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Abstract : In this paper, we apply the Reduced Differential Transform Method
(RDTM) to solve two Physics models of nonlinear partial differential equations
(NLPDEs) such as, Telegraph equation, Cahn-Hilliard equation, and two nonho-
mogeneous NLPDEs equation. The study outlines the significant of the method
and the results showed that the method reduces the numerical calculations. The
examples we present in this paper reveals that the proposed method is very ef-
fective, simple and can be applied to other nonlinear partial differential equations
models in the area of Mathematical Physics and Engineering.
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1 Introduction

Most of the applications that arises in Mathematical physics and Engineering
fields can be described by partial differential equations (PDEs). In Physics for
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example, the heat flow and the wave propagation phenomena are well described
by Partial differential equations see [1, 2]. The standard form of the telegraph
equation [3] is given by uxx = autt + but + cu, where u = u(x, t) is the resistance,
and a, band c are constants related to the inductance, capacitance and conductance
of the cable respectively. Note that the telegraph equation is a linear partial
differential equation. The telegraph equation arises in the propagation of electrical
signals along a telegraph line. If we set a = 0 and c = 0, because of electrical
properties of the cable, we then obtain uxx = but, which is the standard linear
heat equation. On the other hand, the electrical properties may lead to b = 0 and
c = 0; hence we obtain uxx = autt, which is the standard linear wave equation.
In this paper, we were being able to find approximate and exact solutions for the
following NLPDEs: First, the Telegraph equation:

uxx = autt + but + cu, (1.1)

subject to the initial conditions

u(x, 0) = 1 + sinh(2x); ut(x, 0) = −2. (1.2)

Second, the Cahn-Hilliard equation:

ut − uxx − u+ u3 = 0, (1.3)

subject to the initial condition

u(x, 0) =
1

1 + e

(

x
√

2

) . (1.4)

Third, consider the nonhomogeneous equation:

ut −
1

4
(ux)

2 = x2, (1.5)

subject to the initial condition

u(x, 0) = 0; ut(x, 0) = x2. (1.6)

Finally, consider the nonhomogeneous equation:

ut +
1

36
x (uxx)

2 = x3, (1.7)

subject to the initial condition

u(x, 0) = 0; ut(x, 0) = x3. (1.8)

The aim of the study is to be able to use the Reduced Differential Transform
Method (RDTM) as an alternative method to the existing methods in solving dif-
ferent types of nonlinear partial differential equations (NLPDEs). Many authors
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used different methods to solve NLPDEs, to name few: The DTM, ADM, VIM,
Tanh-Coth method, and Sine-Cosine method. Keskin, in his PhD thesis [4–6],
introduced the reduced form of the differential transform method (DTM) as re-
duced differential transform method (RDTM) and he used the RDTM to solve the
Gas Dynamics Equation and linear and nonlinear Klein Gordon Equations. Also,
Keskin and Oturanc (2010) used the RDTM to solve linear and nonlinear wave
equations and they showed the effectiveness, and the accuracy of the proposed
method. Moreover, they showed that the number of iterations it takes to get an
approximate solutions is less than the one used by the DTM. The most important
advantage of the RDTM is the fact that it provides us with analytic approximate
solution and in many cases it gives an exact solution, in a rapidly convergent se-
quence with less computed terms. İbiş and Bayram [7] used the RDTM to find
approximate solutions for the (KdVB) equation, Drinefel’d–Sokolov–Wilson equa-
tions, coupled Burgers equations and modified Boussinesq equation. Also, Alquran
[6] used the DTM to solve the Cahn-Hilliard equation and Wazwaz [8], find ex-
act solution to the Telegraph equation. Finally, Rawashdeh [9], used the RDTM
to find exact and approximate solution for Gardner equation, Variant Nonlinear
Water Wave equation (VNWW), and the Fifth-Order Korteweg-de Vries (FKdV)
equation.

The rest of this paper is organized as follows: In Section 2, the reduced differ-
ential transform method is introduced. Section 3 is devoted to apply the method
to three test problems to show the effectiveness of the RDTM. Section 4 discussion
and conclusion of this paper.

2 Reduced Differential Transform Method (RDTM)

In this section, we will give the methodology of the RDTM. So let’s start with
a function of two variables u (x, t) which is analytic and k−times continuously
differentiable with respect to time t and space x in the domain of our interest.
Assume we can represent this function as a product of two single-variable func-
tions u (x, t) = f(x).g(t). From the definitions of the DTM, the function can be
represented as follows:

u (x, t) =

(

∞
∑

i=0

F (i)xi

)





∞
∑

j=0

G(j)tj



 =

∞
∑

k=0

Uk(x) t
k. (2.1)

where Uk(x) is the transformed function of u (x, t) which can be defined as:

Uk(x) =
1

k!

[

∂k

∂tk
u(x, t)

]

t=0

. (2.2)

From equations (2.1) and (2.2) we can deduce

u (x, t) =

∞
∑

k=0

1

k!

[

∂k

∂tk
u(x, t)

]

t=0

tk =

∞
∑

k=0

1

k!
Uk(x) t

k. (2.3)



156 Thai J. Math. 13 (2015)/ M. S. Rawashdeh and N. A. Obeidat

Note that from the above discussion, one can realize that the RDTM is derived
from the power series expansion.

Now we will use the following theorems which can be deduced from Equations
(2.1)–(2.3):

Theorem 2.1. If f(x, t) = αu(x, t)± β v(x, t), then Fk(x) = αUk(x) ± β Vk(x),
where α and β are constant.

Theorem 2.2. If f(x, t) = u(x, t). v(x, t), then Fk(x) =
∑k

i=0 Ui(x) Vk−i(x).

Theorem 2.3. If f(x, t) = u(x, t). v(x, t). w(x, t) then Fk(x) =
∑k

i=0

∑i

j=0 Uj(x)
Vi−j(x) Wk−i(x).

Theorem 2.4. If f(x, t) = ∂n

∂tn
u(x, t), then Fk(x) =

(k+n)!
K! Uk+n(x).

Theorem 2.5. If f(x, t) = ∂n

∂xnu(x, t), then Fk(x) =
∂n

∂xnUk(x).

Theorem 2.6. If f(x, t) = xmtnu(x, t), then Fk(x) = xmUk−n (x).

Theorem 2.7. If f(x, t) = xmtn, then Fk(x) = xmδ (k − n), where δ(k − n) =
{

1, k = n

0, k 6= n

}

.

The proofs of the above theorems and more can be found in [4–6].
Now, we illustrate the RDTM by using the Cahn–Hilliard equation in standard

form:

L (u(x, t)) +R (u(x, t)) +N (u(x, t)) = 0 (2.4)

with initial conditions
u(x, 0) = f(x) (2.5)

where L = ∂
∂t

is a linear operator, N (u(x, t)) = u3 is the remaining linear term.
Using the theorems above, we can derive the following recursive relation:

(k + 1)Uk(x) = R (Uk(x))−N (Uk(x)) + Uk(x) (2.6)

where, R (Uk(x)), Uk(x) and N (Uk(x)) are the transformations of R (u(x, t)),
u(x, t) and N (u(x, t)) respectively. Now from equation (2.5), we can write the
initial condition as:

U0(x) = f(x) (2.7)

To find all other iterations, we first substitute equation (2.7) into equation (2.6)
and then we find the values of Uk(x).

⌢
u (x, t) =

n
∑

k=0

Uk(x) t
k (2.8)

where n is the number of iterations we use to find the approximate solution. Hence,

the exact solution of the problem is given by u(x, t) = limn→∞

⌢
u (x, t).
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3 Numerical Examples

In this section, we will give test problems by applying the RDTM to four
numerical examples and then compare our approximate solutions to the exact
solutions.

Example 3.1. First, we consider the Telegraph equation:

uxx = utt + 4ut + 4u, (3.1)

subject to the initial conditions

u(x, 0) = 1 + sinh(2x);ut(x, 0) = −2;u(0, t) = e−2t;ux(0, t) = 2, (3.2)

where the exact solution is

u(x, t) = sinh(2x) + e−2t. (3.3)

Applying the RDTM to (3.1) and (3.2), we obtain the recursive relation

Uk+1(x) =
1

(k + 2)(k + 1)

(

∂2

∂x2
(Uk(x)) − 4(k + 1)Uk(x) − 4Uk(x)

)

, (3.4)

where the Uk(x), is the transform function of the t−dimensional spectrum. Note
that

U0(x) = 1 + sinh(2x); U1(x) = −2. (3.5)

Now, substitute Eq. (3.5) into Eq. (3.4) to obtain the following:

U2(x) = 2, U3(x) =
4

3
, .... (3.6)

And so on. So after few iterations, the differential inverse transform of {Uk(x)}
∞

k=0

will provide us with the following approximate solution:

⌢
u (x, t) =

∑

∞

k=0 Uk(x) t
k = U0(x) + U1(x) t+ U2(x) t

2 + ...

= 1 + sinh(2x)− 2t+ 4
3 t

2 + ...

= 1− 2t+ 2t2 − 4t3

3 + 2t4

3 − 4t5

15 + 4t6

45 − 8t7

315 + 2t8

315 + ...+ sinh(2x)

= e−2t + sinh(2x).

Note that this is the exact solution of Eq. (3.1).
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Example 3.2. We consider the Cahn-Hilliard equation

ut − uxx − u+ u3 = 0, (3.7)

subject to the initial condition

u(x, 0) =
1

1 + e

(

x
√

2

) , (3.8)

where the exact solution is

u(x, t) =
1

1 + e

(

x
√

2
−

3t

2

) . (3.9)

Similar to the previous example, using the theorems above applied to Eq.(3.8) and
Eq. (3.7) we get

Uk+1(x) =
1

k + 1





∂2Uk(x)

∂x2
+ Uk(x)−

k
∑

i=0

i
∑

j=0

Ui−j(x)Uj(x)Uk−i(x)



 , (3.10)

where the Uk(x), is the transform function of the t−dimensional spectrum. Note
that

U0(x) =
1

1 + e

(

x
√

2

) . (3.11)

Now, substitute Eq. (3.11) into Eq. (3.10) to obtain the following:

U1(x) =
(192e

x
√

2 +576e
3x
√

2 +576e
√

2x+192e2
√

2x)

128

(

1+e
x

√

2

)

5

U2(x) =
(−144e

x
√

2 +144e
3x
√

2 −144e
√

2x+144e2
√

2x)

128

(

1+e
x
√

2

)

5 , ....

(3.12)

So after the fourth iteration, the differential inverse transform of {Uk(x)}
4
k=0 will

give the following approximate solution:
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⌢
u (x, t) =

∑4
k=0 Uk(x) t

k

= U0(x) + U1(x) t+ U2(x) t
2 + U3(x) t

3 + U4(x) t
4

= 128+512e
x

√

2 +512e
3x
√

2 +768e
√

2x+128e2
√

2x

128

(

1+e
x

√

2

)

5

+ (192e
x
√

2 +576e
3x
√

2 +576e
√

2x+192e2
√

2x)t

128

(

1+e
x

√

2

)

5 + (−144e
x
√

2 +144e
3x
√

2 −144e
√

2x+144e2
√

2x)t2

128

(

1+e
x

√

2

)

5

+ (72e
x

√

2 −216e
3x
√

2 −216e
√

2x+72e2
√

2x)t3

128

(

1+e
x

√

2

)

5 + (−27e
x
√

2 −297e
3x
√

2 +297e
√

2x+27e2
√

2x)t4

128

(

1+e
x

√

2

)

5 .

Hence the approximate solution converges rapidly to the exact solution of Eq. (3.7).

Figure 1: The approximate, exact solutions and absolute error, respectively for
Example 3.2 when −0.5 < x < 0.5 and 0 < t < 0.001.

Figure 2: The exact and approximate solutions for Example 3.2 when -0.5< x
<0.5 and t = 0.02, 0.04, 0.06, 0.08, 0.1.
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Example 3.3. We consider the nonlinear nonhomogeneous PDE

ut −
1

4
(ux)

2
= x2, (3.13)

subject to the initial condition

u(x, 0) = 0 = U0(x), (3.14)

where the exact solution
u(x, t) = x2 tan(t). (3.15)

Now, we apply the RDTM to Eq. (3.13) and Eq. (3.14) we get

Uk+1(x) =

(

1

k + 1

)

(

x2δ(k) +
1

4

k
∑

i=0

∂

∂x
Ui(x)

∂

∂x
Uk−i(x)

)

. (3.16)

So for k = 0, we obtain U1(x) = x2. Now for k ≥ 1 we obtain

U2(x) = 0, U3(x) =
x2

3
, U4(x) = 0, U5(x) =

2x2

15
, .... (3.17)

Thus
u(x, t) = tx2 + t3x2

3 + 2t5x2

15 + 17t7x2

315 + 62t9x2

2835 + ...

= x2
(

t+ t3

3 + 2t5

15 + 17t7

315 + 62t9

2835 +O[t]11
)

= x2 tan(t).

This is the exact solution of Eq. (3.13) as was given in [8, p-324].

Example 3.4. We consider the nonlinear nonhomogeneous PDE

ut +
1

36
x (uxx)

2
= x3, (3.18)

subject to the condition
u(x, 0) = 0, (3.19)

where the exact solution is

u(x, t) = x3 tanh(t). (3.20)

Applying the RDTM to equ. (3.19) and equ. (3.18), we obtain the recursive
relation

Uk+1(x) =

(

−1

36 (k + 1)

)

(

x3δ(k) + x

k
∑

i=0

∂2

∂x2
Ui(x)

∂2

∂x2
Uk−i(x)

)

, (3.21)
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So for k = 0, we obtain U1(x) = x3. Now for k ≥ 1 we obtain

U2(x) = 0, U3(x) = −
x3

3
, U4(x) = 0, U5(x) =

2x3

15
, .... (3.22)

Thus, the exact solution of Eq. (3.17) is

u(x, t) = tx3 − t3x3

3 + 2t5x3

15 − 17t7x3

315 + 62t9x3

2835 + ...

= x3
(

t− t3

3 + 2t5

15 − 17t7

315 + 62t9

2835 +O[t]11
)

= x3 tanh(t).

This is the exact solution of Eq. (3.18) as was given in [8, p-329].

4 Tables of Numerical Calculations

In this section, we shall illustrate the accuracy and efficiency of the RDTM.
For this purpose, we can evaluate the approximate solution using the nth-order
approximation. Table 1 shows the exact solution, the approximate solution and
the absolute error for Cahn–Hilliard equation obtained by the RDTM. We must
emphasize here only the fourth-order approximate was used for the same values of
x and t, specifically, x = -0.5, -0.3, 0.3, 0.5 and t = 0.0002, 0.0004, 0.0006, 0.001.

Table 1. Comparison of the absolute error of the solution for example (3.2), by
RDTM
x t Exact Solution RDTM Solution Abs-error-RDTM-

(n=4)

−0.5 0.0002 0.5875517031584103 0.5875517031584103 2.01088542E−17

0.0004 0.587624401658184 0.587624401658184 6.87902720E−17

0.0006 0.5876970963359607 0.5876970963359608 7.03708157E−17

0.001 0.5878424742136453 0.5878424742136453 2.80766342E−17

−0.3 0.0002 0.5529091870441258 0.5529091870441258 1.76855678E−17

0.0004 0.5529833460518396 0.5529833460518396 5.33603154E−17

0.0006 0.5530575027020757 0.5530575027020757 3.92289032E−17

0.001 0.5532058089172163 0.5532058089172162 8.81393004E−17

0.3 0.0002 0.4472391380308357 0.44723913803083565 2.30267789E−18

0.0004 0.44731330409163234 0.44731330409163234 5.22791547E−18

0.0006 0.4473874724970048 0.4473874724970048 3.10629862E−17

0.001 0.4475358163285707 0.4475358163285707 2.06891635E−17

0.5 0.0002 0.4125937052952466 0.41259370529524664 1.84332270E−17

0.0004 0.41266641524318715 0.4126664152431872 6.72348714E−17

0.0006 0.4127391290012399 0.41273912900123993 1.75602238E−17

0.001 0.41288456793578904 0.41288456793578904 3.16011515E−17
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5 Conclusion

In this paper, we applied the Reduced Differential TransformMethod (RDTM)
to all four physical models, namely, the Telegraph equation, Cahn-Hilliard equa-
tion, and two nonhomogeneous NLPDEs equation. We successfully found approx-
imate solution for the Cahn-Hilliard equation with only three iterations. Also we
were being able to find exact solutions to Examples 3.1, 3.3 and 3.4. The results we
obtained in Example 3.2 were in excellent agreement with the exact solution. The
RDTM introduces a significant improvement in the fields over existing techniques
because it takes less calculations and the number of iteration is less compared by
other methods. My goal in the future is to apply this method to other nonlinear
PDEs which arise in other areas of science. Computations of this paper have been
carried out using the computer package of Mathematica 7.

Acknowledgements : The author would like to express his appreciation and
gratitude to the Editor and the anonymous referees’ for their comments and sug-
gestions on this paper. This research was supported by the Deanship of Research
at Jordan University of Science and Technology No. (87/2013).
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