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1 Introduction

Throughout this paper R denotes an associative ring with identity. For a
module M , S = EndR(M) denotes the ring of right R-module endomorphisms
of M . Then M is a left S-module, right R-module and (S,R)-bimodule. In this
work, for any rings S and R and any (S,R)-bimodule M , rR(.) and lM (.) denote
the right annihilator of a subset of M in R and the left annihilator of a subset of R
in M , respectively. Similarly, lS(.) and rM (.) denote the left annihilator of a subset

1
Corresponding author.

Copyright c© 2015 by the Mathematical Association of Thailand.

All rights reserved.



178 Thai J. Math. 13 (2015)/ N. Agayev et al.

of M in S and the right annihilator of a subset of S in M , respectively. A ring
R is reduced if it has no nonzero nilpotent elements. Recently, the reduced ring
concept was extended to R-modules by Lee and Zhou in [1], that is, an R-module
M is called reduced if for any m ∈ M and a ∈ R, ma = 0 implies mR∩Ma = 0. A
ring R is called semicommutative if for any a, b ∈ R, ab = 0 implies aRb = 0. The
module M is called semicommutative [2], if for any f ∈ S and m ∈ M , fm = 0
implies fSm = 0. Baer rings [3] are introduced as rings in which the right (left)
annihilator of every nonempty subset is generated by an idempotent. The module
M is called Baer [4] if for all R-submodules N of M , lS(N) = Se with e2 = e ∈ S.
A submodule N of M is said to be fully invariant if for any f ∈ S, f(N) ≤ N .
A ring R is said to be quasi-Baer if the right annihilator of each right ideal of
R is generated (as a right ideal) by an idempotent. The module M is said to be
quasi-Baer [4] if for every fully invariant submodule N of M , lS(N) = Se with
e2 = e ∈ S. A ring R is called right principally quasi-Baer if the right annihilator
of a principal right ideal of R is generated by an idempotent. The module M
is called principally quasi-Baer [5] if for any m ∈ M , lS(Sm) = Sf for some
f2 = f ∈ S. A ring R is called right (left) principally projective if every right
(left) ideal is projective [6]. The module M is called Rickart [7] if for any f ∈ S,
rM (f) = eM for some e2 = e ∈ S. The ring R is called right Rickart if RR is a
Rickart module, that is, the right annihilator of any element is generated by an
idempotent. It is obvious that the module RR is Rickart if and only if the ring
R is right principally projective. In what follows, by Z, Q, R, Zn and Z/Zn we
denote, respectively, integers, rational numbers, real numbers, the ring of integers
modulo n and the Z-module of integers modulo n.

2 Reduced Modules

Let M be an R-module with S = EndR(M). Some properties of R-modules do
not characterize the ring R, namely there are reduced R-modules but R need not
be reduced and there are abelian R-modules but R is not an abelian ring. Because
of that reduced, rigid, symmetric, semicommutative and Armendariz modules in
terms of endomorphism rings S are introduced by the present authors (see [8]).
In this section we study properties of modules which are reduced over their endo-
morphism rings.

We start with the following proposition.

Proposition 2.1. Let M be an R-module with S = EndR(M). Consider the
following conditions for f ∈ S.
(1) S(Kerf) ∩ Imf = 0.
(2) Whenever m ∈ M , fm = 0 if and only if Imf ∩ Sm = 0.
Then (1) ⇒ (2). If M is a semicommutative module, then (2) ⇒ (1).

Proof. Clear.

Following the definition of Lee and Zhou [1], M is a reduced module if and
only if condition (2) of Proposition 2.1 holds for each f ∈ S. If M is a reduced
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module, then it is semicommutative and so condition (1) of Proposition 2.1 also
holds for each f ∈ S.

As an illustration we state the following examples.

Example 2.2. Let p be any prime integer andM denote the Z-module (Z/Zp)⊕Q.

Then S is isomorphic to the matrix ring

{[

a 0
0 b

]

| a ∈ Zp, b ∈ Q

}

. It is evident

that M is a reduced module.

Note that every module need not be reduced.

Example 2.3. Let p be any prime integer and M = Z(p∞) the Prüfer p-group
as a Z-module. Let {vi} (i = 1, 2, 3, · · · ) be elements in M which they satisfy the
equalities pv1 = 0, pvi = vi−1 (i = 2, 3, · · · ). By [9, page 54], S is isomorphic
to the ring of p-adic integers A(p). Define f as f(v1) = 0 and f(vi) = vi+1 for
(i = 2, 3, 4, · · · ). Let m = v2. Then f(v2) = v1 and f2(v2) = 0. Hence M is not
reduced.

Lemma 2.4. Let M be an R-module with S = EndR(M). If M is a reduced
module, then S is a reduced ring.

Proof. It is clear from [8, Lemma 2.11] and [8, Proposition 2.14].

Definition 2.5. Let M be an R-module with S = EndR(M). The module M is
called principally projective if for any m ∈ M , lS(m) = Se for some e2 = e ∈ S.

It is obvious that the module RR is principally projective if and only if the ring
R is left principally projective. It is straightforward that all Baer and quasi-Baer
modules are principally projective. And every quasi-Baer module is principally
quasi-Baer. There are principally projective modules which are not quasi-Baer or
Baer (see [10, Example 8.2]).

Example 2.6. Let R be a Prüfer domain (a commutative ring with an identity,
no zero divisors and all finitely generated ideals are projective) and M the right
R-module R ⊕ R. By ([3], page 17), S is a 2 × 2 matrix ring over R and it is a
Baer ring. Hence M is Baer and so principally projective module.

Note that the endomorphism ring of a principally projective module may not
be a right principally projective ring in general. For if M is a principally projective
module and ϕ ∈ S, then we have two cases. Kerϕ = 0 or Kerϕ 6= 0. If Kerϕ = 0,
then for any f ∈ rS(ϕ), ϕf = 0 implies f = 0. Hence rS(ϕ) = 0. Assume that
Kerϕ 6= 0. There exists a nonzero m ∈ M such that ϕm = 0. By hypothesis,
ϕ ∈ lS(m) = Se for some e2 = e ∈ S. In this case ϕ = ϕe and so rS(ϕ) ≤ (1−e)S.
The following example shows that this inclusion is strict.

Example 2.7. Let Q be the ring and N the Q-module constructed by Osofsky
in [11]. Since Q is commutative, we can just as well think of N as a right Q-
module. Let S = EndQ(N). It is easy to see that N is a principally projective
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module. Identify S with the ring

[

Q 0
Q/I Q/I

]

in the obvious way, and consider

ϕ =

[

0 0
1 + I 0

]

∈ S. Then rS(ϕ) =

[

I 0
Q/I Q/I

]

. This is not a direct

summand of S because I is not a direct summand of Q. Therefore S is not a right
principally projective ring.

Proposition 2.8. Let M be an R-module with S = EndR(M). If M is semicom-
mutative, then we have the followings.
(1) M is a Baer module if and only if M is a quasi-Baer module.
(2) M is a principally projective module if and only if M is a principally quasi-Baer
module.

Proof. Let M be an R-module with M semicommutative.
(1) The necessity is clear. By Theorem 2.14 of [12] and [2, Lemma 2.15], the
sufficiency follows.
(2) The necessity follows from the proof of Lemma 2.15 of [12]. The sufficiency is
clear from the semicommutativity.

Recall that a ring R is called abelian if every idempotent is central, that is,
ae = ea for any e2 = e, a ∈ R. Abelian modules are introduced by Roos in [13]
and studied by Goodearl and Boyle [14], Roman and Rizvi [15]. Following Roos
[13], a module M is called abelian if all idempotents of S are central.

Remark 2.9. It is easy to show that if M is a semicommutative module, then S
is an abelian ring. It follows from Theorem 2.14 of [12], every reduced module M
is semicommutative, and every semicommutative module M is abelian. The con-
verses hold if M is a principally projective module. Note that for a prime integer
p, the cyclic group M of p2 elements is a Z-module for which S = Zp2 . The module
M is neither reduced nor principally projective although it is semicommutative.

Proposition 2.10. Let M be a uniform R-module with S = EndR(M). If M is
a reduced module, then S is a domain.

Proof. For f , g ∈ S, suppose fg = 0 with f 6= 0. We show that g = 0. For
any m ∈ M , fgmR = 0 and so fM ∩ SgmR = 0. By hypothesis fM = 0 or
SgmR = 0. Then Sgm = 0 and so gm = 0 for all m ∈ M . Hence g = 0.

Lemma 2.11. [16, Lemma 1. 9] Let a module M = M1 ⊕M2 be a direct sum of
submodules M1, M2. Then M1 is a fully invariant submodule of M if and only if
Hom(M1,M2) = 0.

We observe in Example 3.7 that the direct sum of reduced modules need not
be reduced. Note the following fact.

Proposition 2.12. Let M be an R-module with S = EndR(M). Let M = M1⊕M2

be a decomposition of M where M1 and M2 are fully invariant submodules of M
with S1 = EndR(M1) and S2 = EndR(M2).
(1) If M1 and M2 are reduced over S, then M is reduced.
(2) If M1 and M2 are reduced over S1 and S2 respectively, then M is reduced.
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Proof. (1) Let f ∈ S, m ∈ M and fm = 0. There exist m1 ∈ M1 and m2 ∈
M2 such that m = m1 + m2. Hence fm1 + fm2 = 0. Since M1 and M2 are
fully invariant submodules of M , fm1 = 0 and fm2 = 0 by Lemma 2.11. So
fM1∩Sm1 = 0 and fM2∩Sm2 = 0. Let x ∈ fM ∩Sm. Then x = fm

′

= gm for
some m

′

∈ M and g ∈ S. For m
′

∈ M there exist m
′

1 ∈ M1 and m
′

2 ∈ M2 such
that m

′

= m
′

1 +m
′

2. So fm
′

1 − gm1 = gm2 − fm
′

2 ∈ M1 ∩M2 = 0. It follows that
fm

′

1 = gm1 = 0 and fm
′

2 = gm2 = 0. Therefore x = 0.
(2) Let f ∈ S, m ∈ M and fm = 0. There exist m1 ∈ M1 and m2 ∈ M2 such
that m = m1 +m2. Hence fm1 + fm2 = 0. Since M1 and M2 are fully invariant
submodules of M , fm1 = 0 and fm2 = 0. Let the restrictions of f to M1 and
M2 be denoted by the same f . Then fM1 ∩ S1m1 = 0 and fM2 ∩ S2m2 = 0.
Let x ∈ fM ∩ Sm. Then x = fm

′

= gm for some m
′

∈ M and g ∈ S. For
m

′

∈ M , there exist m
′

1 ∈ M1 and m
′

2 ∈ M2 such that m
′

= m
′

1 + m
′

2. So
fm

′

1 + fm
′

2 = gm1 + gm2. It follows that fm
′

1 = gm1 = 0 and fm
′

2 = gm2 = 0.
Therefore x = 0.

Corollary 2.13. Let M be an R-module with S = EndR(M). Let M = M1 ⊕
M2 where M1 and M2 are submodules of M with S1 = EndR(M1) and S2 =
EndR(M2). If M is semicommutative, then we have the following.
(1) If M1 and M2 are reduced over S, then M is reduced.
(2) If M1 and M2 are reduced over S1 and S2 respectively, then M is reduced.

Proof. Let M be a semicommutative module. It is enough to show that every
direct summand N of M is fully invariant. We write M = N ⊕ L. Let π denote
the natural projection of M onto N . From π(1−π) = 0 and (1−π)π = 0 we have
πg(1− π) = 0 and (1 − π)gπ = 0 for each g ∈ S. Then π is a central idempotent
in S. Hence g(N) = g(π(M)) = π(g(M)) ≤ N . This completes the proof.

We end this section with some observations relating to being M an reduced
module and S an reduced ring. Recall that a module M is called n-epiretractable
[17] if every n-generated submodule of M is a homomorphic image of M .

Theorem 2.1. Let M be an R-module with S = EndR(M). Then the following
hold.
(1) If M is a 1-epiretractable module and S is a reduced ring, then M is reduced.
(2) If M is a principally projective module and S is a reduced ring, then M is
reduced.

Proof. (1) Let fm = 0 for f ∈ S and m ∈ M . Since M is 1-epiretractable,
there exists g ∈ S such that gM = mR. We have fgM = 0 and fg = gf = 0
since S is reduced. Let fm′ = hm ∈ fM ∩ Sm where m′ ∈ M,h ∈ S. Then
gfm′ = ghm = 0 and so ghmR = 0. This implies ghgM = 0, i.e., ghg = 0.
Therefore gh = hg = 0. Now by assumption, there exists m1 ∈ M such that
m = gm1. Then fm′ = hm = hgm1 = 0. Hence M is reduced.
(2) Let fm = 0 for f ∈ S and m ∈ M , and fm′ = gm ∈ fM ∩ Sm. Since
fm = 0 ∈ mR, we may find an idempotent e in S such that f ∈ lS(mR) = Se.
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By hypothesis, e is central in S. So f = fe = ef , em = 0. Then fm′ = egm =
gem = 0. Hence fM ∩ Sm = 0. Thus M is reduced.

Theorem 2.2. Let M be an R-module with S = EndR(M). If M is a reduced
module, then the following hold.
(1) Assume that for every submodule N of M there exist e2 = e ∈ S and f ∈ S
such that N ⊆ eM and f(N) = eM . Then M is a Baer module.
(2) If every fully invariant submodule is a direct summand of M , then M is a Baer
module.
(3) If M is a uniform module, then each nonzero element of S is a monomorphism.

Proof. (1) Let N be a submodule of M. Then there exist an idempotent homo-
morphism e ∈ S and f ∈ S such that N ⊆ eM and fN = eM . We prove that
lS(N) = S(1−e). It is trivial that S(1−e) ≤ lS(N) since N ⊆ eM . Let g ∈ lS(N).
By hypothesis gN = 0 implies gfN = 0. Then gfN = geM = 0, and so ge = 0.
Hence g = g(1− e) ∈ S(1− e). So lS(N) ≤ S(1− e). This completes the proof.
(2) Since M is a reduced module, if fm = 0 where f ∈ S, then for all g ∈ S,
fgm ∈ fM ∩ Sm = 0. This implies that for all f ∈ S, Kerf is a fully invariant
submodule of M . Let I be an ideal of S. Since rM (I) = ∩f∈IKerf and all the
Kerf are fully invariant submodules of M , rM (I) is a fully invariant submodule
of M . So it is a direct summand of M and therefore M is a Baer module.
(3) Let fm = 0 where f ∈ S, m ∈ M . Then fmR = 0. By hypothesis, fM ∩
SmR = 0 and so fM = 0 or SmR = 0. Hence f = 0 or m = 0.

3 Rigid Modules

Let M be an R-module with S = EndR(M). Rigid R-modules are introduced
and studied in [18] and [19] by the present authors. Recently, rigid modules
over their endomorphism rings are studied in [8]. In this section we continue
to investigate further properties of a rigid module over its endomorphism ring as
a generalization of a reduced module over its endomorphism ring and relations
between reduced, semicommutative and K-co(non)singular modules.

We mention the following obvious proposition.

Proposition 3.1. Let M be an R-module with S = EndR(M). For any f ∈ S,
the following are equivalent.
(1) Kerf ∩ Imf = 0.
(2) For m ∈ M , f2m = 0 if and only if fm = 0.

A module M is called rigid if it satisfies Proposition 3.1 for every f ∈ S. By
[8, Lemma 2.20], if M is a rigid module, then S is a reduced ring and therefore
abelian.

Rickart modules provide a generalization of a right principally projective ring
to the general module theoretic setting. It is clear that every Baer module is a
Rickart module while the converse is not true. For example, Z(R) is Rickart but
not Baer as a Z-module.
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Proposition 3.2. Let M be an R-module with S = EndR(M). If M is a reduced
module, then M is a rigid module. The converse holds if M satisfies one of the
following conditions.
(1) M is a semicommutative module.
(2) M is a principally projective module.
(3) M is a Rickart module.

Proof. For any f ∈ S, S(Kerf) ∩ Imf = 0 by hypothesis. Since Kerf ∩ Imf ⊂
S(Kerf) ∩ Imf , Kerf ∩ Imf = 0. By Proposition 3.1, M is a rigid module.
Conversely,
(1) Assume that M is a rigid and semicommutative module. Let f ∈ S and m ∈ M
with fm = 0. Let fm′ = gm ∈ fM∩Sm. We multiply it by f from the left and we
have f2m′ = fgm. Since M is semicommutative and fm = 0, f2m′ = fgm = 0.
By hypothesis fm′ = 0.
(2) Let M be a rigid and principally projective module. Assume that fm = 0
for f ∈ S and m ∈ M . Then there exists e2 = e ∈ S such that lS(mR) = Se.
Since e is central in S, fe = ef = f and eg = gf for each g ∈ S and em = 0.
Let fm′ = gm ∈ fM ∩ Sm. Multiply fm′ = gm by e from the left to obtain
efm′ = fm′ = gem = 0. Therefore M is a reduced module.
(3) Let M be a Rickart and rigid module. Assume that fm = 0 for f ∈ S and
m ∈ M . Then there exists e2 = e ∈ S such that rM (f) = eM . Since e is central in
S, fe = ef = 0 and m = em. Let fm′ = gm ∈ fM ∩Sm. We multiply fm′ = gm
from the left by e to obtain efm′ = fem′ = egm = gem = gm = 0. Therefore M
is a reduced module.

There are semicommutative modules which are neither rigid nor principally
projective.

Example 3.3. Consider the ring

R =

{[

a b
0 a

]

| a, b ∈ Z

}

and the right R-module

M =

{[

0 a
a b

]

| a, b ∈ Z

}

.

Let f ∈ S and f

[

0 1
1 0

]

=

[

0 c
c d

]

. Multiplying the latter by

[

0 1
0 0

]

we

have f

[

0 0
0 1

]

=

[

0 0
0 c

]

. For any

[

0 a
a b

]

∈ M , f

[

0 a
a b

]

=

[

0 ac
ac ad+ bc

]

.

Similarly, let g ∈ S and g

[

0 1
1 0

]

=

[

0 c′

c′ d′

]

. Then g

[

0 0
0 1

]

=

[

0 0
0 c′

]

.
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For any

[

0 a
a b

]

∈ M , g

[

0 a
a b

]

=

[

0 ac′

ac′ ad′ + bc′

]

. Then it is easy to check

that for any

[

0 a
a b

]

∈ M ,

fg

[

0 a
a b

]

= f

[

0 ac′

ac′ ad′ + bc′

]

=

[

0 ac′c
ac′c ad′c+ adc′ + bc′c

]

and

gf

[

0 a
a b

]

= g

[

0 ac
ac ad+ bc

]

=

[

0 acc′

acc′ acd′ + ac′d+ bcc′

]

.

Hence fg = gf for all f , g ∈ S. Therefore S is commutative and so M is semicom-

mutative. Define f ∈ S by f

[

0 a
a b

]

=

[

0 0
0 a

]

where

[

0 a
a b

]

∈ M . Then

f

[

0 1
1 1

]

=

[

0 0
0 1

]

and f2

[

0 1
1 1

]

= 0. Hence M is not rigid. Let m =
[

0 0
0 1

]

, then lS(m) 6= 0 since the endomorphism f defined preceding belongs to

lS(m). M is indecomposable as a right R-module, therefore S does not have any
idempotents other than zero and identity. Hence lS(m) can not be generated by
an idempotent as a left ideal of S.

An R-module M is called Hopfian provided every surjective endomorphism of
M is an isomorphism. For example, every Noetherian module is Hopfian (see [9,
Lemma 11.6]).

Theorem 3.1. Let T be a ring and M a left T -module. If t ∈ T satisfies M = tM
and M is rigid over T , then tm = 0 implies m = 0 for any m ∈ M .

Proof. Let m ∈ M with tm = 0. Since M = tM , there exists u ∈ M such that
m = tu. Then 0 = tm = t2u. It implies tu = 0 by hypothesis. Hence m = 0.

Corollary 3.4. Let M be an R-module with S = EndR(M). If M is rigid, then
MR is Hopfian.

Proof. It is clear from Theorem 3.1.

A right R-module M is said to be nonsingular if for any m ∈ M , mE = 0 for
an essential right ideal E of R implies m = 0, and M is called cononsingular if
each submodule N of M with rR(N) = {r ∈ R | Nr = 0} 6= 0 is essential in M . In
[4], a module M is said to be K-nonsingular if for every ϕ ∈ S, Kerϕ is essential
in M implies ϕ = 0. Also the module M is said to be K-cononsingular if for every
submodule N of M , ϕN 6= 0 for all 0 6= ϕ ∈ S implies N is essential in M .

Proposition 3.5. Let M be an R-module with S = EndR(M). If M is a rigid
module, then M is a K-nonsingular module.
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Proof. Let f ∈ S. Assume that Kerf is an essential submodule of M . Since
M is rigid, Kerf ∩ Imf = 0. Then Imf = 0 and so f = 0. Hence M is K-
nonsingular.

Corollary 3.6. Let M be an R-module with S = EndR(M). If M is a reduced
module, then M is K-nonsingular.

Example 3.7 shows that the converse statement of Corollary 3.6 need not be
true in general. There exists a K-nonsingular module which is neither reduced nor
K-cononsingular.

Example 3.7. Let M denote the Z-module Z⊕ Q. We show that for any f ∈ S
with Kerf essential in M we have f = 0. Since S is isomorphic to the ring
{[

a 0
b c

]

| a ∈ Z, b, c ∈ Q

}

, we may assume S as this ring. We write the elements

of S as matrices and the elements of Z⊕Q as 2×1 columns. Let f =

[

a 0
b c

]

∈ S

and m =

[

n
q

]

, a, n ∈ Z and b, c ∈ Q with fm = 0. Then we have an = 0,

bn + cq = 0. Assume that Kerf is essential in M . Then Kerf ∩ (Z ⊕ (0)) 6= 0.
There exists m ∈ Kerf such that n is nonzero and an = 0 and bn = 0. Hence

a = b = 0. Similarly, Kerf ∩ ((0) ⊕ Q) 6= 0. We may find m′ =

[

0
q′

]

∈ Kerf

such that q′ is nonzero. So cq′ = 0 and then c = 0. It follows f = 0 and M

is K-nonsingular. Let f =

[

0 0
2 −1

]

∈ S and m =

[

1
2

]

. Then fm = 0. Let

g =

[

0 0
−1 1

]

∈ S and m′ =

[

1
1

]

. Then fm′ = gm ∈ fM ∩Sm 6= 0. Therefore

M is not reduced. Let N = (1, 1/2)Z+(1, 1/3)Z. Then N is not essential in M . If
[

a 0
b c

]

∈ lS(N), then

[

a 0
b c

] [

1
1/2

]

= 0 and

[

0 0
b c

] [

1
1/3

]

= 0 implies

a = 0 and b+ c/2 = 0, b+ c/3 = 0. It follows that a = 0, b = 0 and c = 0. Hence
M is not K-cononsingular.

The proof of Theorem 3.2 is clear from Rizvi and Roman [4, Theorem 2.12].
We give a proof for the sake of completeness.

Theorem 3.2. Let M be an R-module with S = EndR(M). If M is a rigid and
extending module, then it is Baer and K-cononsingular.

Proof. If M is a rigid module, from Proposition 3.5, M is a K-nonsingular module.
Since a K-nonsingular and extending module is a Baer module by [4, Theorem
2.12], M is Baer. Let N be a submodule of M with lS(N) = 0. We claim N is
essential in M . We may find a direct summand K of M so that N is an essential
submodule of K. Let M = K⊕L and πL denote the canonical projection from M
onto L. Then πL(N) = 0. Hence πL ∈ lS(N). Thus πL = 0 and so L = 0, M = K
and N is essential in M .
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Corollary 3.8. Let M be an R-module with S = EndR(M). If M is a reduced
and extending module, then M is Baer and K-cononsingular.

Corollary 3.9. Let M be an R-module with S = EndR(M). If M is a rigid and
extending module, then M is a Rickart module.

Proof. It is clear from Theorem 3.2 since Baer modules are Rickart modules.

Corollary 3.10. Let M be an R-module with S = EndR(M). If M is a reduced
and extending module, then M is a Baer module.

In the following result we give the relations between principally projective
modules, reduced modules, semicommutative modules, abelian modules and rigid
modules.

Theorem 3.3. Let M be an R-module with S = EndR(M). If M is a principally
projective module, then the following conditions are equivalent.
(1) M is a reduced module.
(2) M is a semicommutative module.
(3) M is an abelian module.
(4) M is a rigid module.
(5) S is a reduced ring.

Proof. (1) ⇔ (2) Clear from Lemma 3.2.
(2) ⇒ (3) Clear from Remark 2.9.
(3) ⇒ (2) Let f ∈ S, m ∈ M with fm = 0. There exists e2 = e ∈ S such that
lS(m) = Se. Then f = ef = fe, em = 0 and e is central in S. So 0 = em =
Sem = fSem = feSm = fSm. Hence M is semicommutative.
(3) ⇒ (4) Let f2m = 0 for f ∈ S, m ∈ M . For some e2 = e ∈ S we have
f ∈ lS(fm) = Se. Then fe = f and efm = 0. By hypothesis, efm = fem. Hence
0 = efm = fem = fm. So M is rigid.
(4) ⇒ (3) Let e2 = e ∈ S. For any f ∈ S, (ef − efe)2m = 0 for all m ∈ M since
(ef − efe)2 = 0. We have (ef − efe)m = 0 for all m ∈ M by hypothesis. Hence
ef − efe = 0. Similarly, (fe− efe)2m = 0 for all m ∈ M implies fe− efe = 0. It
follows that ef = fe = efe and so S is abelian, therefore M is abelian.
(1) ⇒ (5) It follows from Lemma 2.4.
(5) ⇒ (1) Let f ∈ S and m ∈ M with fm = 0. Assume that fm = 0. There exists
e2 = e ∈ S such that f ∈ lS(m) = Se. Then em = 0, f = fe. By hypothesis, e is
a central idempotent in S. Hence f = fe = ef . Let fm′ = gm ∈ fM ∩Sm. Then
fm′ = efm′ = egm = gem = 0. It follows that fM ∩ Sm = 0 and (1) holds.
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