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1 Introduction and preliminaries

Let Ψ be a set a function defined by

• Ψ = {ψ : [0,+∞) → [0,+∞) such that ψ is nondecreasing and
∑

∞

n=1
ψn(t) <

+∞ for all t > 0}, where ψn is the nth iterate of ψ.

Definition 1.1 (Samet et al., [1]). Let T be a self-mapping on a metric space

(X, d) and let α : X × X → [0,+∞) be a function. We say that T is an α-

admissible mapping if

x, y ∈ X, α(x, y) ≥ 1 =⇒ α(Tx, T y) ≥ 1.
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Definition 1.2 (Peyman et al., [2]). Let T be a self-mapping on a metric space

(X, d) and let α, η : X × X → [0,+∞) be two functions. We say that T is an

α-admissible with respect to η mapping if

x, y ∈ X, α(x, y) ≥ η(x, y) =⇒ α(Tx, T y) ≥ η(Tx, T y).

Theorem 1.3 (Peyman et al., [2]). Let (X, d) be a complete metric space and let

T : X → X be a mapping. Assume that

x, y ∈ X, α(x, y) ≥ η(x, y) =⇒ d(Tx, T y) ≤ ψ(M(x, y)),

where ψ ∈ Ψ and

M(x, y) = max

{

d(x, y),
d(x, Tx) + d(y, T y)

2
,
d(x, T y) + d(y, Tx)

2

}

Also, suppose that the following assertions hold:

(a1) T is α-admissible mapping with respect to η;

(a2) there exists x0 ∈ X such that α(x0, T x0) ≥ η(x0, T x0);

(a3) either T is continuous or for any sequence {xn} in X with α(xn, xn+1) ≥
η(xn, xn+1) for all n ∈ N∪{0} and xn → x as n→ +∞, we have α(xn, x) ≥
η(xn, x) for all n ∈ N ∪ {0}.

Then T has a fixed point.

2 Main results

Karapınar and Samet in [3], have established the following theorem.

Theorem 2.1 (Karapınar and Samet, [3]). Let (X, d) be a complete metric space

and let T : X → X be a mapping. Assume that

x, y ∈ X, β(x, y)d(Tx, T y) ≤ ψ(M(x, y)),

where ψ ∈ Ψ and

M(x, y) = max

{

d(x, y),
d(x, Tx) + d(y, T y)

2
,
d(x, T y) + d(y, Tx)

2

}

Also, suppose that the following assertions hold:

(A1) T is β-admissible mapping;

(A2) there exists x0 ∈ X such that β(x0, T x0) ≥ 1;

(A3) either T is continuous or for any sequence {xn} in X with β(xn, xn+1) ≥ 1
for all n ∈ N ∪ {0} and xn → x as n → +∞, we have β(xn, x) ≥ 1 for all

n ∈ N ∪ {0}.
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Then T has a fixed point.

Now, we can state our first theorem.

Theorem 2.2. Theorem 1.3 follows from Theorem 2.1.

Proof. Define the mapping β : X ×X → [0,+∞) by

β(x, y) =

{

1 if α(x, y) ≥ η(x, y),
0 otherwise.

Suppose that all conditions of Theorem 1.3 are satisfied, and we have to check
that all conditions of Theorem 2.1 are satisfied too.
Clearly, if T is α-admissible with respect to η, then T is β-admissible. Hence the
condition (A1) of Theorem 2.1 is satisfied. Further, if we have

x, y ∈ X, α(x, y) ≥ η(x, y) =⇒ d(Tx, T y) ≤ ψ(M(x, y)),

then, we have also

x, y ∈ X, β(x, y)d(Tx, T y) ≤ ψ(M(x, y)),

Next, if there exists x0 ∈ X such that α(x0, T x0) ≥ η(x0, T x0), then this x0
satisfies also β(x0, T x0) ≥ 1, that is, the condition (A2) of Theorem 2.1 is satisfied.
Finally, suppose that for any sequence {xn} in X with α(xn, xn+1) ≥ η(xn, xn+1)
for all n ∈ N ∪ {0} and xn → x as n → +∞, we have α(xn, x) ≥ η(xn, x) for all
n ∈ N∪{0}, this implies also that for any sequence {xn} in X with β(xn, xn+1) ≥ 1
for all n ∈ N∪{0} and xn → x as n→ +∞, we have β(xn, x) ≥ 1 for all n ∈ N∪{0},
that is, condition (A3) is satisfied. Consequently, all conditions of Theorem 2.1 are
satisfied. This implies the existence of the fixed point of T by Theorem 2.1.

3 Consequences

We first state the following classes of mappings:

Φ = {ϕ|ϕ : [0,∞) → [0,∞) is lower semi-continous} and

Ψ1 = {ψ|ψ : [0,∞) → [0,∞) continous, non-decreasing, }.

where φ(t) = 0 ⇔ t = 0 for all functions φ in the class of either Ψ1 or Φ.

Theorem 3.1 (Peyman et al., [2]). Let (X, d) be a complete metric space and let

T : X → X be an α-admissible mapping with respect to η. Assume that for all

ψ ∈ Ψ1 and ϕ ∈ Φ

x, y ∈ X, α(x, Tx)α(y, T y) ≥ η(x, Tx)η(y, T y) =⇒ ψ(d(Tx, T y)) ≤ ψ(d(x, y))−ϕ(d(x, y)).

Also, suppose that the following assertions hold:
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(a1) there exists x0 ∈ X such that α(x0, T x0) ≥ η(x0, T x0);

(a2) either T is continuous or for any sequence {xn} in X with α(xn, xn+1) ≥
η(xn, xn+1) for all n ∈ N∪{0} and xn → x as n→ +∞, we have α(x, Tx) ≥
η(x, Tx) for all n ∈ N ∪ {0}.

Then T has a fixed point.

Instead of Theorem 3.1, we state the following theorem:

Theorem 3.2. Let (X, d) be a complete metric space and let T : X → X be an

β-admissible mapping . Assume that for all ψ ∈ Ψ1 and ϕ ∈ Φ

x, y ∈ X, β(x, Tx)β(y, T y) ≥ 1 =⇒ ψ(d(Tx, T y)) ≤ ψ(d(x, y)) − ϕ(d(x, y)).

Also, suppose that the following assertions hold:

(a1) there exists x0 ∈ X such that α(x0, T x0) ≥ 1;

(a2) either T is continuous or for any sequence {xn} in X with β(xn, xn+1) ≥ 1
for all n ∈ N ∪ {0} and xn → x as n → +∞, we have β(x, Tx) ≥ 1 for all

n ∈ N ∪ {0}.

Then T has a fixed point.

Theorem 3.3. Theorem 3.1 follows from Theorem 3.2.

Proof. Define the mapping β : X ×X → [0,+∞) such that

β(x, y) =

{

1 if α(x, y) ≥ η(x, y),
0 otherwise.

Hence, we have

β(x, Tx)β(y, T y) =

{

1 if α(x, Tx)α(y, T y) ≥ η(x, Tx)η(y, T y),
0 otherwise.

The rest can be derived from the following lines in the proof Theorem 2.2.

Theorem 3.4 (Peyman et al., [2]). Let (X, d) be a complete metric space and let

T : X → X be an α-admissible mapping with respect to η. Assume that

x, y ∈ X, α(x, Tx)α(y, T y) ≥ η(x, Tx)η(y, T y) =⇒ ψ(d(Tx, T y)) ≤ cψ(d(x, y)),

where for all ψ ∈ Ψ1 and 0 < c < 1. Also, suppose that the following assertions

hold:

(a1) there exists x0 ∈ X such that α(x0, T x0) ≥ η(x0, T x0);

(a2) either T is continuous or for any sequence {xn} in X with α(xn, xn+1) ≥
η(xn, xn+1) for all n ∈ N∪{0} and xn → x as n→ +∞, we have α(x, Tx) ≥
η(x, Tx) for all n ∈ N ∪ {0}.
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Then T has a fixed point.

Analogously, we state the following theorem instead of Theorem 3.4, :

Theorem 3.5. Let (X, d) be a complete metric space and let T : X → X be an

β-admissible mapping. Assume that

x, y ∈ X, β(x, Tx)β(y, T y) ≥ 1 =⇒ ψ(d(Tx, T y)) ≤ cψ(d(x, y)),

where for all ψ ∈ Ψ1 and 0 < c < 1. Also, suppose that the following assertions

hold:

(a1) there exists x0 ∈ X such that α(x0, T x0) ≥ 1;

(a2) either T is continuous or for any sequence {xn} in X with β(xn, xn+1) ≥ 1
for all n ∈ N ∪ {0} and xn → x as n → +∞, we have β(x, Tx) ≥ 1 for all

n ∈ N ∪ {0}.

Then T has a fixed point.

We skipped the proof which can be derived easily following the lines in the
proof of Theorem 3.4 in [2].

Theorem 3.6. Theorem 3.4 follows from Theorem 3.5.

Proof. By following the lines in the proof of Theorem 3.3.
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