

www.math.science.cmu.ac.th/thaijournal

On the Generalized Nakano Sequence Space

M. Şengönül

Abstract: The main purpose of this note is to define and to investigate the generalized Nakano sequence space $\mathcal{A}(p)$ and show that the sequence space $\mathcal{A}(p)$ equipped with the Luxemburg norm is rotund and posses property-H when $p = (p_k)$ is bounded with $p_k > 1$ for all $k \in \mathbb{N}$.

Keywords : Modular spaces; Banach space; Rotund; Nakano space. 2000 Mathematics Subject Classification : 46E20, 46E30, 46E40.

1 Introduction

By w, we shall denote the space of all real or complex valued sequences. Each linear subspace of w is called a *sequence space*. A sequence space λ with linear topology is called a K-space provided each of maps $p_i \to \mathbb{C}$ defined by $p_i(x) = x_i$ is continuous for all $i \in \mathbb{N}$; where \mathbb{C} denotes the complex field and $\mathbb{N} = \{0, 1, 2, ...\}$.

A K- space λ is called an FK- space provided λ is a complete linear metric space. An FK- space whose topology is normable is called a BK- space [2, pp. 272-273].

A lower triangular matrix is called *factorable* if one can write each $A = (a_{nk}) = a_n b_k$ where a_n depends only n and b_k depends only $0 \le k \le n$. A triangle is a lower triangular matrix with no zeros on the principal diagonal. A matrix A is called *regular* if A is limit preserving over c, where c denote the space of convergent sequences. For a Banach space λ , we denote by $S(\lambda)$ and $B(\lambda)$ the unit sphere and unit ball of λ , respectively. A point $x_0 \in S(\lambda)$ is called:

- (a) an extreme point if for every $x, y \in S(\lambda)$ the equality $2x_0 = x + y$ implies x = y;
- (b) an *H* point if for any sequence (x_n) in λ such that $||x|| \to 1$ as $n \to \infty$, the weak convergence of (x_n) to x implies that $||x_n x|| \to 0$ as $n \to \infty$;

A Banach space λ is said to be *rotund*, if every point of $S(\lambda)$ an extreme point. A Banach space λ is said *posses property* H provided every point of $S(\lambda)$ is H point. Let λ be an arbitrary vector space over \mathbb{C} .

(a) A functional $m: \lambda \to [0, \infty]$ is called *modular* if

M1 : $m(x) = 0 \Leftrightarrow x = 0$,

M2 : $m(\alpha x) = m(x)$ for $\alpha \in \mathbb{R}$ (or \mathbb{C}) with $|\alpha| = 1$, for all $x \in \lambda$, $\mathrm{M3}:\ m(\alpha x+\beta y)\leq m(x)+m(y)\ \mathrm{if}\ \alpha,\ \ \beta\geq 0,\ \ \alpha+\beta=1,\ \mathrm{for}\ \mathrm{all}\ x,y\in\lambda.$

- (b) If M3 is replaced by
 - M4 : $m(\alpha x + \beta y) = \alpha^s m(x) + \beta^s m(y)$ if α , $\beta \ge 0$, $\alpha^s + \beta^s = 1$, with an $s \in [0,1]$ then the modular m is called an s-convex modular; and if s = 1, m is called *convex modular*.
- (c) A modular *m* defines a corresponding modular space, i.e, the space λ_m given by

$$\lambda_m = \Big\{ x \in w : m(tx) \to 0 \ as \ t \to \infty \Big\}.$$

Recall that a sequence (x_n) is said to be an ϵ -separated sequence if, for some $\epsilon > 0$

$$\operatorname{sep}(x_n) = \inf\left\{ \parallel x_n - x_k \parallel : n \neq k \right\} > \epsilon$$

A Banach space λ has property β if and only if, for every $\epsilon > 0$ such that, for each element $x \in B(\lambda)$ and each sequence $(x_n) \in B(\lambda)$ with $sep(x_n) \ge \epsilon$, there an index k such that

$$\left\|\frac{x+x_k}{2}\right\| \le 1-\delta.$$

The Nakano sequence space $\ell(p)$ is defined by

$$\ell(p) = \Big\{ x = (x_k) \in w : m(tx) < \infty \quad \text{for some } t > 0 \Big\},\$$

where $m(x) = \sum_{k} |x_k|^{p_k}$ and $p = (p_k)$ is a sequence of positive real numbers with $p_k \geq 1$ for all $k \in \mathbb{N}$. The space $\ell(p)$ is a Banach space with the norm

$$|x|| = \inf\left\{t > 0 : m\left(\frac{x}{t}\right) \le 1\right\}.$$

If $p = (p_k)$ is bounded, we have

$$\ell(p) = \left\{ x \in w : \sum_{k} |x_k|^{p_k} < \infty \right\}.$$

Also, some geometric properties of $\ell(p)$ were studied in [1] and [3]. For $1 \leq p < \infty$, the Cesàro sequence space is defined by

$$ces_p = \left\{ x = (x_k) \in w : \left(\sum_n (\frac{1}{n} \sum_{k=1}^n |x_k|)^p \right)^{\frac{1}{p}} < \infty \right\}$$
 (1.1)

equipped with the norm

$$||x|| = \left(\sum_{n} (\frac{1}{n} \sum_{k=1}^{n} |x_k|)^p\right)^{\frac{1}{p}}.$$

This space was introduced by Shue [9]. Some geometric properties of the Cesàro sequence space ces_p were studied in [10]. It is known that ces_p is locally uniform rotund and posses property H [5]. Cui and Hudzik [3] proved that ces_p has the Banach-Saks of type p if p > 1, and it was shown in [4] that ces_p has property β .

2 The sequence space $\mathcal{A}(p)$

The space ces(p) [8] is defined by

$$ces(p) = \{x \in w : \rho(tx) < \infty \quad \text{for some} \ t > 0\}, \qquad (2.1)$$

where

$$\rho(x) = \sum_{n} \left(\frac{1}{n} \sum_{k=1}^{n} |x_k| \right)^{p_n}.$$

The space ces(p) is a Banach space with the norm

$$||x|| = \inf\left\{t > 0 : \rho(\frac{x}{t}) \le 1\right\}$$

and if $p = (p_k)$ is bounded then we have

$$ces(p) = \left\{ x \in w : \sum_{n} \left(\frac{1}{n} \sum_{k=1}^{n} |x_k| \right)^{p_n} < \infty \right\}.$$

Several geometric properties of ces(p) were studied in [8]. Define the sequence $y = (y_n)$, which will be frequently used, as the A-transform of a sequence $x = (x_k)$, i.e.,

$$(Ax)_n = y_n = a_n \sum_{k=0}^n x_k$$
(2.2)

where, $A = (a_{nk})$ is defined by

$$a_{nk} = \begin{cases} a_n, & (0 \le k \le n) \\ 0, & (k > n) \end{cases}; (n, k \in \mathbb{N}), \qquad (2.3)$$

 $a_n > 0$ for all $n \in \mathbb{N}$, $a = (a_n)$ is monotone decreasing and A is regular.

Now, we wish to introduce the generalized Nakano sequence space $\mathcal{A}(p)$, as the set of all sequences such that A-transforms of them are in the space $\ell(p)$, that is

$$A(p) = \{x = (x_k) \in w : (Ax) \in \ell(p)\}$$
(2.4)

or, the other word

$$\mathcal{A}(p) = \Big\{ x \in w : m(tx) < \infty \text{ for some } t > 0 \Big\},\$$

where

$$m(x) = \sum_{n} \left(a_n \sum_{i=0}^{n} |x_i| \right)^{p_n} < \infty$$

We consider the space $\mathcal{A}(p)$ equipped with the so - called *Luxemburg norm*

$$||x|| = \inf \left\{ t > 0 : m(\frac{x}{t}) \le 1 \right\}.$$

If $p = (p_n)$ is bounded, then we have

$$\mathcal{A}(p) = \left\{ x \in w : \sum_{n} \left(a_n \sum_{i=0}^{n} |x_i| \right)^{p_n} < \infty \right\}.$$

The main purpose of this note is to define and to investigate the generalized Nakano sequence space $\mathcal{A}(p)$ and show that the sequence space $\mathcal{A}(p)$ equipped with the Luxemburg norm is rotund and posses property H when $p = (p_k)$ is bounded with $p_k > 1$ for all $k \in \mathbb{N}$.

Clearly, in the special cases $a_n = (n+1)^{-1}$ and $a_n = 1$, we have $\mathcal{A}(p) = ces(p)$ and $\mathcal{A}(p) = \ell(p)$, respectively. Also, throughout this paper we assume that $p = (p_i)$ is bounded with $p_i > 1$ for all $i \in \mathbb{N}$ and $K = \sup_i p_i$.

Now, we may begin with the following theorem which is essential in the text:

Theorem 2.1 The set $\mathcal{A}(p)$ is the BK- spaces with the norm $||x||_{\mathcal{A}(p)} = ||Ax||_{\ell(p)}$.

Proof. Since (2.2) holds and $\ell(p)$ is the BK-space [7] with the respect to it norm and the matrix A is normal, Theorem 4.3.2 of Wilansky [11, pp. 61] gives the fact that the space $\mathcal{A}(p)$ is BK- space.

Proposition 2.2 The functional m on the space $\mathcal{A}(p)$ is a convex modular.

Proof. $m(x) = 0 \Leftrightarrow x = 0$ and $m(\alpha x) = m(x)$ for all scalar α with $|\alpha| = 1$ is clear so, we omit it. Let $x, y \in \mathcal{A}(p)$ and $\alpha \ge 0$, $\beta \ge 0$ with $\alpha + \beta = 1$ by the

convexity of the function $u \to |u|^{p_n}$; $n \in \mathbb{N}$, we have:

$$m(\alpha x + \beta y) = \sum_{n} (a_n \sum_{i=0}^{n} |(\alpha x_i + \beta y_i)|)^{p_n}$$

$$\leq \sum_{n} \left((a_n \sum_{i=0}^{n} |\alpha x_i|) + (a_n \sum_{i=0}^{n} |\beta y_i|) \right)^{p_n}$$

$$\leq \alpha \sum_{n} \left(a_n \sum_{i=0}^{n} |x_i| \right)^{p_n} + \beta \sum_{n} \left(a_n \sum_{i=0}^{n} |y_i| \right)^{p_n}$$

$$= \alpha m(x) + \beta m(y).$$

Proposition 2.3 For $x \in \mathcal{A}(p)$ the modular m on $\mathcal{A}(p)$ satisfies the following properties :

- $P1. \ \ if \ 0 < r < 1 \ \ then \ r^K m(xr^{-1}) \leq m(x) \ \ and \ \ m(rx) \leq rm(x),$
- P2. if r > 1, then $m(x) \le r^K m(xr^{-1})$,
- P3. if $r \ge 1$, then $m(x) \le rm(x) \le m(rx)$.

Proof. It is obvious that P3 is satisfied by the convexity of m. It remains to prove P1 and P2. For 0 < r < 1, we have

$$m(x) = \sum_{n} \left(a_n \sum_{i=0}^{n} |x_i| \right)^{p_n} = \sum_{n} \left(ra_n \sum_{i=0}^{n} |x_i r^{-1}| \right)^{p_n}$$
$$= \sum_{n} r^{p_n} \left(a_n \sum_{i=0}^{n} |x_i r^{-1}| \right)^{p_n} \ge \sum_{n} r^K \left(a_n \sum_{i=0}^{n} |x_i r^{-1}| \right)^{p_n}$$
$$= r^K \sum_{n} \left(a_n \sum_{i=0}^{n} |x_i r^{-1}| \right)^{p_n} = r^K m(xr^{-1}),$$

and it implies by the convexity of m that $m(rx) \leq rm(x)$, hence P1 is satisfied. Now, assume that $r \geq 1$. Then we have

$$m(x) = \sum_{n} \left(a_n \sum_{i=0}^{n} |x_i| \right)^{p_n} = \sum_{n} r^{p_n} \left(a_n \sum_{i=0}^{n} |x_i r^{-1}| \right)^{p_n}$$
$$\leq r^K \sum_{n} \left(a_n \sum_{i=0}^{n} |x_i r^{-1}| \right)^{p_n} = r^K m(xr^{-1})$$

hence P2 is obtained.

Now, we give relations between the Lxemburg norm and the modular m on the space $\mathcal{A}(p)$.

Proposition 2.4 For any $x \in \mathcal{A}(p)$ we have

- P4. if ||x|| < 1 then $m(x) \le ||x||$ P5. if ||x|| > 1 then $m(x) \ge ||x||$
- *P6.* ||x|| = 1 *if and only if* m(x) = 1
- *P7.* ||x|| < 1 if and only if m(x) < 1
- *P8.* ||x|| > 1 if and only if m(x) > 1
- P9. if 0 < r < 1 and ||x|| > r then $m(x) > r^{K}$
- P10. if $r \ge 1$ and ||x|| < r then $m(x) < r^K$

Proof. (P4) Let $\epsilon > 0$ be such that $0 < \epsilon < 1 - || x ||$. Then we have $|| x || + \epsilon < 1$. By definition of || . || there exists $\mu > 0$ such that $|| x || + \epsilon > \mu$ and $m(x\mu^{-1})$ From Proposition 2.3 P1. and P3, we have

$$m(x) \le m((||x|| + \epsilon)x\mu^{-1}) \le (||x|| + \epsilon)m(x\mu^{-1}) \le ||x|| + \epsilon$$

which implies that $m(x) \leq ||x||$ so P4 is satisfied.

(P5) Let $\epsilon > 0$ be such that $0 < \epsilon < (\parallel x \parallel -1) \parallel x \parallel^{-1}$ then $1 < (1 - \epsilon) \parallel x \parallel < \parallel x \parallel$. By definition of $\parallel . \parallel$ and by Proposition 2.3 P1 we have

$$1 < m(x[(1-\epsilon) || x ||]^{-1}) \le [(1-\epsilon) || x ||]^{-1}m(x)$$

so $(1 - \epsilon) \parallel x \parallel < m(x)$ for all $\epsilon \in (0, (\parallel x \parallel -1) \parallel x \parallel^{-1})$. This implies that $\parallel x \parallel \le m(x)$, hence P5 is obtained.

(*P6*) Assume that ||x|| = 1. By definition of ||x|| we have that for $\epsilon > 0$ there exists $\mu > 0$ such that $1 + \epsilon > \mu > ||x||$ and $m(x\mu^{-1}) \le 1$. From Proposition 2.3 *P2*, we have

$$m(x) \le \mu^K m(x\mu^{-1}) \le \mu^K < (1+\epsilon)^K$$

so $(m(x))^{K^{-1}} < 1 + \epsilon$ for all $\epsilon > 0$, which implies $m(x) \le 1$. If m(x) < 1, then we can choose $r \in (0, 1)$ such that $m(x) < r^K < 1$. From Proposition 2.3 P1 we have $m(xr^{-1}) \le (r^K)^{-1}m(x) < 1$ hence $||x|| \le r < 1$ which is a contradiction. Therefore m(x) = 1. On the other hand; assume that m(x) = 1. Then $||x|| \le 1$. If ||x|| < 1, we have by P4 that $m(x) \le ||x|| \le 1$ which contradicts our assumption. Therefore ||x|| = 1.

(P7) follows directly from P4 and P6.

(P8) follows from P6 and P7.

(P9) Suppose 0 < r < 1 and ||x|| > r. Then $||xr^{-1}|| > 1$. By P5 we have $m(xr^{-1}) > 1$. Hence by Proposition 2.3 P1 we obtain that $m(x) \ge r^K m(xr^{-1}) > r^K$.

(P10) Suppose that $r \ge 1$ and ||x|| < r. Then $||xr^{-1}|| < 1$. By P7 we have $||xr^{-1}|| < 1$. If r = 1, it is obvious that $m(x) < 1 = r^{K}$. If r > 1, then by Proposition 2.3 P2; we obtain that $m(x) \le r^{K}m(xr^{-1}) < r^{K}$.

On the Generalized Nakano Sequence Space

Proposition 2.5 Let (x_n) be a sequence in $\mathcal{A}(p)$.

P11. If $||x|| \to 1$ as $n \to \infty$, then $m(x) \to 1$ as $n \to \infty$. P12. If $m(x) \to 0$ as $n \to \infty$, then $||x|| \to 0$ as $n \to \infty$.

Proof. (P11) Suppose that $||x|| \to 1$ as $n \to \infty$. Let $\epsilon \in (0, 1)$. Then there exists $N \in \mathbb{N}$ such that $1 - \epsilon < ||x_n|| < 1 + \epsilon$ for all $n \in \mathbb{N}$. By Proposition 2.4 *P9* and *P10* we have $(1 - \epsilon)^K < m(x_n) < (1 + \epsilon)^K$ for all $n \ge N$ which implies $m(x_n) \to 1$ as $n \to \infty$.

(P12) Suppose that $||x_n|| \to 0$ as $n \to \infty$. Then there is an $\epsilon \in (0, 1)$ and a subsequence (x_{n_k}) of (x_n) such that $||x_{n_k}|| > \epsilon$ for all $k \in \mathbb{N}$. By Proposition 2.4 *P9* we have $m(x_{n_k}) > \epsilon^K$ for all $k \in \mathbb{N}$. This implies $m(x_{n_k}) \to 0$ as $n \to \infty$. \Box

Now we shall show that $\mathcal{A}(p)$ has the property H but we firstly give a lemma:

Lemma 2.6 Let $x \in \mathcal{A}(p)$ and $(x^n) \subseteq \mathcal{A}(p)$. If $\lim_n m(x^n) = m(x)$ and $\lim_n x_i^n = x_i$ for all $i \in \mathbb{N}$ then $\lim_n x^n = x$.

Proof. Let $\epsilon > 0$ be given. Since $m(x) = \sum_{n} \left(a_n \sum_{i=0}^{n} |x_i| \right)^{p_n} < \infty$, there is $n_0 \in \mathbb{N}$ such that

$$\sum_{n=n_0+1}^{\infty} \left(a_n \sum_{i=0}^n |x_i| \right)^{p_n} < \epsilon (2^{K+1} 3)^{-1}.$$
(2.5)

Since

$$m(x^{n}) - \sum_{n=0}^{n_{0}} \left(a_{n} \sum_{i=0}^{n} |x_{i}| \right)^{p_{n}} \to m(x) - \sum_{n=0}^{n_{0}} \left(a_{n} \sum_{i=0}^{n} |x_{i}| \right)^{p_{n}}$$

as $(n \to \infty)$ and $x_i^n \to x_i$ as $n \to \infty$ as for all $i \in \mathbb{N}$, there is $n_0 \in \mathbb{N}$ such that

$$m(x^{n}) - \sum_{n=0}^{n_{0}} \left(a_{n} \sum_{i=0}^{n} |x_{i}| \right)^{p_{n}} < m(x) - \sum_{n=0}^{n_{0}} \left(a_{n} \sum_{i=0}^{n} |x_{i}| \right)^{p_{n}} + (2^{K+1}3)^{-1} \quad (2.6)$$

for all $n \ge n_0$, and

$$\sum_{n=0}^{n_0} \left(a_n \sum_{i=0}^n |x_i^n - x_i| \right)^{p_n} < 3^{-1} \epsilon.$$
(2.7)

for all $n \ge n_0$. It follows from (2.5), (2.6) and (2.7) that for $n \ge n_0$

$$\begin{split} m(x^{n} - x) &= \sum_{n} \left(a_{n} \sum_{i=0}^{n} |x_{i}^{n} - x_{i}| \right)^{p_{n}} \\ &= \sum_{n=0}^{n_{0}} \left(a_{n} \sum_{i=0}^{n} |x_{i}^{n} - x_{i}| \right)^{p_{n}} + \sum_{n=n_{0}+1}^{\infty} \left(a_{n} \sum_{i=0}^{n} |x_{i}^{n} - x_{i}| \right)^{p_{n}} \\ &< 3^{-1}\epsilon + 2^{M} \left[\sum_{n=n_{0}+1}^{\infty} \left(a_{n} \sum_{i=0}^{n} |x_{i}^{n}| \right)^{p_{n}} + \sum_{n=n_{0}+1}^{\infty} \left(a_{n} \sum_{i=0}^{n} |x_{i}| \right)^{p_{n}} \right] \\ &= 3^{-1}\epsilon + 2^{M} \left[m(x^{n}) - \sum_{n=0}^{n_{0}} \left(a_{n} \sum_{i=0}^{n} |x_{i}| \right)^{p_{n}} + \sum_{n=n_{0}+1}^{\infty} \left(a_{n} \sum_{i=0}^{n} |x_{i}| \right)^{p_{n}} \right] \\ &< 3^{-1}\epsilon + 2^{M} \left[m(x^{n}) - \sum_{n=0}^{n_{0}} \left(a_{n} \sum_{i=0}^{n} |x_{i}| \right)^{p_{n}} + (2^{K}3)^{-1}\epsilon + \sum_{n=n_{0}+1}^{\infty} \left(a_{n} \sum_{i=0}^{n} |x_{i}| \right)^{p_{n}} \right] \\ &= 3^{-1}\epsilon + 2^{M} \left[\sum_{n=n_{0}+1}^{\infty} \left(a_{n} \sum_{i=0}^{n} |x_{i}| \right)^{p_{n}} + (2^{K}3)^{-1}\epsilon + \sum_{n=n_{0}+1}^{\infty} \left(a_{n} \sum_{i=0}^{n} |x_{i}| \right)^{p_{n}} \right] \\ &= 3^{-1}\epsilon + 2^{M} \left[(2^{K}3)^{-1}\epsilon + 2 \sum_{n=n_{0}+1}^{\infty} \left(a_{n} \sum_{i=0}^{n} |x_{i}| \right)^{p_{n}} \right] < 3^{-1}\epsilon + 3^{-1}\epsilon + 3^{-1}\epsilon = \epsilon \end{split}$$

This show that $m(x^n - x) \to 0$ as $n \to \infty$. Hence by *P8* of Proposition 2.5 , we have $||x^n - x|| \to 0$ as $n \to \infty$.

Theorem 2.7 The $\mathcal{A}(p)$ has the property H.

Proof. Let $x \in S(\mathcal{A}(p))$ and $(x^n) \subseteq \mathcal{A}(p)$ such that $|| x || \to 1$ and $x^n \underline{w} x$ as $n \to \infty$. From Proposition 2.2 we have m(x) = 1 so it follows from Proposition 2.3 that $m(x^n) \to m(x)$ as $n \to \infty$. Since the mapping $p_i : \mathcal{A}(p) \longrightarrow \mathbb{R}$, defined by $p_i(y) = y_i$ is a continuous linear functional on $\mathcal{A}(p)$ it follows that $x_i^n \to x_i$ as $n \to \infty$ for all $i \in \mathbb{N}$. Thus, we have obtain by Lemma 2.6 that $x^n \to x$ as $n \to \infty$. \Box

Theorem 2.8 The space $\mathcal{A}(p)$ is rotund.

Proof. Let $x \in S(\mathcal{A}(p))$ and $y, z \in B(\mathcal{A}(p))$ with $x = 2^{-1}(y+z)$. By Proposition 2.2 and convexity of m we have

$$1 = m(x) \le 2^{-1}(m(y) + m(z)) \le 2^{-1}(1+1),$$

so that $m(x) = 2^{-1}(m(y) + m(z)) = 1$. This implies that

$$\left(a_n \sum_{i=0}^n |2^{-1}(y_i + z_i)|\right)^{p_n} = 2^{-1} \left(a_n \sum_{i=0}^n |y_i|\right)^{p_n} + 2^{-1} \left(a_n \sum_{i=0}^n |z_i|\right)^{p_n}$$
(2.8)

On the Generalized Nakano Sequence Space

for all $k \in \mathbb{N}$. We shall show that $y_i = z_i$ for all $i \in \mathbb{N}$. From (2.8), we have

$$|x_1|^{p_1} = 2^{-1} [|y_1| + |z_1|]^{p_1}.$$
(2.9)

Since the mapping $u \to |u|^{p_1}$ is strictly convex, it implies by (2.8) that $y_1 = z_1$. Now assume that $y_i = z_i$ for all i = 1, 2, ..., k - 1. Then $y_i = z_i = x_i$ for all i = 1, 2, ..., k - 1. From (2.8) we have

$$\left(a_n \sum_{i=0}^n |2^{-1}(y_i + z_i)|\right)^{p_n} = \left(2^{-1}[a_n \sum_{i=0}^n |y_i| + a_n \sum_{i=0}^n |z_i|]\right)^{p_n}$$
(2.10)

$$=2^{-1}\left(a_n\sum_{i=0}^n|y_i|\right)^{p_n}+2^{-1}\left(a_n\sum_{i=0}^n|z_i|\right)^{p_n}$$
 (2.11)

By the convexity of the mapping $u \to |u|^{p_1}$ it implies that $a_n \sum_{i=0}^n |y_i| = a_n \sum_{i=0}^n |z_i|$. Since $y_i = z_i$ for all i = 1, 2, ..., k - 1 we get that

$$|y_k| = |z_k|. (2.12)$$

If $y_k = 0$, then we have $y_k = z_k = 0$. Suppose that $y_k \neq 0$. Then $z_k \neq 0$. If $y_k z_k < 0$ it follows from (2.12) that $y_k + z_k = 0$. This implies by (2.10) and (2.12)

$$\left(a_n \sum_{i=0}^{n-1} |x_i|\right)^{p_n} = \left(a_n \left(\sum_{i=0}^{n-1} |x_i| + |y_i|\right)\right)^{p_n}$$

which is contradiction. Thus, we have $y_k z_k > 0$. This implies that by (2.9) that $y_k = z_k$. Thus we have by induction that $y_i = z_i$ for all $i \in \mathbb{N}$, so y = z.

References

- [1] S. T. Chen, Geometry of Orlicz Spaces, Dissertationes Math., 1996, pp. 356.
- [2] B. Cohuldhary and S. Nanda, Functional Analysis with Applications, John Wiley & Sons Inc. New Delhi. 1989.
- [3] Y. A. Cui, H. Hudzik and R. Pliciennik, Banach Saks property in some Banach sequence spaces, Annales Math. Polinici, 65(1997), 193–202.
- [4] Y. A. Cui and C. Meng, Banach-Saks property (β) in Cesàro sequence spaces, SEA. Bull. Math. Tamkang J. Math., 24(2000), 201–210.
- [5] Y. Q. Lui, B. E. Wu and Y. P. Lee, *Method of Sequence Spaces*, Guangdong of science and Technology Press, (in Chine) 1996.
- [6] R. Pluciennik, T. F. Wang and Y. L. Zhang, H- points and denting points in Orlicz spaces, *Comment Math. Prace Mat.*, 33(1993), 135–151.

- [7] B. Prus, Banach space with uniform opial property, Nonlinear Anal., 8(1992), 679-704.
- [8] W. Sanhan, On geometric properties some Banach sequence spaces, Thesis for the degree of Master of Science in Mathematics, Chiang Mai University, 2000.
- [9] J. S. Shue, Cesàro sequence spaces, Tamkang J. Math. 1(1970), 143-150.
- [10] S. Suntai, On the H- property of the some Banach sequence Spaces, Archivum Mathematicum, 39(2003), 309–316.
- [11] A. Wilansky, Summability through Functional Analysis, North-Holland Mathematics Studies, 85, Amsterdam-Newyork-Oxford, 1984.

(Received 21 January 2006)

M. Şengönül Malatya Science and Art Center 44000 Malatya, Turkey. e-mail : msengonul@yahoo.com