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generalized Nakano sequence space A(p) and show that the sequence space A(p)
equipped with the Luxemburg norm is rotund and posses property-H when p =
(pk) is bounded with pk > 1 for all k ∈ N.
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1 Introduction

By w, we shall denote the space of all real or complex valued sequences. Each
linear subspace of w is called a sequence space. A sequence space λ with linear
topology is called a K-space provided each of maps pi → C defined by pi(x) = xi

is continuous for all i ∈ N; where C denotes the complex field and N = {0, 1, 2, ...}.
A K- space λ is called an FK- space provided λ is a complete linear metric

space. An FK- space whose topology is normable is called a BK- space [2, pp.
272-273].

A lower triangular matrix is called factorable if one can write each A = (ank) =
anbk where an depends only n and bk depends only 0 ≤ k ≤ n. A triangle is a
lower triangular matrix with no zeros on the principal diagonal. A matrix A is
called regular if A is limit preserving over c, where c denote the space of convergent
sequences. For a Banach space λ, we denote by S(λ) and B(λ) the unit sphere
and unit ball of λ, respectively. A point x0 ∈ S(λ) is called:

(a) an extreme point if for every x, y ∈ S(λ) the equality 2x0 = x + y implies
x = y;

(b) an H point if for any sequence (xn) in λ such that ‖ x ‖→ 1 as n →∞, the
weak convergence of (xn) to x implies that ‖ xn − x ‖→ 0 as n →∞;

A Banach space λ is said to be rotund, if every point of S(λ) an extreme point. A
Banach space λ is said posses property H provided every point of S(λ) is H point.

Let λ be an arbitrary vector space over C.

(a) A functional m : λ → [0,∞] is called modular if

M1 : m(x) = 0 ⇔ x = 0,
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M2 : m(αx) = m(x) for α ∈ R (or C) with |α| = 1, for all x ∈ λ,

M3 : m(αx + βy) ≤ m(x) + m(y) if α, β ≥ 0, α + β = 1, for all x, y ∈ λ.

(b) If M3 is replaced by

M4 : m(αx + βy) = αsm(x) + βsm(y) if α, β ≥ 0, αs + βs = 1, with an
s ∈ [0, 1] then the modular m is called an s-convex modular ; and if
s = 1, m is called convex modular.

(c) A modular m defines a corresponding modular space, i.e, the space λm given
by

λm =
{

x ∈ w : m(tx) → 0 as t →∞
}

.

Recall that a sequence (xn) is said to be an ε-separated sequence if, for some ε > 0

sep(xn) = inf
{
‖ xn − xk ‖: n 6= k

}
> ε.

A Banach space λ has property β if and only if, for every ε > 0 such that, for
each element x ∈ B(λ) and each sequence (xn) ∈ B(λ) with sep(xn) ≥ ε, there an
index k such that ∥∥∥∥

x + xk

2

∥∥∥∥ ≤ 1− δ.

The Nakano sequence space `(p) is defined by

`(p) =
{

x = (xk) ∈ w : m(tx) < ∞ for some t > 0
}

,

where m(x) =
∑

k |xk|pk and p = (pk) is a sequence of positive real numbers with
pk ≥ 1 for all k ∈ N . The space `(p) is a Banach space with the norm

‖ x ‖= inf
{

t > 0 : m
(x

t

)
≤ 1

}
.

If p = (pk) is bounded, we have

`(p) =

{
x ∈ w :

∑

k

|xk|pk < ∞
}

.

Also, some geometric properties of `(p) were studied in [1] and [3].
For 1 ≤ p < ∞, the Cesàro sequence space is defined by

cesp =



x = (xk) ∈ w :

(∑
n

(
1
n

n∑

k=1

|xk|)p

) 1
p

< ∞


 (1.1)
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equipped with the norm

‖ x ‖=
(∑

n

(
1
n

n∑

k=1

|xk|)p

) 1
p

.

This space was introduced by Shue [9]. Some geometric properties of the
Cesàro sequence space cesp were studied in [10]. It is known that cesp is locally
uniform rotund and posses property H [5]. Cui and Hudzik [3] proved that cesp

has the Banach- Saks of type p if p > 1, and it was shown in [4] that cesp has
property β.

2 The sequence space A(p)

The space ces(p) [8] is defined by

ces(p) = {x ∈ w : ρ(tx) < ∞ for some t > 0} , (2.1)

where

ρ(x) =
∑

n

(
1
n

n∑

k=1

|xk|
)pn

.

The space ces(p) is a Banach space with the norm

‖ x ‖= inf
{

t > 0 : ρ(
x

t
) ≤ 1

}

and if p = (pk) is bounded then we have

ces(p) =

{
x ∈ w :

∑
n

(
1
n

n∑

k=1

|xk|
)pn

< ∞
}

.

Several geometric properties of ces(p) were studied in [8]. Define the sequence
y = (yn), which will be frequently used, as the A-transform of a sequence x = (xk),
i.e.,

(Ax)n = yn = an

n∑

k=0

xk (2.2)

where, A = (ank) is defined by

ank =
{

an, (0 ≤ k ≤ n)
0, (k > n) ; (n, k ∈ N) , (2.3)

an > 0 for all n ∈ N, a = (an) is monotone decreasing and A is regular.
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Now, we wish to introduce the generalized Nakano sequence space A(p) , as
the set of all sequences such that A-transforms of them are in the space `(p), that
is

A(p) = {x = (xk) ∈ w : (Ax) ∈ `(p)} (2.4)

or, the other word

A(p) =
{

x ∈ w : m(tx) < ∞ for some t > 0
}

,

where

m(x) =
∑

n

(
an

n∑

i=0

|xi|
)pn

< ∞.

We consider the space A(p) equipped with the so - called Luxemburg norm

‖ x ‖= inf
{

t > 0 : m(
x

t
) ≤ 1

}
.

If p = (pn) is bounded, then we have

A(p) =

{
x ∈ w :

∑
n

(
an

n∑

i=0

|xi|
)pn

< ∞
}

.

The main purpose of this note is to define and to investigate the generalized Nakano
sequence space A(p) and show that the sequence space A(p) equipped with the
Luxemburg norm is rotund and posses property H when p = (pk) is bounded with
pk > 1 for all k ∈ N.

Clearly, in the special cases an = (n+1)−1 and an = 1, we have A(p) = ces(p)
andA(p) = `(p), respectively. Also, throughout this paper we assume that p = (pi)
is bounded with pi > 1 for all i ∈ N and K = supi pi.

Now, we may begin with the following theorem which is essential in the text:

Theorem 2.1 The set A(p) is the BK- spaces with the norm ‖ x ‖A(p)=‖ Ax ‖`(p).

Proof. Since (2.2) holds and `(p) is the BK−space [7] with the respect to it
norm and the matrix A is normal, Theorem 4.3.2 of Wilansky [11, pp. 61] gives
the fact that the space A(p) is BK− space. ¤

Proposition 2.2 The functional m on the space A(p) is a convex modular.

Proof. m(x) = 0 ⇔ x = 0 and m(αx) = m(x) for all scalar α with |α| = 1 is
clear so, we omit it. Let x, y ∈ A(p) and α ≥ 0, β ≥ 0 with α + β = 1 by the
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convexity of the function u → |u|pn ; n ∈ N, we have:

m(αx + βy) =
∑

n

(an

n∑

i=0

|(αxi + βyi)|)pn

≤
∑

n

(
(an

n∑

i=0

|αxi|) + (an

n∑

i=0

|βyi|)
)pn

≤ α
∑

n

(
an

n∑

i=0

|xi|
)pn

+ β
∑

n

(
an

n∑

i=0

|yi|
)pn

= αm(x) + βm(y).

¤

Proposition 2.3 For x ∈ A(p) the modular m on A(p) satisfies the following
properties :

P1. if 0 < r < 1 then rKm(xr−1) ≤ m(x) and m(rx) ≤ rm(x),

P2. if r > 1, then m(x) ≤ rKm(xr−1),

P3. if r ≥ 1, then m(x) ≤ rm(x) ≤ m(rx).

Proof. It is obvious that P3 is satisfied by the convexity of m. It remains to
prove P1 and P2. For 0 < r < 1, we have

m(x) =
∑

n

(
an

n∑

i=0

|xi|
)pn

=
∑

n

(
ran

n∑

i=0

|xir
−1|

)pn

=
∑

n

rpn

(
an

n∑

i=0

|xir
−1|

)pn

≥
∑

n

rK

(
an

n∑

i=0

|xir
−1|

)pn

= rK
∑

n

(
an

n∑

i=0

|xir
−1|

)pn

= rKm(xr−1),

and it implies by the convexity of m that m(rx) ≤ rm(x), hence P1 is satisfied.
Now, assume that r ≥ 1. Then we have

m(x) =
∑

n

(
an

n∑

i=0

|xi|
)pn

=
∑

n

rpn

(
an

n∑

i=0

|xir
−1|

)pn

≤ rK
∑

n

(
an

n∑

i=0

|xir
−1|

)pn

= rKm(xr−1)

hence P2 is obtained. ¤

Now, we give relations between the Lxemburg norm and the modular m on the
space A(p).
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Proposition 2.4 For any x ∈ A(p) we have

P4. if ‖ x ‖< 1 then m(x) ≤‖ x ‖
P5. if ‖ x ‖> 1 then m(x) ≥‖ x ‖
P6. ‖ x ‖= 1 if and only if m(x) = 1

P7. ‖ x ‖< 1 if and only if m(x) < 1

P8. ‖ x ‖> 1 if and only if m(x) > 1

P9. if 0 < r < 1 and ‖ x ‖> r then m(x) > rK

P10. if r ≥ 1 and ‖ x ‖< r then m(x) < rK

Proof. (P4 ) Let ε > 0 be such that 0 < ε < 1− ‖ x ‖. Then we have
‖ x ‖ +ε < 1. By definition of ‖ . ‖ there exists µ > 0 such that ‖ x ‖ +ε > µ and
m(xµ−1) From Proposition 2.3 P1. and P3, we have

m(x) ≤ m
(
(‖ x ‖ +ε)xµ−1

) ≤ (‖ x ‖ +ε)m
(
xµ−1

) ≤‖ x ‖ +ε

which implies that m(x) ≤‖ x ‖ so P4 is satisfied.

(P5 ) Let ε > 0 be such that 0 < ε < (‖ x ‖ −1) ‖ x ‖−1 then 1 < (1 − ε) ‖
x ‖<‖ x ‖ . By definition of ‖ . ‖ and by Proposition 2.3 P1 we have

1 < m(x[(1− ε) ‖ x ‖]−1) ≤ [(1− ε) ‖ x ‖]−1m(x)

so (1 − ε) ‖ x ‖< m(x) for all ε ∈ (0, (‖ x ‖ −1) ‖ x ‖−1). This implies that
‖ x ‖≤ m(x), hence P5 is obtained.

(P6 ) Assume that ‖ x ‖= 1. By definition of ‖ x ‖ we have that for ε > 0
there exists µ > 0 such that 1+ ε > µ >‖ x ‖ and m(xµ−1) ≤ 1. From Proposition
2.3 P2, we have

m(x) ≤ µKm(xµ−1) ≤ µK < (1 + ε)K

so (m(x))K−1
< 1 + ε for all ε > 0, which implies m(x) ≤ 1. If m(x) < 1, then

we can choose r ∈ (0, 1) such that m(x) < rK < 1. From Proposition 2.3 P1 we
have m(xr−1) ≤ (rK)−1m(x) < 1 hence ‖ x ‖≤ r < 1 which is a contradiction.
Therefore m(x) = 1. On the other hand; assume that m(x) = 1. Then ‖ x ‖≤ 1. If
‖ x ‖< 1, we have by P4 that m(x) ≤‖ x ‖≤ 1 which contradicts our assumption.
Therefore ‖ x ‖= 1.

(P7 ) follows directly from P4 and P6.

(P8 ) follows from P6 and P7.

(P9 ) Suppose 0 < r < 1 and ‖ x ‖> r. Then ‖ xr−1 ‖> 1. By P5 we have
m(xr−1) > 1. Hence by Proposition 2.3 P1 we obtain that m(x) ≥ rKm(xr−1) >
rK .

(P10 ) Suppose that r ≥ 1 and ‖ x ‖< r. Then ‖ xr−1 ‖< 1. By P7 we
have ‖ xr−1 ‖< 1. If r = 1, it is obvious that m(x) < 1 = rK . If r > 1, then by
Proposition 2.3 P2 ; we obtain that m(x) ≤ rKm(xr−1) < rK . ¤
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Proposition 2.5 Let (xn) be a sequence in A(p).

P11. If ‖ x ‖→ 1 as n →∞, thenm(x) → 1 as n →∞.

P12. If m(x) → 0 as n →∞, then ‖ x ‖→ 0 as n →∞.

Proof. (P11 ) Suppose that ‖ x ‖→ 1 as n → ∞. Let ε ∈ (0, 1). Then there
exists N ∈ N such that 1 − ε <‖ xn ‖< 1 + ε for all n ∈ N. By Proposition 2.4
P9 and P10 we have (1 − ε)K < m(xn) < (1 + ε)K for all n ≥ N which implies
m(xn) → 1 as n →∞.

(P12 ) Suppose that ‖ xn ‖9 0 as n → ∞. Then there is an ε ∈ (0, 1) and a
subsequence (xnk

) of (xn) such that ‖ xnk
‖> ε for all k ∈ N. By Proposition 2.4

P9 we have m(xnk
) > εK for all k ∈ N. This implies m(xnk

) 9 0 as n →∞. ¤

Now we shall show that A(p) has the property H but we firstly give a lemma:

Lemma 2.6 Let x ∈ A(p) and (xn) ⊆ A(p). If limn m(xn) = m(x) and limn xn
i =

xi for all i ∈ N then limn xn = x .

Proof. Let ε > 0 be given. Since m(x) =
∑

n

(
an

n∑

i=0

|xi|
)pn

< ∞, there is

n0 ∈ N such that

∞∑
n=n0+1

(
an

n∑

i=0

|xi|
)pn

< ε(2K+13)−1. (2.5)

Since

m(xn)−
n0∑

n=0

(
an

n∑

i=0

|xi|
)pn

→ m(x)−
n0∑

n=0

(
an

n∑

i=0

|xi|
)pn

as (n →∞) and xn
i → xi as n →∞ as for all i ∈ N, there is n0 ∈ N such that

m(xn)−
n0∑

n=0

(
an

n∑

i=0

|xi|
)pn

< m(x)−
n0∑

n=0

(
an

n∑

i=0

|xi|
)pn

+ (2K+13)−1 (2.6)

for all n ≥ n0, and

n0∑
n=0

(
an

n∑

i=0

|xn
i − xi|

)pn

< 3−1ε. (2.7)

for all n ≥ n0. It follows from (2.5), (2.6) and (2.7) that for n ≥ n0
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m(xn − x) =
∑

n

(
an

n∑

i=0

|xn
i − xi|

)pn

=
n0∑

n=0

(
an

n∑

i=0

|xn
i − xi|

)pn

+
∞∑

n=n0+1

(
an

n∑

i=0

|xn
i − xi|

)pn

< 3−1ε + 2M

[ ∞∑
n=n0+1

(
an

n∑

i=0

|xn
i |

)pn

+
∞∑

n=n0+1

(
an

n∑

i=0

|xi|
)pn

]

= 3−1ε + 2M

[
m(xn)−

n0∑
n=0

(
an

n∑

i=0

|xn
i |

)pn

+
∞∑

n=n0+1

(
an

n∑

i=0

|xi|
)pn

]

< 3−1ε + 2M

[
m(xn)−

n0∑
n=0

(
an

n∑

i=0

|xi|
)pn

+ (2K3)−1ε +
∞∑

n=n0+1

(
an

n∑

i=0

|xi|
)pn

]

= 3−1ε + 2M

[ ∞∑
n=n0+1

(
an

n∑

i=0

|xi|
)pn

+ (2K3)−1ε +
∞∑

n=n0+1

(
an

n∑

i=0

|xi|
)pn

]

= 3−1ε + 2M

[
(2K3)−1ε + 2

∞∑
n=n0+1

(
an

n∑

i=0

|xi|
)pn

]
< 3−1ε + 3−1ε + 3−1ε = ε

This show that m(xn − x) → 0 as n → ∞. Hence by P8 of Proposition 2.5 , we
have ‖ xn − x ‖→ 0 as n →∞. ¤

Theorem 2.7 The A(p) has the property H.

Proof. Let x ∈ S(A(p)) and (xn) ⊆ A(p) such that ‖ x ‖→ 1 and xn w−→x as
n → ∞. From Proposition 2.2 we have m(x) = 1 so it follows from Proposition
2.3 that m(xn) → m(x) as n → ∞. Since the mapping pi : A(p) −→ R, defined
by pi(y) = yi is a continuous linear functional on A(p) it follows that xn

i → xi as
n →∞ for all i ∈ N. Thus, we have obtain by Lemma 2.6 that xn → x as n →∞.
¤

Theorem 2.8 The space A(p) is rotund.

Proof. Let x ∈ S(A(p)) and y, z ∈ B(A(p)) with x = 2−1(y+z). By Proposition
2.2 and convexity of m we have

1 = m(x) ≤ 2−1(m(y) + m(z)) ≤ 2−1(1 + 1),

so that m(x) = 2−1(m(y) + m(z)) = 1. This implies that
(

an

n∑

i=0

|2−1(yi + zi)|
)pn

= 2−1

(
an

n∑

i=0

|yi|
)pn

+ 2−1

(
an

n∑

i=0

|zi|
)pn

(2.8)



On the Generalized Nakano Sequence Space 303

for all k ∈ N. We shall show that yi = zi for all i ∈ N. From (2.8), we have

|x1|p1 = 2−1[|y1|+ |z1|]p1 . (2.9)

Since the mapping u → |u|p1 is strictly convex, it implies by (2.8) that y1 = z1.
Now assume that yi = zi for all i = 1, 2, ..., k − 1. Then yi = zi = xi for all
i = 1, 2, ..., k − 1. From (2.8) we have

(
an

n∑

i=0

|2−1(yi + zi)|
)pn

=

(
2−1[an

n∑

i=0

|yi|+ an

n∑

i=0

|zi|]
)pn

(2.10)

= 2−1

(
an

n∑

i=0

|yi|
)pn

+ 2−1

(
an

n∑

i=0

|zi|
)pn

(2.11)

By the convexity of the mapping u → |u|p1 it implies that an

∑n
i=0 |yi| = an

∑n
i=0 |zi|.

Since yi = zi for all i = 1, 2, ..., k − 1 we get that

|yk| = |zk|. (2.12)

If yk = 0, then we have yk = zk = 0. Suppose that yk 6= 0. Then zk 6= 0. If
ykzk < 0 it follows from (2.12) that yk + zk = 0. This implies by (2.10) and (2.12)

(
an

n−1∑

i=0

|xi|
)pn

=

(
an

(
n−1∑

i=0

|xi|+ |yi|
))pn

,

which is contradiction. Thus, we have ykzk > 0. This implies that by (2.9) that
yk = zk. Thus we have by induction that yi = zi for all i ∈ N, so y = z. ¤
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