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1 Introduction

In this study we are concerned with the problem of approximating a solution
x∗ of the equation

F (x) = 0, (1.1)
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where F is a Fréchet-differentiable operator defined on a convex subset D of a
Banach space X with values in a Banach space Y.

Many problems in computational sciences and other disciplines can be brought
in a form like (1.1) using mathematical modeling [1, 2, 3, 4]. The solutions of these
equations can rarely be found in closed form. That is why most solution methods
for these equations are iterative. The study about convergence matter of iterative
procedures is usually based on two types: semi-local and local convergence anal-
ysis. The semi-local convergence matter is, based on the information around an
initial point, to give conditions ensuring the convergence of the iterative procedure;
while the local one is, based on the information around a solution, to find esti-
mates of the radii of convergence balls. In particular, the practice of Numerical
Functional Analysis for finding solution x∗ of equation (1.1) is essentially con-
nected to variants of Newton’s method. This method converges quadratically to
x∗ if the initial guess is close enough to the solution. Iterative methods of conver-
gence order higher than two such as Chebyshev-Halley-type methods [5, 6, 1, 2],
[7]-[15], [4]–[17] require the evaluation of the second Fréchet-derivative, which is
very expensive in general. However, there are integral equations, where the second
Fréchet-derivative is diagonal by blocks and inexpensive or for quadratic equations
the second Fréchet-derivative is constant. Moreover, in some applications involv-
ing stiff systems, high order methods are useful. That is why in a unified way
we study the local convergence of Jarratt-type methods(JTM) defined for each
n = 0, 1, 2, · · · by

yn = xn − F ′(xn)
−1F (xn),

Hn = F ′(xn)
−1[F (xn) +

2

3
γ(yn − xn)− F ′(xn)], (1.2)

xn+1 = yn − 3α

4
(I + (δ + β)Hn))

−1
(I + βHn)Hn(yn − xn),

where x0 is an initial point, I is the identity operator and α, β, γ, δ are real param-
eters. Many popular iterative methods are special cases of (JTM) method. For
example, if α = 0, we obtain Newton’s method [1, 2, 3, 4, 26], if α = γ = 1, δ = 3

2
and β = 0 we obtain the Jarratt method [18, 19] and for if α = γ = 0, δ = 3

2
and β = − 3

2 , we obtain the inverse free Jarratt method [20]. Other choices of
parameters α, β, γ and δ are also possible. The usual conditions for the semi-local
convergence of these methods are (C):
(C1) There exists Γ0 = F ′(x0)

−1 and ‖Γ0‖ ≤ β;

(C2)
‖Γ0F (x0)‖ ≤ η;

(C3)
‖F ′′(x)‖ ≤ β1 for each x ∈ D;

(C4)
‖F ′′′(x)‖ ≤ β2 for each x ∈ D;
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(C5)
‖F ′′′(x)− F ′′′(y)‖ ≤ β3‖x− y‖ for each x, y ∈ D.

The local convergence conditions are similar but x0 is x∗ in (C1) and (C2). There
is a plethora of local and semi-local convergence results under the (C) conditions
[1]–[31]. The conditions (C4) and (C5) restrict the applicability of these methods.
That is why, in our study we assume the conditions (A):

(A1) F : D → Y is Fréchet-differentiable and there exists x∗ ∈ D such that
F (x∗) = 0 and F ′(x∗)−1 ∈ L(Y,X);

(A2)

‖F ′(x∗)−1(F ′(x)−F ′(x∗))‖ ≤ L0‖x−x∗‖p for each x ∈ D and some p ∈ (0, 1];

(A3)

‖F ′(x∗)−1(F ′(x)−F ′(y))‖ ≤ L‖x−y‖p for each x, y ∈ D and some p ∈ (0, 1];

(A4)

‖F ′(x∗)−1F ′(x)‖ ≤ K for each x ∈ D.

and

(A5)

|1− 2

3
γ|+ 2

3
|γ| ≤ 1.

Notice that the (A) conditions are weaker than the (C) conditions. Hence, the
applicability of (JTM) is expanded under the (A) conditions. Moreover, in this
study we extend the local convergence results for (JTM) method by considering
the inexact Newton method (INM) defined for each n = 0, 1, 2, · · · by

yn = xn − F ′(xn)
−1F (xn),

xn+1 = yn − zn, (1.3)

where {zn} ∈ X is a null sequence, chosen to force convergence of sequence {xn}
to x∗. Notice that if for each n = 0, 1, 2, · · ·

zn =
3α

4
(I + (δ + β)Hn))

−1
(I + βHn)Hn(yn − xn), (1.4)

then (JTM) reduces to (INM). Several other choices of sequence {zn} are also
possible [1, 2, 3, 4].

The paper is organized as follows: In Section 2 we present the local convergence
of these methods. The numerical examples are given in the concluding Section 3.

In the rest of this study, U(w, q) and U(w, q) stand, respectively, for the open
and closed ball in X with center w ∈ X and of radius q > 0.
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2 Local convergence

In this section we present the local convergence of method (JTM) under the
(A) conditions. It is convenient for the local convergence of (JTM) to introduce
some functions and parameters. Define parameters R and rA by

R = (
1

L0
)p and rA =

(

1 + p

(1 + p)L0 + L

)
1
p

. (2.1)

Notice that
rA < R

and
Lt1+p

(1 + p)(1− L0tp)
≤ t for each t ∈ [0, rA] (2.2)

Define function g on [0, R] by

g(t) = (1− L0t
p)− (

2|γ|
3

)p|δ + β|LKptp. (2.3)

We have that g(0) = 1 > 0 and g(R) = −(2|γ|3L0
)|δ + β|LKp < 0. Hence, it follows

from the intermediate value theorem that function g has zeros in (0, R). Denote
by r0 the smallest such root. Then, we also have that

g(t) > 0 for each t ∈ [0, r0). (2.4)

Define functions f and f1 on [0, r0) by

f(t) =
Ltp

(1 + p)(1− L0tp)
+

3

4
(
2|γ|
3

)p|α| [(1 − L0t
p) + (2|γ|3 )pLKp|β|tp]
(1− L0tp)1+p

LK1+ptp

g(t)
(2.5)

and
f1(t) = f(t)− 1. (2.6)

We have that
f1(0) = f(0)− 1 = −1 < 0

and
f1(t) → ∞ as t→ r−0 .

Hence, function f1 has zeros in (0, r0). Denote by r1 the smallest such zero. Set

r∗ = min{rA, r1}. (2.7)

Choose
r ∈ [0, r∗). (2.8)

Then, we have that
f(t) < 1 for each t ∈ [0, r]. (2.9)

Next, we show the main local convergence result for (JTM) under (A) conditions.
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Theorem 2.1. Suppose that the (A) conditions and U(x∗, r) ⊆ D, hold, where
r is given by (2.8). Then, sequence {xn} generated by (JTM) method (1.2) for
any x0 ∈ U(x∗, r) is well defined, remains in U(x∗, r) for each n = 0, 1, 2, · · · and
converges to x∗. Moreover, the following estimates hold for each n = 0, 1, 2, · · · .

‖yn − x∗‖ ≤ L‖xn − x∗‖1+p

(1 + p)(1− L0‖xn − x∗‖p) ≤ ‖xn − x∗‖ (2.10)

and

‖xn+1 − x∗‖ ≤ f(‖xn − x∗‖)‖xn − x∗‖ < ‖xn − x∗‖. (2.11)

Proof. We shall use induction to show that estimates (2.10), (2.11) hold and
yn, xn+1 ∈ U(x∗, r) for each n = 0, 1, 2, · · · . Using (A2) and the hypothesis x0 ∈
U(x∗, r) we have that

‖F ′(x∗)−1(F ′(x0)− F ′(x∗))‖ ≤ L0‖x0 − x∗‖p < L0r
p < 1. (2.12)

It follows from (2.12) and the Banach Lemma on invertible operators [1, 2, 3, 4]
that F ′(x0)

−1 ∈ L(Y,X) and

‖F ′(x0)
−1F ′(x∗)‖ ≤ 1

1− L0‖x0 − x∗‖p <
1

1− L0rp
. (2.13)

Using the first substep of method (JTM) for n = 0, (2.13), (A3), (2.8) and F (x
∗) =

0 we get that

y0 − x∗ = x0 − x∗ − F ′(x0)
−1F ′(x0)

= −[F ′(x0)
−1F ′(x∗)][F ′(x∗)−1

∫ 1

0

(F ′(x∗ + τ(x0 − x∗))

−F ′(x0))dτ(x0 − x∗)] (2.14)

so

‖y0 − x∗‖ ≤ ‖F ′(x0)
−1F ′(x∗)‖

‖F ′(x∗)−1

∫ 1

0

(F ′(x∗ + τ(x0 − x∗))

−F ′(x0))dτ‖‖x0 − x∗‖

≤ L‖x0 − x∗‖1+p

1− L0‖x0 − x∗‖p

=
L‖x0 − x∗‖p

1− L0‖x0 − x∗‖p
≤ ‖x0 − x∗‖ < r, (2.15)
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which shows (2.10) for n = 0 and that y0 ∈ U(x∗, r). Note that u0 = x0 +
2
3γ(y0−

x0) ∈ U(x∗, r). Indeed, we have by (A5) that

‖u− x∗‖ = ‖x0 − x∗ +
2

3
γ(y0 − x∗ + x∗ − x0)‖

≤ |1− 2

3
γ|‖x0 − x∗‖+ 2

3
|γ|‖y0 − x∗‖

≤ (|1− 2

3
γ|+ 2

3
|γ|)r ≤ r.

We also have by (2.13), (1.2), (A3) that

‖H0‖ ≤ ‖F ′(x0)
−1F ′(x∗)‖‖F ′(x∗)−1(F ′(x0 +

2

3
γ(y0 − x0))− F ′(x0)‖

≤ 1

1− L0‖x0 − x∗‖pL‖
2

3
γ(y0 − x0)‖p

≤ L(2|γ|3 )p

1− L0‖x0 − x∗‖p ‖F
′(x0)

−1F ′(x∗)‖p

‖F ′(x∗)−1

∫ 1

0

F ′(x∗ + τ(x0 − x∗))dτ(x0 − x∗)‖p

≤ L(2|γ|3 )p

1− L0‖x0 − x∗‖p
Kp‖x0 − x∗‖p

(1− L0‖x0 − x∗‖p)p

≤ L(2|γ|3 )pKp‖x0 − x∗‖p
(1 − L0‖x0 − x∗‖p)1+p

≤ L(2|γ|3 )pKprp

(1 − L0rp)1+p
. (2.16)

Moreover, we have by (2.4), (2.7), (2.8), (2.13), (2.16) that

|δ + β|‖H0‖ ≤ |δ + β| (
2|γ|
3 )pKpL‖x0 − x∗‖p

(1− L0‖x0 − x∗‖p)1+p

≤ |δ + β| (
2|γ|
3 )pKpLrp

(1− L0rp)1+p
< 1. (2.17)

It follows from (2.17) and the Banach Lemma that (I + (δ + β)H0)
−1 exists and

‖(I + (δ + β)H0)
−1‖ ≤ 1

1− |δ + β| (
2|γ|
3

)pKpLrp

(1−L0rp)1+p

. (2.18)



A unified local convergence for Jarratt-type methods ... 171

Furthermore, using (2.16), we get that

‖I + βH0‖ ≤ 1 + |β|‖H0‖

≤ 1 +
(2|γ|3 )p|β|KpL‖x0 − x∗‖p
(1− L0‖x0 − x∗‖p)1+p

≤ 1 +
(2|γ|3 )p|β|KpLrp

(1− L0rp)1+p
. (2.19)

Then, using the second substep in (JTM) for n = 0, (2.15), (2.5), (2.8), (2.9),
(2.16), (1.2), (2.18) and (2.19) we get in turn that

‖x1 − x0‖ ≤ ‖y0 − x∗‖+ 3

4
|α|‖(I + (δ + β)H0)

−1‖‖I + βH0‖‖H0‖‖y0 − x0‖
≤ f(‖x0 − x∗‖)‖x0 − x∗‖ < ‖x0 − x∗‖ < r, (2.20)

which shows (2.11) for n = 0 and that x1 ∈ U(x∗, r). To complete the induction,
simply replace in all preceding estimates x0, y0, x1 by xk, yk, xk+1, respectively to
arrive at

‖xk+1 − x0‖ ≤ f(‖xk − x∗‖)‖xk − x∗‖ < ‖xk − x∗‖ < r

and

‖yk − x∗‖ ≤ L‖xk − x∗‖1+p

(1 + p)(1− L0‖xk − x∗‖p) ≤ ‖xk − x∗‖ ≤ r

which complete the induction. Finally, from the estimate ‖xk+1−x∗‖ < ‖xk−x∗‖,
we deduce that limk→∞ xk = x∗. ✷

Remark 2.2. (a) Condition (A2) can be dropped, since this condition follows
from (A3). Notice, however that

L0 ≤ L (2.21)

holds in general and L
L0

can be arbitrarily large [6]–[22].

(b) In view of condition (A2) and the estimate

‖F ′(x∗)−1F ′(x)‖ = ‖F ′(x∗)−1[F ′(x)− F ′(x∗)] + I‖
≤ 1 + ‖F ′(x∗)−1(F ′(x)− F ′(x∗))‖
≤ 1 + L0‖x− x∗‖p,

condition (A4) can be dropped and K can be replaced by

K(r) = 1 + L0r
p. (2.22)

(c) It is worth noticing that r is such that

r < rA for α 6= 0. (2.23)
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The convergence ball of radius rA was given by us in [22, 23, 5] for Newton’s
method under conditions (A1)- (A3). Estimate (2.23) shows that the conver-
gence ball of higher than two (JTM) methods is smaller than the convergence
ball of the quadratically convergent Newton’s method. The convergence ball
given by Rheinboldt [4] (p=1)for Newton’s method is

rR =
2

3L
< rA (2.24)

if L0 < L and rR
rA

→ 1
3 as L0

L
→ 0. Hence, we do not expect r to be larger

than rA no matter how we choose L0, L and K. Finally note that if α = 0,
then (JTM) reduces to Newton’s method and r = rA.

(d) The local results can be used for projection methods such as Arnoldi’s method,
the generalized minimum residual method (GMREM), the generalized con-
jugate method(GCM) for combined Newton/finite projection methods and
in connection to the mesh independence principle in order to develop the
cheapest and most efficient mesh refinement strategy [1, 2, 4].

(e) The results can also be used to solve equations where the operator F ′ satisfies
the autonomous differential equation [1, 2, 3, 4]:

F ′(x) = T (F (x)), (2.25)

where T is a known continuous operator. Since F ′(x∗) = T (F (x∗)) = T (0),
we can apply the results without actually knowing the solution x∗. Let as an
example F (x) = ex − 1. Then, we can choose T (x) = x+ 1 and x∗ = 0.

In order for us to present the local results for (INM), let us suppose the (A′)
conditions: (A′

i)=(Ai), i = 1, 2, 3, 4;
(A′

5) There exists a sequence {zn} in X and ϕ : [0, r̄) → [0,∞) continuous,
nondecreasing with ϕ(0) = 0 and ϕ(t) → ∞ as t → r̄− for some r̄ ∈ [0, R) such
that

‖zn‖ ≤ ϕ(‖xn − x∗‖)‖xn − x∗‖ for each n = 0, 1, 2, · · · .
A possible choice for sequence {zn} is given by (1.4). In this case we can

choose

ϕ(t) = f(t)− Ltp

(1 + p)(1 − L0tp)
.

Define functions ψ and ψ1 on [0, r̄) by

ψ(t) =
Ltp

(1 + p)(1 − L0tp)
+ ϕ(t)

and
ψ1(t) = ψ(t)− 1.

We have that ψ1(0) = ψ(0) − 1 = −1 < 0 and ψ1(t) → ∞ as t → r̄−. Then,
function ψ1 has zero in (0, r̄). Denote by r2 the smallest such zero. Set

r̄∗ = min{r2, rA}
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and choose
r ∈ [0, r̄∗). (2.26)

Then, we have that
ψ(t) < 1 for each t ∈ [0, r).

As in the proof of Theorem 2.1 using induction, the conditions (A′
i) and the

estimate

‖xn+1 − x∗‖ ≤ ‖yn − x∗‖+ ‖zn‖

≤ L‖xn − x∗‖p
(1 + p)(1 − L0‖xn − x∗‖p) + ϕ(‖xn − x∗‖)‖xn − x∗‖

= ψ(‖xn − x∗‖)(‖xn − x∗‖

we arrive at the following analog of Theorem 2.1 but for (INM) under the (A′
i)

conditions.

Theorem 2.3. Suppose that the (A′) conditions and U(x∗, r) ⊆ D, hold, where
r is given by (2.26). Then, sequence {xn} generated by (INM) method (1.3) for
any x0 ∈ U(x∗, r) is well defined, remains in U(x∗, r) for each n = 0, 1, 2, · · · and
converges to x∗. Moreover, the following estimates hold for each n = 0, 1, 2, · · · .

‖yn − x∗‖ ≤ L‖xn − x∗‖1+p

(1 + p)(1− L0‖xn − x∗‖p) ≤ ‖xn − x∗‖

and
‖xn+1 − x∗‖ ≤ ψ(‖xn − x∗‖)‖xn − x∗‖ < ‖xn − x∗‖.

Notice that it follows from the definition of function ψ and the properties of
function ψ that r < rA (and r = rA if ϕ = 0).

3 Numerical Examples

We present numerical examples where we compute the radii of the convergence
balls.

Example 3.1. Let X = Y = R. Define function F on D = [1, 3] by

F (x) =
2

3
x

3
2 − x. (3.1)

Then, x∗ = 9
4 = 2.25, F ′(x∗)−1 = 2, L0 = 1 < L = 2, p = 1 and K = 2(

√
3 − 1),

r1 = 0.2144, r ∈ [0, 0.2144) and rA = 0.6840.

Example 3.2. Let X = Y = R
3, D = U(0, 1). Define F on D for v = x, y, z) by

F (v) = (ex − 1,
e− 1

2
y2 + y, z). (3.2)
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Then, the Fréchet-derivative is given by

F ′(v) =





ex 0 0
0 (e− 1)y + 1 0
0 0 1



 .

Notice that x∗ = (0, 0, 0), F ′(x∗) = F ′(x∗)−1 = diag{1, 1, 1}, L0 = e − 1 < L =
K = e, p = 1. r1 = 0.1399, r ∈ [0, 0.1399) and rA = 0.3599.

Example 3.3. Let X = Y = C[0, 1], the space of continuous functions defined on
[0, 1]be and equipped with the max norm. Let D = U(0, 1). Define function F on
D by

F (ϕ)(x) = ϕ(x) − 5

∫ 1

0

xθϕ(θ)3dθ. (3.3)

We have that

F ′(ϕ(ξ))(x) = ξ(x) − 15

∫ 1

0

xθϕ(θ)2ξ(θ)dθ, for each ξ ∈ D.

Then, we get that x∗ = 0, L0 = 7.5, L = 15, p = 1 and K = K(r) = 1 + 7.5r.
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