Thai Journal of Mathematics (2003) 1: 29-38

Matrix Transformations of Orlicz Sequence Spaces

S. Suantai

Abstract: In this paper, we give the matrix characterizations from the Nakano vector-valued sequence space $\ell(X,p)$ into the Orlicz sequence space ℓ_M and by applying this result we also obtain necessary and sufficient conditions for infinite matrices mapping the sequence spaces $F_r(X,p)$ and $M_0(X,p)$ into ℓ_M , where $p=(p_k)$ is a bounded sequence of positive real numbers such that $p_k \leq 1$ for all $k \in N$ and r > 0.

Keywords: Matrix transformations, Orlicz sequence space, Nakano sequence space.

2000 Mathematics Subject Classification: 46A45

1 Introduction

Let $(X, \|.\|)$ be a real Banach space and $p = (p_k)$ a bounded sequence of positive real numbers. We write $x = (x_k)$ with x_k in X for all $k \in N$. The X-valued sequence spaces $c_0(X, p)$, c(X, p), $\ell_{\infty}(X, p)$, $\ell(X, p)$, $F_r(X, P)$, $E_r(X, p)$, and $M_0(X, p)$ are defined by

$$\begin{split} c_0(X,p) &= \{x = (x_k) : \lim_{k \to \infty} \|x_k\|^{p_k} = 0\}, \\ c(X,p) &= \{x = (x_k) : \lim_{k \to \infty} \|x_k - a\|^{p_k} = 0 \text{ for some } a \in X\}, \\ \ell_\infty(X,p) &= \{x = (x_k) : \sup_k \|x_k\|^{p_k} < \infty\}, \\ \ell(X,p) &= \{x = (x_k) : \sum_{k=1}^{\infty} \|x_k\|^{p_k} < \infty\}, \\ F_r(X,p) &= \{x = (x_k) : \sum_{k=1}^{\infty} k^r \|x_k\|^{p_k} < \infty\}, \\ E_r(X,p) &= \{x = (x_k) : \sup_k \|x_k\|^{p_k} < \infty\}, \end{split}$$

$$M_0(X,p) = \{x = (x_k) : \sum_{k=1}^{\infty} n^{-1/p_k} ||x_k|| < \infty \text{ for some } n \in \mathbb{N} \}.$$

When X = R the corresponding spaces are written as $c_0(p)$, c(p), $\ell_{\infty}(p)$, $\ell(p)$, $F_r(p)$, $E_r(p)$, and $M_0(p)$, respectively and the first three spaces are known as the sequence spaces of Maddox. These spaces were first introduced and studied by Simons [12], Maddox [6, 7], and Nakano [10]. When $p_k = 1$ for all $k \in N$, the space $F_r(p)$ is written as F_r . This space was first definded by Cooke [2]. The space $M_0(p)$ was definded by Grosse-Erdmann [3].

The structure of sequence spaces $c_0(p)$, c(p), $\ell(p)$, and $\ell_{\infty}(p)$ have been investigated in [3]. Grosse-Erdmann [4] has given characterizations of matrix transformations between scalar-valued sequence spaces of Maddox. Wu and Liu [16] deal with the problem of characterizations of infinite matrices mapping $c_0(X, p)$ and $\ell_{\infty}(X, p)$ into $c_0(q)$ and $\ell_{\infty}(q)$.

Suantai [13], and Suantai and Sudsukh [15] gave the matrix characterizations from $\ell(X,p)$ into ℓ_{∞} and E_r . The problem of matrix transformations concerning the Orlicz sequence space was done by Suantai [14]. In that work, he gave necessary and sufficient conditions for infinite matrices mapping $\ell_{\infty}(X,p)$ and $c_0(X)$ into the Orlicz sequence space. In this paper we consider the problem of characterizing those infinite matrices mapping $\ell(X,p)$, $F_r(X,p)$ and $M_0(X,p)$ into the Orlicz sequence space. Because the Orlicz sequence space is a generalization of the ℓ_r space, so we also obtain characterizations of infinite matrices mapping those vector-valued sequence spaces into the ℓ_r space as a special case.

2 Notation and Definitions

Let $(X, \|.\|)$ be a real Banach space, the space of all sequences in X is denoted by W(X) and $\Phi(X)$ is denoted for the space of all finite sequences in X. When X = R, the corresponding spaces are written as W and Φ .

A sequence spaces in X is a linear subspace of W(X). Let E be any X-valued sequence space. For $x \in E$ and $k \in N$, we write x_k stands for the k^{th} term of X. For $k \in N$ denote by e_k the sequence (0,0,...,0,1,0,...) with 1 in the k^{th} position and by e the sequence (1,1,1,...). For $x \in X$ and $k \in N$, let $e^k(x)$ be the sequence (0,0,...,0,x,0,...) with x in the k^{th} position and let e(x) be the sequence (x,x,x,...). For a fixed scalar sequence $\mu = (\mu_k)$ the sequence space E_{μ} is defined by

$$E_{\mu} = \{x \in W(X) : (\mu_k x_k) \in E\}$$
.

The sequence space E is called normal if $x \in E$ and $y \in W(X)$ with $||y_k|| \le ||x_k||$ for all $k \in N$ implies that $y \in E$.

Let $A = (f_k^n)$ with f_k^n in X', the topological dual of X. Suppose that E is a space of X-valued sequences and F a space of scalar-valued sequences. Then A is said to $map\ E$ into F, written by $A:E\to F$ if for each $x=(x_k)\in E,\ A_n(x)=\sum_{k=1}^\infty f_k^n(x_k)$ converges for each $n\in N$, and the sequence $Ax=(A_n(x))\in F$. We denote by (E,F) the set of all infinite matrices mapping E into F. If $u=(u_k)$ and $v=(v_k)$ are scalar sequences, let

$$u(E,F)_v = \{A = (f_k^n) : (u_n v_k f_k^n)_{n,k} \in (E,F) \}$$

If $u_k \neq 0$ for all $k \in N$, we write $u^{-1} = (\frac{1}{u^k})$.

Suppose that the X-valued sequence space E is endowed with some linear topology τ . Then E is called a K-space if for each $k \in N$ the k^{th} coordinate mapping $p_k : E \to X$, defined by $p_k(x) = x_k$, is continuous on E. If, in addition, (E,τ) is an Fréchet (Banach, LF-, LB-) space, then E is called an FK- (BK-, LFK-, LBK-) space. Now, suppose that E contains $\Phi(X)$. Then E is said to have property AB if the set $\{\sum_{k=1}^n e^k(x_k) : n \in N\}$ is bounded in E for every $x = (x_k) \in E$. It is said to have property AK if $\sum_{k=1}^n e^k(x_k) \to x$ in E as $n \to \infty$ for every $x = (x_k) \in E$. It has property AD if $\Phi(X)$ is dense in E.

The space $\ell(p)$ is an FK-space with AK under the paranorm $g(x) = \left(\sum_{k=1}^{\infty}|x_k|^{p_k}\right)^{1/K}$, where $K = \max\{1,\sup p_k\}$ (see [8]). The space $c_0(p)$ is an FK-space with AK, c(p) is an FK-space and $\ell_{\infty}(p)$ is a complete LBK-space with AB (see [3, 8]). It is known that the space $\ell(X,p)$ is an FK-space with AK under the paranorm $g(x) = \left(\sum_{k=1}^{\infty} \|x_k\|^{p_k}\right)^{1/K}$, where $K = \max\{1,\sup_k p_k\}$.

A function $M: R \to [0, \infty)$ is said to be an *Orlicz function* if it is even, convex, continuous and vanishing only at 0. We define the Orlicz sequence space by the formula

$$\ell_M = \{x = (x_k) \in \ell^0 : \rho_M(cx) = \sum_{k=1}^{\infty} M(cx_k) < \infty \text{ for some } c > 0 \}$$

where ℓ^0 stands for the space of all real sequences. We consider ℓ_M equipped with the Luxemburg norm

$$||x|| = \inf\{\varepsilon > 0 : \rho_M(\frac{x}{\varepsilon}) \le 1 \}.$$

Let h_M denote the subspace order continuous elements, i.e

$$h_M = \{x = (x_k) : \rho_M(cx) < \infty \text{ for any } c > 0 \}.$$

It is known that ℓ_M is a BK-space and h_M is a closed subspace of ℓ_M .

We say that an Orlicz function M satisfies the δ_2 condition ($M \in \delta_2$ for short) if there exist constants $k \geq 2$ and $u_0 > 0$ such that

$$M(2u) \le KM(u)$$

whenever $|u| \leq u_0$.

It is known that if $M \in \delta_2$, then $h_M = \ell_M$ (see [1]). For more details on Orlicz sequence space we refer to [1], [5], [9], and [11].

Now let us quote some known results that will be used to reduce our problems into simple forms.

Proposition 2.1 Let E and $E_n(n \in N)$ be X-valued sequence spaces, and E are sequence spaces, and let E and E be sequences of real numbers with E and E are E for all E and E are the sequences of E are the sequences of E and E are the sequences of E a

- (i) $(\bigcup_{n=1}^{\infty} E_n, F) = \bigcap_{n=1}^{\infty} (E_n, F)$
- (ii) $(E, \cap_{n=1}^{\infty} F_n) = \cap_{n=1}^{\infty} (E, F_n)$
- (iii) $(E_u, F_v) = {}_{v}(E, F)_{u^{-1}},$
- (iv) $(E_1 + E_2, F) = (E_1, F) \cap (E_2, F),$
- (v) $(E, F_1) = (E, F_2) \cap (\Phi(X), F_1)$ if E is an FK-space with AD, F_2 is an FK-space and F_1 is a closed subspace of F_2 .

Proof. See [14, Proposition 2.1].

Proposition 2.2 Let M be an Orlicz function and $x \in \ell_M$.

- (i) If $||x|| \le 1$, then $\rho_M(x) \le ||x||$.
- (ii) If ||x|| > 1, then $\rho_M(x) > ||x||$.
- (iii) If $M \in \delta_2$, then $||x|| = 1 \implies \rho_M(x) = 1$.

Proof. See [1, Theorem 1.38 and Theorem 1.39]. \square

3 Main Results

We now turn to our main objective. We begin with giving characterizations of infinite matrices mapping the Nakano vector-valued sequence space $\ell(X,p)$ into the Orlicz sequence space.

Theorem 3.1 Let $p = (p_k)$ be a bounded sequence of positive real numbers with $p_k \leq 1$ for all $k \in N$ and $A = (f_k^n)$ an infinite matrix. Then $A \in (\ell(X, p), \ell_M)$ if and only if

- (1) for each $k \in N$, $(f_k^n(x))_{n=1}^{\infty} \in \ell_M$ for all $x \in X$ and
- (2) there exists $m_0 \in N$ such that

$$\sup_{k} \sup_{\|x\| \le 1} \sum_{n=1}^{\infty} (M \circ (m_0^{-1/p_k} f_k^n))(x) \le 1.$$

Proof. Suppose that $A \in (\ell(X, p), \ell_M)$. Since $e^k(x) \in \ell(X, p)$ for all $x \in X$ and all $k \in N$, we have $Ae^k(x) \in \ell_M$, so (1) is obtained. Now, we shall show that the condition (2) is satisfied. By Zeller's theorem, we have that $A : \ell(X, p) \to \ell_M$ is continuous. Then there exists $m_0 \in N$ such that

$$x = (x_k) \in \ell(X, p), \quad ||x|| \le \frac{1}{m_0} \implies ||Ax|| \le 1.$$
 (3.1)

Let $x \in X$ with $||x|| \le 1$ and $k \in N$. We have $m_0^{-1/p_k} e^k(x) \in \ell(X, p)$ and $||m_0^{-1/p_k} e^k(x)|| \le \frac{1}{m_0}$. By (3.1) we have $||(m_0^{-1/p_k} f_k^n(x))_{n=1}^{\infty}|| = ||A(m_0^{-1/p_k} e^k(x))|| \le \frac{1}{m_0}$.

1. By Proposition 2.2 (1) we obtain that $\sum_{n=1}^{\infty} M(m_0^{-1/p_k} f_k^n(x)) \leq 1$. This implies that

$$\sup_{k} \sup_{\|x\| \le 1} \sum_{n=1}^{\infty} (M \circ (m_0^{-1/p_k} f_k^n))(x) \le 1,$$

so that (2) holds.

Conversely, assume that the conditions (1) and (2) hold. By (2), there is $m_0 \in N$ such that

$$\sum_{n=1}^{\infty} M\left(\left(m_0^{-1/p_k} f_k^n(x)\right) \le 1 \text{ for all } k \in N \text{ and all } x \in X \text{ with } ||x|| \le 1.$$

It follows from Proposition 2.2 (1) that

$$||A(m_0^{-1/p_k}e^k(x))|| = ||(m_0^{-1/p_k}f_k^n(x))_{n=1}^{\infty}|| \le 1$$

for all $k \in N$ and all $x \in X$ with $||x|| \le 1$. Hence, for $x \in X$ with $x \ne 0$, we have

$$||A(m_0^{-1/p_k}e^k(x))|| = ||(m_0^{-1/p_k}f_k^n(x))_{n-1}^{\infty}|| \le ||x||.$$
 (3.2)

Let $x = (x_k) \in \ell(X, p)$ and $k \in N$. By (3.2), we have

$$||Ae^{k}(x_{k})|| = ||A(m_{0}^{1/p_{k}}(m_{0}^{-1/p_{k}}e^{k}(x_{k})))||$$

$$= m_{0}^{1/p_{k}}||A(m_{0}^{-1/p_{k}}e^{k}(x_{k}))||$$

$$\leq m_{0}^{1/p_{k}}||x_{k}||.$$
(3.3)

Since $(m_0^{1/p_k}x_k) \in \ell(X,p)$, we have $(m_0^{1/p_k}x_k) \in c_0(X,p) \subseteq c_0(X)$, hence there is a $k_0 \in N$ such that $m_0^{1/p_k} ||x_k|| < 1$ for all $k > k_0$. Since $0 < p_k \le 1$, we obtain

$$m_0^{1/p_k} \|x_k\| \le \left(m_0^{1/p_k} \|x_k\|\right)^{p_k} = m_0 \|x_k\|^{p_k} \tag{3.4}$$

for all $k > k_0$.

It follows from (3.3) and (3.4) that

$$\sum_{k=1}^{\infty} ||Ae^{k}(x_{k})|| \leq \sum_{k=1}^{\infty} m_{0}^{1/p_{k}} ||x_{k}||$$

$$= \sum_{k=1}^{k_{0}} m_{0}^{1/p_{k}} ||x_{k}|| + \sum_{k=k_{0}+1}^{\infty} m_{0}^{1/p_{k}} ||x_{k}||$$

$$\leq \sum_{k=1}^{k_{0}} m_{0}^{1/p_{k}} ||x_{k}|| + m_{0} \sum_{k=k_{0}+1}^{\infty} ||x_{k}||^{p_{k}}$$

$$< \infty.$$

Hence $\sum_{k=1}^{\infty} Ae^k(x_k)$ converges absolutely in ℓ_M . Since ℓ_M is Banach, $\sum_{k=1}^{\infty} Ae^k(x_k)$ converges in ℓ_M . Let $y=(y_k)\in\ell_M$ be the sum of the series $\sum_{k=1}^{\infty} Ae^k(x_k)$. By the continuity of p_m , we have for each $m\in N$,

$$y_m = p_m(y) = \lim_{n \to \infty} \sum_{k=1}^n p_m(Ae^k(x_k)) = \lim_{n \to \infty} \sum_{k=1}^n f_k^m(x_k)$$

This implies that Ax exists and $(Ax)_m = \sum_{k=1}^{\infty} f_k^m(x_k) = y_m$, so that $Ax \in \ell_M$.

Theorem 3.2 Let $p = (p_k)$ be a bounded sequence of positive real numbers with $p_k \leq 1$ for all $k \in N$ and $A = (f_k^n)$ an infinite matrix. Then $A \in (\ell(X, p), h_M)$ if and only if

- (1) for each $k \in N$, $(f_k^n(x))_{n=1}^{\infty} \in h_M$ for all $x \in X$ and
- (2) there exists $m_0 \in N$ such that

$$\sup_{k} \sup_{\|x\| \le 1} \sum_{n=1}^{\infty} (M \circ (m_0^{-1/p_k} f_k^n))(x) \le 1.$$

Proof. Since h_M is a closed subspace of ℓ_M , the theorem is obtained directly by applications of Theorem 3.1 and Proposition 2.1(v).

When $p_k = 1$ for all $k \in N$, the following result is obtained directly by Theorem 3.1.

Theorem 3.3 For an infinite matrix $A = (f_k^n)$, $A \in (\ell(X), \ell_M)$ if and only if

- (1) for each $k \in N$, $(f_k^n(x))_{n=1}^{\infty} \in \ell_M$ for all $x \in X$ and
- (2) there exists $m_0 \in N$ such that

$$\sup_{k} \sup_{\|x\| \le 1} \sum_{n=1}^{\infty} (M \circ (m_0^{-1} f_k^n))(x) \le 1$$

When $M(t) = |t|^r$, $r \ge 1$, we have $\ell_M = \ell_r$. By an application of Theorem 3.1 the following result is obtained.

Corollary 3.4 Let $p = (p_k)$ be a bounded sequence of positive real numbers with $p_k \leq 1$ for all $k \in N$ and $r \geq 1$. Then for an infinite matrix $A = (f_k^n)$, $A \in (\ell(X, p), \ell_r)$ if and only if

- (1) for each $k \in N$, $\sum_{n=1}^{\infty} |f_k^n(x)|^r < \infty$ for all $x \in X$ and
- (2) there exists $m_0 \in N$ such that

$$\sup_{k} \sup_{\|x\| \le 1} \sum_{n=1}^{\infty} |m_0^{-1/p_k} f_k^n(x)|^r \le 1.$$

When $p_k = 1$ for all $k \in N$, the following result is obtained directly from Corollary 3.4.

Corollary 3.5 For $r \geq 1$ and for an infinite matrix $A = (f_k^n)$, $A \in (\ell(X), \ell_r)$ if and only if

- (1) for each $k \in N$, $\sum_{n=1}^{\infty} |f_k^n(x)|^r < \infty$ for all $x \in X$ and
- (2) $\sup_{k} \sup_{\|x\| \le 1} \sum_{n=1}^{\infty} |f_k^n(x)|^r < \infty$.

Theorem 3.6 Let $p = (p_k)$ be a bounded sequence of positive real numbers with $p_k \leq 1$ for all $k \in N$ and $A = (f_k^n)$ an infinite matrix. Then $A \in (M_0(X, p), \ell_M)$ if and only if

- (1) for each $m \in N$ and $k \in N$, $(m^{1/p_k} f_k^n(x))_{n=1}^{\infty} \in \ell_M$ for all $x \in X$ and
- (2) for each $m \in N$, there exists $r_m \in N$ such that

$$\sup_{k} \sup_{\|x\| \le 1} \sum_{n=1}^{\infty} (M \circ (r_{m}^{-1} m^{1/p_{k}} f_{k}^{n}))(x) \le 1.$$

Proof. It is easy to see that $M_0(X,p) = \bigcup_{n=1}^{\infty} \ell(X,p)_{(n^{-1/p_k})}$, so it implies by Proposition 3.1 (i) that

$$A \in (M_0(X,p),\ell_M) \iff A \in (\ell(X)_{(m^{-1/p_k})},\; \ell_M) \; \text{ for all } m \in N \; .$$

By Proposition 2.1(iii), we have, for each $m \in N$,

$$A \in (\ell(X)_{(m^{-1/p_k})}, \ell_M) \iff (m^{1/p_k} f_k^n)_{n,k} \in (\ell(X), \ell_M).$$

This implies by Theorem 3.3 that

$$A \in (M_0(X, p), \ell_M) \iff (1) \text{ and } (2) \text{ are satisfied.}$$

By putting $M(t) = |t|^r$, where $r \ge 1$, Theorem 3.6 yields the following result.

Corollary 3.7 Let $p = (p_k)$ be a bounded sequence of positive real numbers with $p_k \leq 1$ for all $k \in N$ and $r \geq 1$. Then for an infinite matrix $A = (f_k^n)$, $A \in (M_0(X, p), \ell_r)$ if and only if

(1) for each $m \in N$ and $k \in N$, $\sum_{n=1}^{\infty} |m^{1/p_k} f_k^n(x)|^r < \infty$ and

(2) for each $m \in N$, there exists $r_m \in N$ such that

$$\sup_{k} \sup_{\|x\| \le 1} \sum_{n=1}^{\infty} |r_{m}^{-1} m^{1/p_{k}} f_{k}^{n}(x)|^{r} \le 1.$$

Theorem 3.8 Let $p = (p_k)$ be a bounded sequence of positive real numbers with $p_k \leq 1$ for all $k \in N$, $r \geq 0$ and $A = (f_k^n)$ an infinite matrix. Then $A \in (F_r(X, p), \ell_M)$ if and only if

- (1) for each $k \in N$, $(k^{-r/p_k} f_k^n(x))_{n=1}^{\infty} \in \ell_M$ for all $x \in X$ and
- (2) there exists $m_0 \in N$ such that

$$\sup_{k} \sup_{\|x\| \le 1} \sum_{n=1}^{\infty} (M \circ (m_0^{-1/p_k} k^{-r/p_k} f_k^n))(x) \le 1.$$

Proof. Since $F_r(X,p) = \ell(X,p)_{(k^{r/p_k})}$, it follows from Proposition 2.1 (iii) that

$$A \in (F_r(X, p), \ell_M) \iff (k^{-r/p_k} f_k^n)_{n,k} \in (\ell(X, p), \ell_M).$$

It implies by Theorem 4.1 that

$$(k^{-r/p_k}f_k^n)_{n,k} \in (\ell(X,p), \ \ell_M) \iff \text{the conditions (1) and (2) hold.}$$

Acknowledgements

The author would like to thank Thailand Research Fund for the financial support during the preparation of this paper.

References

- [1] S.T. Chen, geometry of Orlicz spaces, Dissertationes Math (356). 1996.
- [2] R.G. Cooke, *Infinite Matrices and Sequence Spaces*, London: Macmillan, 1950.
- [3] K.-G. Grosse-Erdmann, The structure of the sequence spaces of Maddox, Canad. J. Math., (1992),298-307.

[4] K.-G. Grosse-Erdmann, Matrix transformations between the sequence spaces of Maddox, J. of Math. Anal. Appl., 180(1993), 223-238.

- [5] M.A. Krasnoselskii and Ya. B. Rutickii, Convex Functions and Orlicz Spaces, Nordhoff Groningen, 1961.
- [6] I.J. Maddox, Spaces of strongly summable sequences, Quart. J. Math. Oxford, Ser. (2) 18(1967), 345-355.
- [7] I.J. Maddox, Paranormed sequence spaces generated by infinite matrices, *Proc. Cambridge Philos. Soc.*, **64**(1968), 335 340.
- [8] I.J. Maddox, *Elements of Functional Analysis*, Cambridge University Press, Cambridge, London, New York, Melbourne, 1970.
- [9] J. Musielak, Orlicz Spaces and Modular Spaces, Lecture Notes in Math. 1034, Springer-Verlag, 1989.
- [10] H. Nakano, Modulared sequence spaces, Proc. Japan. Acad., 27(1951), 508-512.
- [11] M.M. Rao and Z.D. Ren, *Theory of Orlicz Spaces*, Marcel Dekker Inc. New York-Basel-Hong Kong, 1991.
- [12] S. Simons, The spaces $\ell(p_v)$ and $m(p_v)$, Proc. London. Math. Soc., 15(1965),422-436.
- [13] S. Suantai, On Matrix Transformations Related to Nakano Vector-Valued Sequence Space, Bull. Cal. Math. Soc., **91**, **(3)**(1999), 221 226.
- [14] S. Suantai, Matrix Transformations of Some Vector-Valued Sequence Spaces , *Marcel Dekker*. Inc. New York - Basel **213**(2000),489 - 495.
- [15] S. Suantai and C. Sudsukh, Matrix Transformations of Nakano Vector-Valued Sequence Spaces, Kyungpook Math. J. 40 (1)(2000),93-97.
- [16] C.X. Wu and L. Liu, Matrix transformations on some vector-valued sequence spaces. SEA. Bull. Math., 17,1(1993),83-96.

(Received 5 June 2003)

Suthep Sauntai,
Department of Mathematics.
Chiangmai University,
Chiangmai 50200. Thailand
E-mail: scmti005@chiangmai.ac.th