with Is(N) = 0. We claim N is
essential in M. We may find a direct summand K of M so that IV is an essential
submodule of K. Let M = K & L and 7, denote the canonical projection from M
onto L. Then 7, (N) = 0. Hence ny, € Ig(N). Thus 7, =0andso L =0, M = K
and N is essential in M. O
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Corollary 3.8. Let M be an R-module with S = FEndr(M). If M is a reduced
and extending module, then M is Baer and K-cononsingular.

Corollary 3.9. Let M be an R-module with S = Endr(M). If M is a rigid and
extending module, then M s a Rickart module.

Proof. 1t is clear from Theorem since Baer modules are Rickart modules. O

Corollary 3.10. Let M be an R-module with S = Endr(M). If M is a reduced
and extending module, then M is a Baer module.

In the following result we give the relations between principally projective
modules, reduced modules, semicommutative modules, abelian modules and rigid
modules.

Theorem 3.3. Let M be an R-module with S = Endgr(M). If M is a principally
projective module, then the following conditions are equivalent.

(1) M is a reduced module.

(2) M is a semicommutative module.

(3) M is an abelian module.

(4) M is a rigid module.

(5) S is a reduced ring.

Proof. (1) < (2) Clear from Lemma [3.2]

(2) = (3) Clear from Remark 2.9

(3) = (2) Let f € S, m € M with fm = 0. There exists e = e € S such that
ls(m) = Se. Then f =ef = fe, em = 0 and e is central in S. So 0 = em =
Sem = fSem = feSm = fSm. Hence M is semicommutative.

(3) = (4) Let f?m = 0 for f € S, m € M. For some €> = ¢ € S we have
f €ls(fm) = Se. Then fe = f and efm = 0. By hypothesis, efm = fem. Hence
0=efm= fem= fm. So M is rigid.

(4) = (3) Let e2=c € S. Forany f € S, (ef —efe)?m = 0 for all m € M since
(ef —efe)? =0. We have (ef — efe)m = 0 for all m € M by hypothesis. Hence
ef —efe=0. Similarly, (fe —efe)?m = 0 for all m € M implies fe —efe = 0. It
follows that ef = fe = efe and so S is abelian, therefore M is abelian.

(1) = (5) It follows from Lemma 24

(5) = (1) Let f € S and m € M with fm = 0. Assume that fm = 0. There exists
e? = e € S such that f € [g(m) = Se. Then em = 0, f = fe. By hypothesis, e is
a central idempotent in S. Hence f = fe =ef. Let fm' = gm € fMNSm. Then
fm' =efm’ =egm = gem = 0. Tt follows that fM NSm =0 and (1) holds. I
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